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Abstract. The hash function Skein is one of the five finalists of the NIST SHA-3 competition;
it is based on the block cipher Threefish which only uses three primitive operations: modular
addition, rotation and bitwise XOR (ARX). This paper studies the boomerang attacks on Skein-512.
Boomerang distinguishers on the compression function reduced to 32 and 36 rounds are proposed,
with complexities 2104.5 and 2454 respectively. Examples of the distinguishers on 28-round and 31-
round are also given. In addition, the boomerang distinguishers are applicable to the key-recovery
attacks on reduced Threefish-512. The complexities for key-recovery attacks reduced to 32-/33-
/34-round are about 2181, 2305 and 2424. Because Laurent et al. [14] pointed out that the previous
boomerang distinguishers for Threefish-512 are in fact not compatible, our attacks are the first valid
boomerang attacks for the final round Skein-512.
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1 Introduction

Cryptographic hash functions, which provide integrity, authentication and etc., are very impor-
tant in modern cryptology. In 2005, as the most widely used hash functions MD5 and SHA-1
were broken by Wang et al. [18][19], NIST started a hash competition for a new hash standard
(SHA-3) in 2007. Now the competition has come into the third round (the final round), and 5
out of the candidates are selected. Skein [7], which is one of the finalists, is a ARX-type hash
function (based on modular addition, rotation and exclusive-OR). The core of the compression
function of Skein is a tweakable block cipher called Threefish, which is proposed with 256-, 512-,
1024-bit block sizes and 72, 72, 80 rounds, respectively. When the algorithm entered into the sec-
ond round, the authors had changed the rotation constants, and after it was selected as a finalist,
the constants used in the key schedule were updated to resist the rotational attack [10,11].

During the competition, Skein has been attracting the attentions of the cryptanalysts, and
there are several cryptanalytic results on the security of the compression function of Skein and
its based block cipher Threefish. At Asiacrypt 2009 [1], Aumasson et al. used the boomerang
attack to launch a key recovery attack on Threefish-512 reduced to 32 rounds and the known-
key distinguisher to 35 rounds under the old rotation constants. However, we find that their
differential paths use an inverse permutation instead of the original one. At ISPEC 2010 [6],
Chen et al. also proposed a boomerang attack for the key recovery of Threefish-512 reduced
to 33 and 34 rounds. At CT-RSA 2012 [14], Leurent et al. gave a boomerang distinguisher
for 32-round compression function of Skein-256 with complexity 2114, and they also pointed
that the differential paths in [6] are incompatible. We correct the paths in [1] with the right
permutation and show that they are also incompatible under the old rotation constants due to
similar contradictions as in [6]. At CANS 2010 [15], Su et al. presented free-start near-collisions of
Skein-256/-512 compression functions reduced to 20 rounds and Skein-1024 reduced to 24 rounds.
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At Asiacrypt 2010 [11], Khovratovich et al. combined the rotational attack and the rebound
attack, and gave distinguishers on 53-round Skein-256 and 57-round Skein-512 respectively, and
their technique depends on the constants used in the key schedule. In 2011, Yu et al. [20] gave
a near-collision attack for Skein-256 using the rebound attack. At FSE 2012, Khovratovich et
al. also gave a preimage attack on 22-round Skein-512 hash function and 37-round Skein-512
compression function by the biclique method [12].
Our contribution. In this paper, we study the boomerang distinguishers on round-reduced
Skein-512. Our analysis is based on two related-key differential paths of Threefish-512 with high
probability. In order to get rid of the incompatibility pointed out in [14], we use differences for
the key words and tweaks on bit 59 instead of the bit 64 (the bit 1 is the least significant bit)
for the top path.

We also reveal that the four paths in the middle 8 rounds are not independent, the probability
of the distinguisher in the middle 8 rounds is much higher than the average probability. Based
on the differential paths, we give boomerang distinguisher on the compression function of Skein-
512 reduced to 32 round with complexity 2104.5. The distinguisher can be extended to 36 rounds
by adding two more rounds on the top and bottom of the differential paths respectively. Our
boomerang distinguishers also can be used to the related-key key-recovery attack on Threefish-
512 reduced to 32, 33 and 34 rounds for 1/4 of the keys. Table 1 summaries our results.

The rest of the paper is organized as follows. In Sect.2, we give a brief description of Skein-
512. Sect.3 summaries the boomerang attack. Sect.4 leverages the boomerang technique to the
compression functions of Skein-512. In Sec.5, we introduce the key-recovery attacks based on
our boomerang distinguishers. Finally, a conclusion of the paper is given in Sect.6.

Table 1. Summary of the attacks on Skein (only the attacks independent of the constants are
mentioned).

Attack CF/KP Rounds Time Ref.

Near collisions(Skein-256) CF 20 260 [15]

Near Collisions(Skein-256) CF 32 2105 [20]

Boomerang Dist.(Skein-256) CF 28 224

[14]Boomerang Dist.(Skein-256) KP 32 257

Boomerang Dist.(Skein-256) CF 32 2114

Key Recovery (Threefish-512) KP 32 2312

[1]*
Boomerang Dist. (Threefish-512) KP 35 2478

Key Recovery (Threefish-512) KP 32 2189

[6]*
Key Recovery (Threefish-512) KP 33 2324.6

Key Recovery (Threefish-512) KP 34 2474.4

Boomerang Dist.(Skein-512) CF 28 240.5

Sec.3

Boomerang Dist.(Skein-512) CF 31 232†
Boomerang Dist.(Skein-512) CF 32 256.5†
Boomerang Dist.(Skein-512) CF 32 2104.5

Boomerang Dist.(Skein-512) CF 33 2125†
Boomerang Dist.(Skein-512) CP 34 2190.6†
Boomerang Dist.(Skein-512) CP 35 2308†
Boomerang Dist.(Skein-512) CP 36 2454†
Key-recovery (Threefish-512) KP 32 2181

Sec.4Key-recovery (Threefish-512) KP 33 2305

Key-recovery (Threefish-512) KP 34 2424

KP: Keyed permutation, CF: Compression Function
*:The differential paths are incompatible
†: The initial and final subkeys are not included
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2 Description of Skein-512

Skein is designed by Ferguson et al., which is one of the SHA-3 finalists. It supports three
different internal state sizes (256, 512, and 1024 bits) and each of these state sizes can support
any output size. The word size which Skein operates on is 64 bits. Skein is based on the UBI
(Unique Block Iteration) chaining mode that uses block cipher Threefish to build a compression
function.

