
 Breaking Public Keys Page 1 of 3
Breaking Public Keys .doc 11/10/2012

Breaking Public Keys
How to Determine an Unknown RSA Public Modulus

Hans-Joachim Knobloch
Secorvo Security Consulting GmbH

<hans-joachim.knobloch@secorvo.de>

Version 1.0
11. October 2012

Abstract
Not surprisingly, the common use of any public key crypto system involves publishing the
public key and keeping the private key secret. There are however a few applications where
both the private and public key are kept secret, thereby effectively converting a public key
crypto algorithm to a symmetric algorithm.

We show that if the RSA cryptosystem is used in such a symmetric application, it is possible
to determine the public RSA modulus if the public exponent is known and short, such as 3 or
F4=65537, and two or more plaintext/ciphertext (or, if RSA is used for signing, signed
value/signature) pairs are known.

1 Introduction

Despite the nature of a public key crypto system to publish the public key, there are some
rare applications where a public key crypto algorithm is effectively converted to a symmetric
algorithm by keeping secret both the private and public key. In the case of the RSA crypto
system [1], at least the public modulus is kept secret by these applications, whereas the
public exponent is often known or can be guessed.

One example of such an odd RSA application was used during the introduction of DNSSEC
[2] in the DNS root zone. In order to prevent premature verification of DNSSEC by clients
and to allow for a traceless roll-back by elimination of the DNSSEC records in case any
operational problems should occur, the construction of a Deliberately Unvalidatable Root
Zone (DURZ) was used. In the DURZ the RSA modulus in the DNSSEC key records was
replaced by an appropriate human-readable message. Nevertheless the respective other
records were signed with the private key associated with the original modulus.

A second example is the voucher system of the captive portal for the pfSense open source
firewall [4], where 64 bit RSA is used as a 64 bit block cipher to encrypt voucher roll and
ticket number along with some additional information. The result of this encryption is the
voucher code that users have to enter at the captive portal in order to be granted network
access. 64 bit block size – and hence the RSA key length – were chosen, because the
resulting voucher code must be manually typed by the user and longer voucher codes are
not deemed usable. Since 64 bit numbers are susceptible to factoring, the RSA modulus is
kept secret by the voucher system.

In both cases the de-facto standard public exponent F4=65537 is used.

 Breaking Public Keys Page 2 of 3
Breaking Public Keys .doc 11/10/2012

2 The Attack

We will now present a known-plaintext attack that allows to determine the unknown public
RSA modulus n given at least two pairs),(ii cm of plaintext message im and resulting
ciphertext ic , provided the public exponent e is known (or suspected) and short, such as F4..
By definition of the RSA crypto system [1] they are related through the following congruence:

(1) nmc e
ii mod .

According to definition of modular reduction (1) implies directly that

(2) nxcm i
e

i

for some non-negative integer x .

Note that if ne 2ln , i. e. for all reasonable-sized RSA public keys with the commonly used
public exponent F4, x will be a positive integer unless 0im or 1im . Even for the smallest

possible public exponent 3 , only a few hundred more plaintext values im will satisfy nm e
i

and thus be unusable for the following step. So for all practical purposes we can assume that

i
e

i cm is a proper multiple of n

Note furthermore that for relatively small exponents the value i
e

i cm can be computed and
handled in the memory of every modern computer.

Now the know-plaintext attack is straight forward: Given two pairs),(11 cm and),(22 cm with
the above property (1) (and nme) compute their greatest common divisor

(3)),gcd(2211 cmcmg ee

For all practical cases, g is either n itself or a small multiple thereof.

If g is not equal to n , either the gcd of g and 33 cm e can be calculated (if more than two
plaintext/ciphertext pairs are available) or small cofactors in g can be eliminated by trial
division.

Once n is determined, it may be attacked using state-of-the-art factoring algorithms.1
In particular relatively small moduli like the 64 bit key used by the pfSense voucher system
can be factored, compromising the private key in addition to the secret “public” one.

3 Conclusion

We have shown that it is not generally advisable to transform a public key crypto algorithm to
a symmetric one by keeping the public key secret.

In particular users of the pfSense voucher system are urgently recommended to choose the
magic number employed in generating and verifying the voucher codes (see [4]) at random,
keep it secret and change it regularly in order to prevent the known-plaintext attack described
above. Alternatively pfSense could replace RSA by a genuine 64 bit block cipher like Triple
DES [5].

1 The current public world record is the factorization of a 768 bit RSA modulus [6].

 Breaking Public Keys Page 3 of 3
Breaking Public Keys .doc 11/10/2012

4 References

[1] R.L. Rivest, A. Shamir, and L. Adleman: A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems,1978, http://people.csail.mit.edu/rivest/Rsapaper.pdf

[2] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose: RFC 4033 - DNS Security
Introduction and Requirements, March 2005, http://www.rfc-editor.org/rfc/rfc4033.txt

[3] J. Abley, D. Knight, M. Larson: DNSSEC Deployment for the Root Zone (Draft),
March 2010, http://www.root-dnssec.org/wp-content/uploads/2010/05/draft-icann-
dnssec-deployment-02.txt

[4] pfSense project: Captive Portal Vouchers, Wiki entry as of 10/10/2012
http://doc.pfsense.org/index.php/Captive_Portal_Vouchers

[5] NIST: FIPS PUB 46-3 - Data Encryption Standard (DES) (withdrawn), 1999,
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[6] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry, A.
Kruppa, P. L. Montgomery, D. A. Osvik, H. te Riele, A. Timofeev, P. Zimmermann:
Factorization of a 768-bit RSA modulus, 2010, http://eprint.iacr.org/2010/006.pdf

