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Abstract 
Not surprisingly, the common use of any public key crypto system involves publishing the 
public key and keeping the private key secret. There are however a few applications where 
both the private and public key are kept secret, thereby effectively converting a public key 
crypto algorithm to a symmetric algorithm. 

We show that if the RSA cryptosystem is used in such a symmetric application, it is possible 
to determine the public RSA modulus if the public exponent is known and short, such as 3 or 
F4=65537, and two or more plaintext/ciphertext (or, if RSA is used for signing, signed 
value/signature) pairs are known. 

1 Introduction 

Despite the nature of a public key crypto system to publish the public key, there are some 
rare applications where a public key crypto algorithm is effectively converted to a symmetric 
algorithm by keeping secret both the private and public key. In the case of the RSA crypto 
system [1], at least the public modulus is kept secret by these applications, whereas the 
public exponent is often known or can be guessed. 

One example of such an odd RSA application was used during the introduction of DNSSEC 
[2] in the DNS root zone. In order to prevent premature verification of DNSSEC by clients 
and to allow for a traceless roll-back by elimination of the DNSSEC records in case any 
operational problems should occur, the construction of a Deliberately Unvalidatable Root 
Zone (DURZ) was used. In the DURZ the RSA modulus in the DNSSEC key records was 
replaced by an appropriate human-readable message. Nevertheless the respective other 
records were signed with the private key associated with the original modulus. 

A second example is the voucher system of the captive portal for the pfSense open source 
firewall [4], where 64 bit RSA is used as a 64 bit block cipher to encrypt voucher roll and 
ticket number along with some additional information. The result of this encryption is the 
voucher code that users have to enter at the captive portal in order to be granted network 
access. 64 bit block size – and hence the RSA key length – were chosen, because the 
resulting voucher code must be manually typed by the user and longer voucher codes are 
not deemed usable. Since 64 bit numbers are susceptible to factoring, the RSA modulus is 
kept secret by the voucher system. 

In both cases the de-facto standard public exponent F4=65537 is used. 
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2 The Attack 

We will now present a known-plaintext attack that allows to determine the unknown public 
RSA modulus n  given at least two pairs ),( ii cm  of plaintext message im  and resulting 
ciphertext ic , provided the public exponent e is known (or suspected) and short, such as F4.. 
By definition of the RSA crypto system [1] they are related through the following congruence: 

(1) nmc e
ii mod . 

According to definition of modular reduction (1) implies directly that 

(2) nxcm i
e

i  

for some non-negative integer x . 

Note that if ne 2ln , i. e. for all reasonable-sized RSA public keys with the commonly used 
public exponent F4, x  will be a positive integer unless 0im  or 1im . Even for the smallest 

possible public exponent 3 , only a few hundred more plaintext values im  will satisfy nm e
i  

and thus be unusable for the following step. So for all practical purposes we can assume that 

i
e

i cm  is a proper multiple of n  

Note furthermore that for relatively small exponents the value i
e

i cm  can be computed and 
handled in the memory of every modern computer. 

Now the know-plaintext attack is straight forward: Given two pairs ),( 11 cm  and ),( 22 cm  with 
the above property (1) (and nme ) compute their greatest common divisor 

(3) ),gcd( 2211 cmcmg ee  

For all practical cases, g  is either n  itself or a small multiple thereof. 

If g  is not equal to n , either the gcd of g  and 33 cm e  can be calculated (if more than two 
plaintext/ciphertext pairs are available) or small cofactors in g  can be eliminated by trial 
division. 

Once n  is determined, it may be attacked using state-of-the-art factoring algorithms.1 
In particular relatively small moduli like the 64 bit key used by the pfSense voucher system 
can be factored, compromising the private key in addition to the secret “public” one. 

3 Conclusion 

We have shown that it is not generally advisable to transform a public key crypto algorithm to 
a symmetric one by keeping the public key secret. 

In particular users of the pfSense voucher system are urgently recommended to choose the 
magic number employed in generating and verifying the voucher codes (see [4]) at random, 
keep it secret and change it regularly in order to prevent the known-plaintext attack described 
above. Alternatively pfSense could replace RSA by a genuine 64 bit block cipher like Triple 
DES [5]. 

                                                
1  The current public world record is the factorization of a 768 bit RSA modulus [6]. 
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