The compression function of Skein can be defined as H = E(K, T, M)⊕M , where E(K,T,M)
is the block cipher Threefish, M is the plaintext, K is the master key and T is the tweak value.
For Skein-512, both M and K are 512 bits, and the length of T is 128 bits. Let us denote
Vi = (ai, bi, ci, di, ei, fi, gi, hi) as the output value of the i-th round, where ai, bi, ..., hi are 64-bit
words. Let V0 = M be the plaintext, the encryption procedure of Threefish-512 is carried out
for i = 1 to 72 as follows.

If (i− 1) mod 4 = 0, first compute

âi−1 = ai−1 + K(i−1)/4,a, b̂i−1 = bi−1 + K(i−1)/4,b,
ĉi−1 = ci−1 + K(i−1)/4,c, d̂i−1 = di−1 + K(i−1)/4,d,
êi−1 = ei−1 + K(i−1)/4,e, f̂i−1 = fi−1 + K(i−1)/4,f ,
ĝi−1 = gi−1 + K(i−1)/4,g, ĥi−1 = hi−1 + K(i−1)/4,h,

where K(i−1)/4,a, K(i−1)/4,b, ..., K(i−1)/4,h are round subkeys which are involved in every four
rounds. Then carry out:

ai = ĉi−1 + d̂i−1, hi = ai ⊕ (d̂i−1 ≪ Ri,1),
ci = êi−1 + f̂i−1, fi = ci ⊕ (f̂i−1 ≪ Ri,2),
ei = ĝi−1 + ĥi−1, di = ei ⊕ (ĥi−1 ≪ Ri,3),
gi = âi−1 + b̂i−1, bi = gi ⊕ (b̂i−1 ≪ Ri,0),

where Ri,1 and Ri,2 are rotation constants which can be found in [7]. For the sake of convenience,
we denote V̂i−1 = (âi−1, b̂i−1, ĉi−1, d̂i−1, êi−1, f̂i−1, ĝi−1, ĥi−1).

If (i− 1) mod 4 6= 0, compute

ai = ci−1 + di−1, hi = ai ⊕ (di−1 ≪ Ri,1),
ci = ei−1 + fi−1, fi = ci ⊕ (fi−1 ≪ Ri,2),
ei = gi−1 + hi−1, di = ei ⊕ (hi−1 ≪ Ri,3),
gi = ai−1 + bi−1, bi = gi ⊕ (bi−1 ≪ Ri,0).

After the last round, the ciphertext is computed as V̂72 = (â72, b̂72, ĉ72, d̂72, ê72, f̂72, ĝ72, ĥ72).
The key schedule starts with the master key K = (k0, k1, k2, k3, k4, k5, k6, k7) and the tweak

value T = (t0, t1). First we compute

k8 := 0x1bd11bdaa9fc1a22⊕
7⊕

i=0

ki and t2 := t0 ⊕ t1.

Then the subkeys are derived for s = 0 to 18:

Ks,a := k(s+0) mod 9

Ks,b := k(s+1)mod 9

Ks,c := k(s+2) mod 9

Ks,d := k(s+3) mod 9

Ks,e := k(s+4)mod 9

Ks,f := k(s+5)mod 9 + ts mod3

Ks,g := k(s+6) mod 5 + t(s+1)mod 3

Ks,h := k(s+7) mod 5 + s
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3 The Boomerang Attack

The boomerang attack was introduced by Wagner [16] and first applied to block ciphers; it is
an adaptive chosen plaintext and ciphertext attack. Later it was further developed by Kelsey
et al. into a chosen plaintext attack called the amplified boomerang attack [13], then Biham
et al. further developed it into the rectangle attack [3]. The basic idea of the boomerang at-
tack is joining two short differential paths with high probabilities in a quartet. The related-key
boomerang attack is proposed in [4]; it uses the related-key differentials instead of the single-key
differentials. Let E be a block cipher with block size n bits, and it can be decomposed into two
sub-ciphers: E = E1 ◦ E0. For the sub-cipher E0, there is a differential path (α, αk) → β with
probability p; for the sub-cipher E1, there is a differential path (γ, γk) → δ with probability q.
Then the related-key boomerang attack can be constructed:

– Randomly choose a pair of plaintexts (P1, P2) such that P2 − P1 = α.
– Compute K2 = K1 + αk, K3 = K1 + γk and K4 = K1 + αk + γk. Encrypt P1, P2 with the

related keys K1 and K2 to get C1 = EK1(P1), C2 = EK2(P2).
– Compute C3 = C1 + δ, C4 = C2 + δ. Decrypt C3, C4 with the related keys K3 and K4 to get

P3 = E−1
K3

(C3), P4 = E−1
K4

(C4).
– Check whether P4 − P3 = α.

It is known that for a n-bit random permutation, P4−P3 = α with probability 2−n. Therefore,
the attack is valid if p2q2 > 2−n.

In the known-key setting, a (related-key) boomerang attack can be used to distinguish a
given permutation from a random oracle; it is called known-related-key boomerang attack in [5].
Applying the known-related-key boomerang attack to the compression function in the MMO
mode, i.e, CF (K, M) = EK(M) + M , it is possible to start from the middle rounds because the
message M and the key K can be selected randomly (refer to [5] and [14]). The (known-related-
key) boomerang attack is particularly efficient for the ARX-type hash functions because their
compression functions have strong diffusion after several steps, only short differential paths with
high probabilities can be found. See Fig. 1 for the schematic view of the boomerang distinguisher
for hash functions. The known-related-key boomerang attack for a permutation (or a compression
function in the MMO structure) can be summarized as follows.

– Choose a random value X1 and K1, compute X2 = X1 + β, X3 = X1 + γ, X4 = X3 + β and
K2 = K1 + βk, K3 = K1 + γk, K4 = K3 + βk.

– Compute backward from quartets (Xi,Ki)4i=1 using E−1
0 to obtain P1, P2, P3 and P4.

– Compute forward from quartets (Xi,Ki)4i=1 using E1 to obtain C1, C2, C3 and C4.
– Check whether P2 − P1 = P4 − P3 = α and C3 − C1 = C4 − C2 = δ are fulfilled.

For a n-bit random permutation, the boomerang distinguisher falls into three types according
to the input and output differences.

– Type I: A quartet satisfies P2 − P1 = P4 − P3 = α and C3 − C1 = C4 − C2 = δ for fixed α
and δ. In this case, the generic complexity is 2n.

– Type II: Only C3 − C1 = C4 − C2 are required (the property is also called zero-sum or
second-order differential collision). In this case, the complexity for obtaining such a quartet
is 2n/3 using Wagner’s generalized birthday attack [17].

– Type III: A quartet satisfies P2 − P1 = P4 − P3 and C3 − C1 = C4 − C2. In this case, the
best known attack still takes time 2n/2.
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Fig. 1. The boomerang attack for the hash functions

4 The Boomerang Distinguisher on Reduced Skein-512

In this section, we describe the known-related-key boomerang attack on Skein-512 reduced to
36 rounds. As mentioned above, the basic idea of our attack is to connect two short differential
paths in a quartet. The first step of our attack is to find two short differentials with high
probabilities so that the switch in the middle does not contain any contradictions. Secondly, we
derive the sufficient conditions for the rounds in the middle, and compute the precise probability
of each condition. Thirdly, we correct the conditions in the intermediate rounds by modifying
the chaining variables, the key K and the tweak value T . Finally, after the message modification,
we search the right quartet that pass the verification of the distinguisher.

4.1 Round-reduced differential paths for Skein-512

The differences of the master key K = (ki)7i=0 and tweak value T = (t0, t1) selected for the
top differential path are ∆k0 = 0x0400000000000000, ∆t0 = 0x0400000000000000 and ∆t1 =
0x0400000000000000. Suppose k8,59 = t0,59 ⊕ 1 and k0,59 = t1,59 ⊕ 1, then there is no difference
in the fourth subkey. For the bottom path, the MSB differences are set in k3, k4 and t1, and this
gives no difference in the eighth subkey. According to the key schedule, the differences for the
subkeys Ki = (Ki,a,Ki,b,Ki,c,Ki,d,Ki,e,Ki,f ,Ki,g,Ki,h) (0 ≤ i ≤ 9) are shown in Tables 2 and
3.

The top path we used consists of 18 rounds. Because ∆K2 = (0, 0, 0, 0, 0, 0, 0,±258) and
∆K3 = (0, 0, 0, 0, 0, 0, 0, 0), we select the intermediate difference ∆V8 to meet (0, 0, 0, 0, 0, 0, 0,∓258).
In this way, we get a 8-round path with zero-difference from rounds 9 to 16. By extending the
difference ∆V8 in the backward direction for 6 rounds and the difference ∆V̂16 = ∆K4 in the
forward direction for 4 rounds, a 18-round differential path with high probability is obtained.

Similarly, we choose ∆V24 as (0, 0, 0, 0, 0, 0, 0, 263) to compensate the difference ∆K6 =
(0, 0, 0, 0, 0, 0, 0, 263), which results in zero difference in rounds 25 to 32. As a consequence,
a 18-round differential path with high probability also can be acquired by linearly expanding
the difference ∆V24 backward for 4 rounds and the difference ∆V̂32 = ∆K8 forward for 6 rounds.
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Table 2. The subkey differences of the top path.

s d
Ki,a Ki,b Ki,c Ki,d Ki,e Ki,f Ki,g Ki,h

Differences

0 0
k0 k1 k2 k3 k4 k5 + t0 k6 + t1 k7 + 0
±258 0 0 0 0 ±258 ±258 0

1 4
k1 k2 k3 k4 k5 k6 + t1 k7 + t2 k8 + 1
0 0 0 0 0 ±258 0 ±258

2 8
k2 k3 k4 k5 k6 k7 + t2 k8 + t0 k0 + 2
0 0 0 0 0 0 0 ±258

3 12
k3 k4 k5 k6 k7 k8 + t0 k0 + t1 k1 + 3
0 0 0 0 0 0 0 0

4 16
k4 k5 k6 k7 k8 k0 + t1 k1 + t2 k2 + 4
0 0 0 0 ±258 0 0 0

Table 3. The subkey differences of the bottom path.

s d
Ki,a Ki,b Ki,c Ki,d Ki,e Ki,f Ki,g Ki,h

Differences

5 20
k5 k6 k7 k8 k0 k1 + t2 k2 + t0 k3 + 5
0 0 0 0 0 263 0 263

6 24
k6 k7 k8 k0 k1 k2 + t0 k3 + t1 k4 + 6
0 0 0 0 0 0 0 263

7 28
k7 k8 k0 k1 k2 k3 + t1 k4 + t2 k5 + 7
0 0 0 0 0 0 0 0

8 32
k8 k0 k1 k2 k3 k4 + t2 k5 + t0 k6 + 8
0 0 0 0 263 0 0 0

9 36
k0 k1 k2 k3 k4 k5 + t0 k6 + t1 k7 + 9
0 0 0 263 263 0 263 0

The two differential paths are shown in Tables 10 and 11, where we use two kinds of differ-
ences: the XOR difference and the integer modular substraction difference. In the rounds after
adding the subkey, we express the differences in the positions âi, ĉi, êi and ĝi with the integer
modular substraction difference (except the final adding key round), because the XOR opera-
tions are not included when computing the next chaining value Vi+1; in the other positions of
the differential path, we use the XOR difference.

4.2 Message modifications for the middle rounds

The conditions of the middle 8 rounds can be satisfied by the message modifications. The two
pair short differentials in the boomerang distinguisher from rounds 16 to 24 are shown in Fig.
2. Let D1, D2 denote the top two paths from rounds 20 down to 16, and D3, D4 be the bottom
two paths from rounds 20 to 24. Then the sufficient conditions for the four paths are shown in
Table 4.

If we select the chaining variables V
(1)
20 and the subkey K

(1)
5 randomly, then the conditions

in D1 can be fulfilled by modifying V
(1)
20 ; those in D3 can be satisfied by modifying K

(1)
5 . But

for conditions in D2 and D4, we cannot correct them directly because the pairs (V (3)
20 , K

(3)
5 ) and

(V (2)
20 , K

(2)
5 ) are related to the pair (V (1)

20 , K
(1)
5 ).

Let the non-zero difference bits of V
(3)
i related to differential path D2 equal to the cor-

responding bits of V
(1)
i where i = 17, 18, 19, 20. That is to say a

(3)
20,9 = a

(1)
20,9, a

(3)
20,34 = a

(1)
20,34,

b
(3)
20,39 = b

(1)
20,39, · · · and so on (see Table 5). As a result, if all the sufficient conditions for the path

D1 are satisfied, then all the conditions in D2 must be satisfied. For the fixed input difference
γ of D3, We can easily deduce that the conditions in Table 5 can be satisfied with probability
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Fig. 2. The middle rounds in a boomerang distinguisher

2−7.4, which is much higher than the average probability; this is also verified by our experiments.
All the conditions in Table 5 can be fulfilled by modifying V

(1)
20 .

Similarly, we can convert the conditions for D4 in Table 4 to those in Table 6. These conditions
hold with probability 2−8.4 when D1 hold, which is better than the average probability 2−32. All
the conditions in Table 6 can be fulfilled by modifying K

(1)
5 .

After the message modifications, the boomerang distinguisher in the middle 8 rounds hold
with probability close to 1. We also reveal that the differential path D2 is heavily dependent on
D3, and the path D4 is heavily dependent on D1. The reason of contradictions in the previous
attacks on Skein-512 is that the probability for D2 or D4 to hold is zero when the paths D1 and
D3 hold.

4.3 Complexity of the Attack

Using the differential paths given in Table 10 and Table 11, we can construct a boomerang
distinguisher for Skein-512 reduced to 32 rounds (out of 72 rounds). The top path in the back-
ward direction (rounds 16-4) holds with probability 2−37 after the message modifications. The
bottom path in the forward direction (rounds 20-36) holds with probability 2−24 after message
modifications.

So the complexity of the 32-round boomerang distinguisher is 22·(37+24) = 2122 by using the
differential paths in Table 10 and 11. It can be reduced to 22·(13+6) × 324+18 ≈ 2104.5 if we only
want ⊕4

i=1Pi = 0 and ⊕4
i=1Ci = 0, because the probability for ⊕4

i=1x
(i)
j = 0 is about 1/3 where

x
(i)
j denote the non-zero difference bits in rounds 4 and 36. Extending the 32-round boomerang

distinguisher for two more rounds, we can get the 33-/34-/35-/36-round boomerang distinguisher
on Skein-512 as follows.

– The complexity of 33-round distinguisher (rounds 4-37) is about 22·(13+6)×324+13+18 ≈ 2125.
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Table 4. The conditions for differential paths D1, D2, D3 and D4.

rounds Conditions for D1 Conditions for D2

20
a
(1)
20,43 ⊕ h

(1)
20,43 = a

(1)
20,34, c

(1)
20,63 ⊕ f

(1)
20,63 = c

(1)
20,9,

c
(1)
20,21 ⊕ f

(1)
20,21 = c

(1)
20,31, c

(1)
20,35 ⊕ f

(1)
20,35 = c

(1)
20,45

a
(3)
20,43 ⊕ h

(3)
20,43 = a

(3)
20,34, c

(3)
20,63 ⊕ f

(3)
20,63 = c

(3)
20,9,

c
(3)
20,21 ⊕ f

(3)
20,21 = c

(3)
20,31, c

(3)
20,35 ⊕ f

(3)
20,35 = c

(3)
20,45

19

a
(1)
19,59 = b

(1)
19,59⊕1, c

(1)
19,9 = a

(1)
20,9, c

(1)
19,59 = d

(1)
19,59⊕1,

e
(1)
19,59 = f

(1)
19,59⊕1, g

(1)
20,59 = h

(1)
20,59⊕1, f

(1)
18,9 = c

(1)
19,9,

f
(1)
18,59 = c

(1)
18,59, h

(1)
18,59 = e

(1)
18,59

a
(3)
19,59 = b

(3)
19,59⊕1, c

(3)
19,9 = a

(3)
20,9, c

(3)
19,59 = d

(3)
19,59⊕1,

e
(3)
19,59 = f

(3)
19,59⊕, g

(3)
20,59 = h

(3)
20,59 ⊕ 1, f

(3)
18,9 = c

(3)
19,9,

f
(3)
18,59 = c

(3)
18,59, h

(3)
18,59 = e

(3)
18,59

18 a
(1)
18,59 = g

(1)
19,59, c

(1)
18,59 = a

(1)
19,59, f

(1)
17,59 = c

(1)
18,59 a

(3)
18,59 = g

(3)
19,59, c

(3)
18,59 = a

(3)
19,59, f

(3)
17,59 = c

(3)
18,59

17 c
(1)
17,59 = a

(1)
18,59, k8,59 = c

(1)
17,59 c

(3)
17,59 = a

(3)
18,59, k8,59 = c

(3)
17,59

Conditions for D3 Conditions for D4

20

b
(1)
20,15 = a

(1)
20,15 ⊕ 1, d

(1)
20,20 = c

(1)
20,20 ⊕ 1, d

(1)
20,46 =

c
(1)
20,46 ⊕ 1, f

(1)
20,10 = e

(1)
20,10 ⊕ 1, f

(1)
20,30 = e

(1)
20,30 ⊕ 1,

h
(1)
20,20 = g

(1)
20,20 ⊕ 1

b
(2)
20,15 = a

(2)
20,15 ⊕ 1, d

(2)
20,20 = c

(2)
20,20 ⊕ 1, d

(2)
20,46 =

c
(2)
20,46 ⊕ 1, f

(2)
20,10 = e

(2)
20,10 ⊕ 1, f

(2)
20,30 = e

(2)
20,30 ⊕ 1,

h
(2)
20,20 = g

(2)
20,20 ⊕ 1

b̂
(1)
20,15 = b

(1)
20,15, b̂

(1)
20,37 = b

(1)
20,37, b̂

(1)
20,54 = b

(1)
20,54,

d̂
(1)
20,20 = d

(1)
20,20, d̂

(1)
20,46 = d

(1)
20,46, f̂

(1)
20,10 = f

(1)
20,10,

f̂
(1)
20,30 = f

(1)
20,30, ĥ

(1)
20,40 = h

(1)
20,40

b̂
(2)
20,15 = b

(2)
20,15, b̂

(2)
20,37 = b

(2)
20,37, b̂

(2)
20,54 = b

(2)
20,54,

d̂
(2)
20,20 = d

(2)
20,20, d̂

(2)
20,46 = d

(2)
20,46, f̂

(2)
20,10 = f

(2)
20,10,

f̂
(2)
20,30 = f

(2)
20,30, ĥ

(2)
20,40 = h

(2)
20,40

21

a
(1)
21,37 = b

(1)
20,37, a

(1)
21,50 = b

(1)
20,50, e

(1)
21,44 = g

(1)
20,44,

g
(1)
21,12 = a

(1)
20,12, g

(1)
21,29 = a

(1)
20,29, g

(1)
21,37 = b

(1)
20,37,

g
(1)
21,54 = b

(1)
20,54, b

(1)
21,37 = a

(1)
21,37 +1, f

(1)
21,44 = e

(1)
21,44⊕

1, h
(1)
21,12 = g

(1)
21,12 + 1, h

(1)
21,37 = g

(1)
21,37 ⊕ 1

a
(2)
21,37 = b

(2)
20,37, a

(2)
21,50 = b

(2)
20,50, e

(2)
21,44 = g

(2)
20,44,

g
(2)
21,12 = a

(2)
20,12, g

(2)
21,29 = a

(2)
20,29, g

(2)
21,37 = b

(2)
20,37,

g
(2)
21,54 = b

(2)
20,54, b

(2)
21,37 = a

(2)
21,37 +1, f

(2)
21,44 = e

(2)
21,44⊕

1, h
(2)
21,12 = g

(2)
21,12 + 1, h

(2)
21,37 = g

(2)
21,37 ⊕ 1

22
e
(1)
22,29 = g

(1)
22,29, e

(1)
22,54 = g

(1)
22,54, f

(1)
22,54 = e

(1)
22,54 ⊕ 1,

g
(1)
22,50 = a

(1)
21,50, h

(1)
22,50 = g

(1)
22,50

e
(2)
22,29 = g

(2)
22,29, e

(2)
22,54 = g

(2)
22,54, f

(2)
22,54 = e

(2)
22,54 ⊕ 1,

g
(2)
22,50 = a

(2)
21,50, h

(2)
22,50 = g

(2)
22,50

23 c
(1)
23,29 = e

(1)
22,29, d

(1)
23,29 = c

(1)
23,29 ⊕ 1 c

(2)
23,29 = e

(2)
22,29, d

(2)
23,29 = c

(2)
23,29 ⊕ 1

Table 5. The conditions for Differential Path D2 which hold with probability 2−7.4.

round conditions pr

20

a
(3)
20,9 = a

(1)
20,9, a

(3)
20,34 = a

(1)
20,34, b

(3)
20,39 = b

(1)
20,39, c

(3)
20,9 = c

(1)
20,9, c

(3)
20,31 = c

(1)
20,31,

c
(3)
20,45 = c

(1)
20,45, d

(3)
20,51 = d

(1)
20,51, f

(3)
20,9 = f

(1)
20,9, f

(3)
20,21 = f

(1)
20,21, f

(3)
20,31 = f

(1)
20,31,

f
(3)
20,35 = f

(1)
20,35, f

(3)
20,45 = f

(1)
20,45, f

(3)
20,49 = f

(1)
20,49, f

(3)
20,63 = f

(1)
20,63, g

(3)
20,59 = g

(1)
20,9,

h
(3)
20,4 = h

(1)
20,4, h

(3)
20,9 = h

(1)
20,9, h

(3)
20,34 = h

(1)
20,34, f

(3)
20,43 = f

(1)
20,43

1

19

b
(3)
19,59 = b

(1)
19,59, a

(3)
19,59 = a

(1)
19,59(0.75), d

(3)
19,34 = d

(1)
19,34, d

(3)
19,59 = d

(1)
19,59,

c
(3)
19,9 = c

(1)
19,9(0.87), c

(3)
19,59 = c

(1)
19,59(0.94), f

(3)
19,9 = f

(1)
19,9, f

(3)
19,31 = f

(1)
19,31,

f
(3)
19,45 = f

(1)
19,45, f

(3)
19,59 = f

(1)
19,59, e

(3)
19,59 = e

(1)
19,59(0.875), h

(3)
19,59 = h

(1)
19,59,

g
(3)
19,59 = g

(1)
19,59(0.97)

0.52

18
a
(3)
18,59 = a

(1)
18,59(0.687), c

(3)
18,59 = c

(1)
18,59(0.29), f

(3)
18,9 = f

(1)
18,9, f

(3)
18,59 =

f
(1)
18,59(0.25), h

(3)
18,59 = h

(1)
18,59(0.937)

0.047

17 c
(3)
17,59 = c

(1)
17,59(0.5), f

(3)
17,59 = f

(1)
17,59(0.5) 0.25
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Table 6. The conditions for Differential Path D4 which hold with probability 2−8.4.

round conditions pr

20

a
(2)
20,12 = a

(1)
20,12, a

(2)
20,15 = a

(1)
20,15, a

(2)
20,29 = a

(1)
20,29, b

(2)
20,15 = b

(1)
20,15, b

(2)
20,37 =

b
(1)
20,37, b

(2)
20,54 = b

(1)
20,54, c

(2)
20,20 = c

(1)
20,20, c

(2)
20,37 = c

(1)
20,37, c

(2)
20,46 = c

(1)
20,46,

c
(2)
20,50 = c

(1)
20,50, d

(2)
20,20 = d

(1)
20,20, d

(2)
20,46 = d

(1)
20,46, e

(2)
20,10 = e

(1)
20,10, e

(2)
20,30 =

e
(1)
20,30, f

(2)
20,10 = f

(1)
20,10, f

(2)
20,30 = f

(1)
20,30, g

(2)
20,20 = g

(1)
20,20, g

(2)
20,40 = g

(1)
20,40,

g
(2)
20,44 = g

(1)
20,44, h

(2)
20,20 = h

(1)
20,20, h

(2)
20,40 = h

(1)
20,40

1

b̂
(2)
20,15 = b̂

(1)
20,15, b̂

(2)
20,37 = b̂

(1)
20,37, b̂

(2)
20,54 = b̂

(1)
20,54, d̂

(2)
20,20 = d̂

(1)
20,20, d̂

(2)
20,46 =

d̂
(1)
20,46, f̂

(2)
20,10 = f̂

(1)
20,10(0.5), f̂

(2)
20,30 = f̂

(1)
20,30, ĥ

(2)
20,40 = ĥ

(1)
20,40

0.5

21

a
(2)
21,37 = a

(1)
21,37, a

(2)
21,50 = a

(1)
21,50(0.97), b

(2)
21,37 = b

(1)
21,37, e

(2)
21,44 = e

(1)
21,44(0.5),

f
(2)
21,44 = f

(1)
22,44, g

(2)
21,12 = g

(1)
21,12(0.875), g

(2)
21,29 = g

(1)
21,29, g

(2)
21,37 = g

(1)
21,37(0.875),

g
(2)
21,54 = g

(1)
21,54, h

(2)
21,12 = h

(1)
21,12(0.875), h

(2)
21,37 = h

(1)
21,37

0.32

22
e
(2)
22,29 = e

(1)
22,29(0.84), e

(2)
22,54 = e

(1)
22,54(0.75), f

(2)
22,54 = f

(1)
22,54(0.5), g

(2)
22,50 =

g
(1)
22,50(0.97), h

(2)
22,50 = h

(1)
22,50(0.5)

0.15

23 c
(2)
23,29 = c

(1)
23,29(0.24), d

(2)
23,29 = d

(1)
23,29(0.5) 0.12

– The complexity of 34-round distinguisher (rounds 3-37) is about 22·(37+6)×335+13+18 ≈ 2190.6.
– The complexity of 35-round distinguisher (rounds 3-38) is about 22·(72+82) = 2308.
– The complexity of 36-round distinguisher (rounds 2-38) is about 22·(72+82+73) = 2454.

Remark: For the 32-/33-/34-round attacks, we use the Type III boomerang distinguisher,
the complexity for the best algorithm is 2256; for the 35-/36-round attacks, we use the Type I
boomerang distinguisher, the generic complexity is about 2512. Note that the initial and final
key-additions are included in our 32-round reduced Skein-512; they are not included in the
distinguishers for 33 to 36 rounds.

In the following, we give examples of the quartets to show that our technique used for 32
to 36 rounds attack is valid. Table 7 gives a zero-sum quartet for rounds 5-32 of Skein-512 (the
initial and final subkeys are not included) with ⊕4

i=1V
(i)
5 = 0 and ⊕4

i=1V
(i)
36 = 0. The complexity

of attack is about 232. Table 8 gives a zero-sum quartet for rounds 8-36 of Skein-512 with
⊕4

i=1V
(i)
8 = 0 and ⊕4

i=1V̂
(i)
36 = 0 (the initial and final subkeys are included). The complexity of

attack is about 240.5.

4.4 The incompatible for the boomerang attack on Threefish-512 with the old
rotation constants

At Asiacrypt 2009, Aumasson et al. first presented the boomerang distinguishers on Threefish-
512 reduced to 35 rounds. We studied the differential paths used to boomerang attack in Tables
6 and 7 of [2], and found that they used an inverse permutation instead of the original one.
We correct the permutation and give the middle 8-round differential paths (see Table 9) using
the key differences proposed in [1] under the old rotation constants. For the top path, the MSB
differences are set in k7 and t0; for the bottom path, the MSB differences are set in k2, k3, t0
and t1.

From the bottom path, it is easy to know that d̂
(1)
16,11 = ĉ

(1)
16,11⊕1, d̂

(2)
16,11 = ĉ

(2)
16,11⊕1. From the

top path, we know that d̂
(1)
16,11 = d̂

(2)
16,11, so we get ĉ

(1)
16,11 = ĉ

(2)
16,11. But from the top differential,

it’s obvious that ĉ
(1)
16,11 = ĉ

(2)
16,11 ⊕ 1. Hence a contradiction generates. Similarly, the differences

on bit 41 for the top and bottom paths are also incompatible.
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Table 7. A quartet that satisfies the paths for rounds 5-36.

Message of Round 5

M (1) efeffeca89966f57 b9ede50911910872 b80346f52e40f9b2 413a42e591e3d564

b854665ac709fdc1 5b81218db8689f63 1454025d1e252a79 40086ca8b43d3382

M (2) efefeecb09966f57 b9ede50891910872 b40346f52e40f9b2 453a42e591e3d564

b854661ac709fdc1 5b8121cdb8689f63 1455025d9ea52a39 40086ca8343d33c2

M (3) 5b44c68c6c74d8d8 462dcb0d8f65c514 4660e299d27ed556 1622a67e6860f1b3

8631f78ea11186d9 29bf5dee4c4708bf 54cb280ae171a9fd df5814e7668fdf95

M (4) 5b44d68dec74d8d8 462dcb0c0f65c514 4a60e299d27ed556 1222a67e6860f1b3

8631f7cea11186d9 29bf5dae4c4708bf 54ca280a61f1a9bd df5814e7e68fdfd5

Key

K(1) fd4707e3dc7b1c35 3f64c6f0bd13466a 45e7c90173366b70 dc71a6f93dbfc9d5

5c977a7bbc2dbe6d 56889bd71af7189f 8bc7bcb9d86167a1 0091f15b4d1aeaee

K(2) f94707e3dc7b1c35 3f64c6f0bd13466a 45e7c90173366b70 dc71a6f93dbfc9d5

5c977a7bbc2dbe6d 56889bd71af7189f 8bc7bcb9d86167a1 0091f15b4d1aeaee

K(3) fd4707e3dc7b1c35 3f64c6f0bd13466a 45e7c90173366b70 5c71a6f93dbfc9d5

dc977a7bbc2dbe6d 56889bd71af7189f 8bc7bcb9d86167a1 0091f15b4d1aeaee

K(4) f94707e3dc7b1c35 3f64c6f0bd13466a 45e7c90173366b70 5c71a6f93dbfc9d5

dc977a7bbc2dbe6d 56889bd71af7189f 8bc7bcb9d86167a1 0091f15b4d1aeaee

Tweak

T (1), T (2) 55422f07b9ea59be 511ad7aa13272cc9 51422f07b9ea59be 551ad7aa13272cc9

T (3), T (4) 55422f07b9ea59be d11ad7aa13272cc9 51422f07b9ea59be d51ad7aa13272cc9

Table 8. A quartet that satisfies the paths for rounds 8-36 including the first and final subkeys.

Message of Round 8

M (1) 81eb65560efb565c 42171413b9dae252 ba7f35e83ceec8b7 d5dbcf318a0ecf74

5d1c176606c51b45 4f8fc8fc188100d4 45d34efc985185f5 673059aaf448427c

M (2) 81eb65560efb565c 42171413b9dae252 ba7f35e83ceec8b7 d5dbcf318a0ecf74

5d1c176606c51b45 4f8fc8fc188100d4 45d34efc985185f5 6b3059aaf448427c

M (3) f96c2ea16f7aa900 7dbe4b7cc9bef8ea f94e7e6cff763332 f44decb0fcb6ecac

7f30973fad83191f 94591dff30d2e161 74c7323813fc5c42 54e6ccf74a6a1d11

M (4) f96c2ea16f7aa900 7dbe4b7cc9bef8ea f94e7e6cff763332 f44decb0fcb6ecac

7f30973fad83191f 94591dff30d2e161 74c7323813fc5c42 58e6ccf74a6a1d11

Key

K(1) bf07320940fa73f1 64561111c05cc195 bbf500154032fa6d 8dff001fb0239bbf

5e36a0172124dd89 50e99cdbc81bab42 3ac1c8825115600a 12b40efea4188dab

K(2) bb07320940fa73f1 64561111c05cc195 bbf500154032fa6d 8dff001fb0239bbf

5e36a0172124dd89 50e99cdbc81bab42 3ac1c8825115600a 12b40efea4188dab

K(3) bf07320940fa73f1 64561111c05cc195 bbf500154032fa6d 0dff001fb0239bbf

de36a0172124dd89 50e99cdbc81bab42 3ac1c8825115600a 12b40efea4188dab

K(4) bb07320940fa73f1 64561111c05cc195 bbf500154032fa6d 0dff001fb0239bbf

de36a0172124dd89 50e99cdbc81bab42 3ac1c8825115600a 12b40efea4188dab

Tweak

T (1), T (2) 8fe4eab7841221ae 82aeedc8d61e677b 8be4eab7841221ae 86aeedc8d61e677b

T (3), T (4) 8fe4eab7841221ae 02aeedc8d61e677b 8be4eab7841221ae 06aeedc8d61e677b
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Table 9. The modified differential path in the middle rounds used for boomerang attacks of
Skein-512 in [1].

Rd shifts The Difference for the top path from rounds 12-16

K3
0000000000000000 0000000000000000 0000000000000000 0000000000000000

8000000000000000 0000000000000000 0000000000000000 0000000000000000

12
33, 49 0000000000000000 0000000000000000 0000000000000000 0000000000000000

8, 42 8000000000000000 0000000000000000 0000000000000000 0000000000000000

13
39, 27 0000000000000000 0000000000000000 8000000000000000 0000000000000000

41, 14 0000000000000000 8000000000000000 0000000000000000 0000000000000000

14
29, 26 8000000000000000 0000000000000000 8000000000000000 0000000000000000

11, 9 0000000000000000 8000010000000000 0000000000000000 8000000000000000

15
33, 51 8000000000000000 8000000000000000 8000010000000000 8000000000000100

39, 35 8000000000000000 8008010000000400 8000000000000000 8000000000000000

16
0000010000000100 0000000100000000 0008010000000400 0000000400000000

0000000000000000 000a014004008400 0000000000000000 0004010000000100

K4
0000000000000000 0000000000000000 0000000000000000 8000000000000000

8000000000000000 0000000000000000 0000000000000000 8000000000000000

16
0000010000000100 0000000100000000 0008010000000400 8000000400000000

8000000000000000 000a014004008400 0000000000000000 0804010000000100

The Difference for the bottom path from rounds 16-20

16
38, 30 4008401080102024 4000400080002004 0440018001000400 0440008000000400
50, 53 0000000000040090 0000000000040080 0200000000008010 0000000000008010

17
48, 20 0000010001000000 0000010000000000 0000000000000010 0000000000000010

43, 31 0200000000000000 0200000000000000 0008001000100020 0000000000100020

18
34, 14 0000000000000000 0000000000000000 0000000000000000 0000000000000000

15, 27 0008001000000000 0000001000000000 0000000001000000 0000000001000000

19
26, 12 0000000000000000 0000000000000000 0008000000000000 0008000000000000

58, 7 0000000000000000 0000000000000000 0000000000000000 0000000000000000

20
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 8000000000000000

K5
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 8000000000000000
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5 Key Recovery Attack on Reduced Threefish-512

Our boomerang distinguishers for 32 to 34 rounds Skein-512 are also applicable to (related) key
recovery attack on Threefish-512. In this case, the complexity for the middle 8 rounds are added,
and the initial and final subkeys are included. For the fixed input and output differences α and
γ, the probabilities of the boomerang distinguishers for Threefish-512 reduced to 32 (rounds
4-36), 33 (rounds 4-37), 34 (rounds 3-37) rounds are 2−177, 2−301 and 2−419 respectively.

Consequently, we can mount key recovery attacks on reduced Threefish-512 for 1/4 of the
key space, with complexities 2181, 2305 and 2424, respectively. We give the procedure of the key
recovery attack on 32-round Threefish-512 as an example.

1. For i = 1, ..., 2179

(a) Randomly choose plaintext P i
1, compute P i

2 = P i
1 ⊕ α.

(b) Encrypt plaintext pair (P i
1, P

i
2) with K(1),K(2) respectively to get (Ci

1, C
i
2). Compute

Ci
3 = Ci

1 ⊕ δ, Ci
4 = Ci

2 ⊕ δ. Then decrypt (Ci
3, C

i
4) with K(3),K(4) respectively to get

(P i
3, P

i
4).

(c) Check whether P i
3 ⊕ P i

4 = α, if so, store the quartet (Ci
1, C

i
2, C

i
3, C

i
4).

2. (a) Guess 128 bits of the final subkey words K9,a,K9,b and subtract them with the corre-
sponding words of each element of quartets stored in Step 1. If for all the quartets, whose
resulting words satisfy that the XOR differences before the key addition, we store this
128-bit subkey pair (K9,a,K9,b).

(b) Similarly, sequently guess (K9,c,K9,d) and (K9,f ,K9,h) and check whether the required
conditions are satisfied. If yes, store the corresponding key words.

3. Search the remaining 128 bits of the final subkey by brute force.

The complexity is dominated by Step 1, which is about 2181 32-round encryptions. The expected
number of quartets passed Step 2(a) for a false key is 4×2−6 = 2−4. Let Y be the number of the
quartets passed Step 2(a) for a false key, using the Poisson distribution, we have Pr(Y ≥ 4) ≈ 0.
The expected quartets passed Step 2(a) for the right key is 4. Let Z be the number of the
quartets passed Step 2(a) for the right key, Pr(Z ≥ 4) ≈ 0.9. The success rate of Step 2(b) is
similar.

6 Conclusions

In this paper, we apply the boomerang attack to distinguish the compression function of Skein-
512 reduced to 36 (out of 72) rounds from a random function. We use the key difference in bit
59 instead of the difference in the most significant bit to avoid the contradiction in the previous
attack for boomerang attacks on Threefish-512. We also reveal that the differential paths used
in the boomerang distinguisher in the middle rounds are not independent. Our boomerang
distinguishers are applicable to the key recovery attack for Threefish-512 reduced to 34 rounds.
Future works on Skein-512 might apply the rebound attack [8] to Threefish, although it looks
very difficult to combine two short differential paths to a long one.

References

1. J.-P. Aumasson, C. Calik, W. Meier, O. Ozen, R.C.W.Phan, K. Varici: Improved Cryptanalysis of Skein. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 542-559. Springer, Heidelberg (2009)

2. J.Aumasson1 et. al, Improved Cryptanalysis of Skeinhttp://eprint.iacr.org/2009/438.pdf
3. E.Biham, O.Dunkelman, N.Keller, The Rectangle Attack - Rectangling the Serpent. In: Pfitzmann, B. (Eds.)

EUROCRYPT 2001. LNCS, vol. 2045, pp. 340-357. Springer, Heidelberg (2001)
4. E.Biham, O.Dunkelman, N.Keller, Related-Key Boomerang and Rectangle Attacks. In: Cramer, R. (ed.)

EUROCRYPT 2005. LNCS, vol. 3494, pp. 507-525. Springer, Heidelberg (2005)



The Boomerang Attacks on the Round-Reduced Skein-512 13

5. A.Biryukov, M.Lamberger, F.Mendel, I.Nikolic, Second-Order Differential Collisions for Reduced SHA-256.
In D.H.Lee and X.Wang (Eds.): Asiacrypt 2011, LNCS 7073, pp.270-287. Springer, Heidelberg (2011)

6. J.Z.Chen, K.T.Jia, Improved Related-Key Boomerang Attacks on Round-Reduced Threefish-512. In J. Kwak
et al. (Eds.): ISPEC 2010, LNCS 6047, pp. 1-18, Springer, Heidelberg (2010).

7. N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, J. Walker: The Skein Hash
Function Family, http://www.schneier.com/skein1.3.pdf
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Table 10. The top differential path used for boomerang attacks of Skein-512.

Rd Shifts Difference Pr

2
17, 49 0c030025814280b4 08020024800290a0 84689060080a4234 80209020280a0224

2−73

36, 39 603a002310842201 4038002312046020 09421184e3408c32 906008062408c22

3
44, 9 0448004020004010 0448000420000010 2002000002804221 2002000002004021

2−35

54, 56 0044110481000010 0044020401004010 0401000101401014 0001000100401004

4
0000000000800240 0001000080000040 0000110080004000 0000010000004000

2−24

0400000001000010 0400000001000010 0000004400004000 0400000400004000

K1
0000000000000000 0000000000000000 0000000000000000 0000000000000000

–
0000000000000000 0400000000000000 0000000000000000 0400000000000000

4
39, 30 – 0001000080000040 – 0000010000004000

1
34, 24 – 0000000001000010 – 0000000400004000

5
13, 50 0000100080000000 0000000080000000 0400000000000000 0400000000000000

2−8

10, 17 0000004000000000 0000004000000000 0001000080800040 0000000080000040

6
25, 29 0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−3

39, 43 0001000000800000 0001000000000000 0000100000000000 0000100000000000

7
8, 35 0000000000000000 0000000000000000 0000000000800000 0000000000800000

2−1

56,22 0000000000000000 0000000000000000 0000000000000000 0000000000000000

8
0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−1

0000000000000000 0000000000000000 0000000000000000 0400000000000000

K2
0000000000000000 0000000000000000 0000000000000000 0000000000000000

–
0000000000000000 0000000000000000 0000000000000000 0400000000000000

no differences in rounds 9-16

K4
0000000000000000 0000000000000000 0000000000000000 0000000000000000

–
0400000000000000 0000000000000000 0000000000000000 0000000000000000

16
46, 36 0000000000000000 0000000000000000 0000000000000000 0000000000000000

1
19, 37 – 0000000000000000 0000000000000000 0000000000000000

17
33, 27 0000000000000000 0000000000000000 0400000000000000 0000000000000000

2−2

14, 42 0000000000000000 0400000000000000 0000000000000000 0000000000000000

18
17, 49 0400000000000000 0000000000000000 0400000000000000 0000000000000000

2−5

36, 39 0000000000000000 0400000000000100 0000000000000000 0400000000000000

19
44, 9 0400000000000000 0400000000000000 0400000000000100 0400000200000000

2−9

54, 56 0400000000000000 0400100040000100 0400000000000000 0400000000000000

20
0000000200000100 0000004000000000 0000100040000100 0004000000000000

–
0000000000000000 4001100440100100 0000000000000000 0000040200000108
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Table 11. The bottom differential path used for boomerang attacks of Skein-512.

Rd shifts Difference Pr

20
0000000010004800 0020001000004000 0002201000080000 0000200000080000

2−7

8000000020000200 8000000020000200 0000088000080000 8000008000080000

K5
0000000000000000 0000000000000000 0000000000000000 0000000000000000

–
0000000000000000 8000000000000000 0000000000000000 8000000000000000

20
39, 30 – 0020001000004000 – 0000200000080000

2−9

34, 24 – 0000000020000200 – 0000008000080000

21
13, 50 0002001000000000 0000001000000000 8000000000000000 8000000000000000

2−7

10, 17 0000080000000000 0000080000000000 0020001010000800 0000001000000800

22
25, 29 0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−7

39, 43 0020000010000000 0020000000000000 0002000000000000 0002000000000000

23
8, 35 0000000000000000 0000000000000000 0000000010000000 0000000010000000

2−3

56, 22 0000000000000000 0000000000000000 0000000000000000 0000000000000000

24
0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−1

0000000000000000 0000000000000000 0000000000000000 8000000000000000

K6
0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 8000000000000000

no differences in Rounds 25-32

K8
0000000000000000 0000000000000000 0000000000000000 0000000000000000

–
8000000000000000 0000000000000000 0000000000000000 0000000000000000

32
46, 36 0000000000000000 0000000000000000 0000000000000000 0000000000000000

1
19, 37 8000000000000000 0000000000000000 0000000000000000 0000000000000000

33
33, 27 0000000000000000 0000000000000000 8000000000000000 0000000000000000

1
14, 42 0000000000000000 8000000000000000 0000000000000000 0000000000000000

34
17, 49 8000000000000000 0000000000000000 8000000000000000 0000000000000000

1
36, 39 0000000000000000 8000000000002000 0000000000000000 8000000000000000

35
44, 9 8000000000000000 8000000000000000 8000000000002000 8000004000000000

2−1

54, 56 8000000000000000 8002000800002000 8000000000000000 8000000000000000

36
0000004000002000 0000080000000000 0002000800002000 0080000000000000

2−5

0000000000000000 0022008802002008 0000000000000000 0000804000002100

K9
0000000000000000 0000000000000000 0000000000000000 8000000000000000

8000000000000000 0000000000000000 8000000000000000 0000000000000000

36
0000004000002000 0000080000000000 0002000800002000 8080000000000000

2−18

8000000000000000 0022008802002008 8000000000000000 0000804000002100

36
39, 30 – 0000080000000000 – 8080000000000000

2−13

34, 24 – 0022008802002008 – 0000804000002100

37
13, 50 8082000800002000 0000084000042000 8022008802002008 c000806100002180

2−18

10, 17 8000804000002100 882280a802882228 0000084000002000 8082000820202000

38
402280e902000188 818a084884040000 082200e802880328 8092480860210104

2−45

8082084820200000 8220a0e22200a108 8082084800040000 062180eb03840188


