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Abstract

Public-key encryption schemes rely for their IND-CPA security on per-message fresh randomness.
In practice, randomness may be of poor quality for a variety of reasons, leading to failure of the
schemes. Expecting the systems to improve is unrealistic. What we show in this paper is that we can,
instead, improve the cryptography to offset the lack of possible randomness. We provide public-key
encryption schemes that achieve IND-CPA security when the randomness they use is of high quality,
but, when the latter is not the case, rather than breaking completely, they achieve a weaker but
still useful notion of security that we call IND-CDA. This hedged public-key encryption provides the
best possible security guarantees in the face of bad randomness. We provide simple RO-based ways
to make in-practice IND-CPA schemes hedge secure with minimal software changes. We also provide
non-RO model schemes relying on lossy trapdoor functions (LTDFs) and techniques from deterministic
encryption. They achieve adaptive security by establishing and exploiting the anonymity of LTDFs
which we believe is of independent interest.
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1 Introduction

Cryptography ubiquitously assumes that parties have access to sufficiently good randomness. In practice
this assumption is often violated. This can happen because of faulty implementations, side-channel
attacks, system resets or for a variety of other reasons. The resulting cryptographic failures can be
spectacular [23, 25, 32, 2, 14]. What can we do about this? One answer is that system designers should
build “better” systems, but this is clearly easier said than done. The reality is that random number
generation is a complex and difficult task, and it is unrealistic to think that failures will never occur.
We propose a different approach: designing schemes in such a way that poor randomness will have as
little as possible impact on the security of the scheme in the following sense. With good randomness the
scheme achieves whatever (strong) security notion one is targeting, but when the same scheme is fed bad
(even adversarially chosen) randomness, rather than breaking completely, it achieves some weaker but
still useful notion of security that is the best possible under the circumstances. We call this “hedged”
cryptography.

Previous work by Rogaway [35], Rogaway and Shrimpton [36], and Kamara and Katz [29] considers
various forms of hedging for the symmetric encryption setting. In this paper, we initiate a study of
hedged public-key encryption. We address two central foundational questions, namely to find appropriate
definitions and to efficiently achieve them. Let us now look at all this in more detail.

The problem. Achieving the standard IND-CPA notion of privacy [24] requires the encryption algorithm
to be randomized. In addition to the public key and message, it takes as input a random string that
needs to be freshly and independently created for each and every encryption.

Weak (meaning, low-entropy) randomness does not merely imply a loss of theoretical security. It
can lead to catastrophic attacks. For example, weak-randomness based encryption is easily seen to allow
recovery of the plaintext from the ciphertext for the quadratic residuosity scheme of [24] as well as the El
Gamal encryption scheme [22]. Brown [14] presents such an attack on RSA-OAEP [9] with encryption
exponent 3. Ouafi and Vaudenay [33] present such an attack on Rabin-SAEP [12]. We present an
alternative attack in Section 3.

The above would be of little concern if we could guarantee good randomness. Unfortunately, this fails
to be true in practice. Here, an “entropy-gathering” process is used to get a seed which is then stretched
to get “random” bits for the application. The theory of cryptographically strong pseudorandom number
generators [10] implies that the stretching can in principle be sound, and extractors further allow us to
reduce the requirement on the seed from being uniformly distributed to having high min-entropy, but we
still need a sufficiently good seed. (No amount of cryptography can create randomness out of nothing!)
In practice, entropy might be gathered from timing-related operating system events or user keystrokes.
As evidence that this process is error-prone, consider the recent randomness failure in Debian Linux,
where a bug in the OpenSSL package led to insufficient entropy gathering and thence to practical attacks
on the SSH [32] and SSL [2, 40] protocols. Other exploits include [26, 20].

The new notion. The idea is to provide two tiers of security. First, when the “randomness” is really
random, the scheme should meet the standard IND-CPA notion of security. Otherwise, rather than failing
completely, it should gracefully achieve some weaker but as-good-as-possible notion of security. The first
important question we then face is to pick and formally define this fallback notion.

Towards this, we begin by suggesting that the message being encrypted may also have entropy or
uncertainty from the point of view of the adversary. (If not, what privacy is there to be preserved by
encryption?) We propose to harvest this. In this regard, the first requirement that might come to mind
is that encryption with weak (even adversarially-known) randomness should be as secure as deterministic
encryption, meaning achieve an analog of the PRIV notion of [6]. But achieving this would require that
the message by itself have high min-entropy. We can do better. Our new target notion of security, that we
call Indistinguishability under a Chosen Distribution Attack (IND-CDA), asks that security is guaranteed
as long as the joint distribution of the message and randomness has sufficiently high min-entropy. In this
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Non-adaptive H-IND Adaptive H-IND

REwH1 IND-CPA IND-CPA + ANON-CPA

REwH2 IND-CPA IND-CPA

RtD IND-CPA, PRIV IND-CPA, (u-)LTDF

PtD (u-)LTDF (u-)LTDF

Figure 1: Table entries for the first two rows indicate the assumptions made on the (randomized) encryp-
tion scheme that underlies the RO-model hedged schemes in question. The entries for standard model
scheme RtD are the assumptions on the underlying randomized and deterministic encryption schemes,
respectively, and for PtD, on the underlying deterministic encryption scheme, which is the only primitive
it uses.

way, we can exploit for security whatever entropy might be present in the randomness or the message,
and in particular achieve security even if neither taken alone is random enough.

Notice that if the message and randomness together have low min-entropy, then we cannot hope to
achieve security, because an adversary can recover the message with high probability by trial encryption
with all message-randomness pairs that occur with a noticeable probability. In a nutshell, our new notion
asks that this necessary condition is also sufficient, and in this way is requiring security that is as good
as possible.

We denote by H-IND our notion of hedged security that is satisfied by encryption schemes that are
secure both in the sense of IND-CPA and in the sense of IND-CDA.

Adaptivity. Our IND-CDA definition generalizes the indistinguishability-style formalizations of PRIV-
secure deterministic encryption [7, 11], which in turn extended entropic security [19]. But we consider
a new dimension, namely, adaptivity. Our adversary is allowed to specify joint message-randomness
distributions on to-be-encrypted challenges. The adversary is said to be adaptive if these queries depend
on the replies to previous ones. Non-adaptive H-IND means IND-CPA plus non-adaptive IND-CDA and
adaptive H-IND means IND-CPA plus adaptive IND-CDA.

Non-adaptive IND-CDA is a notion of security for randomized schemes that becomes identical to
PRIV in the special case that the scheme is deterministic. Adaptive IND-CDA, when restricted to
deterministic schemes, is an adaptive strengthening of PRIV that we think is interesting in its own right.
As a consequence of the results discussed below, we get the first deterministic encryption schemes that
achieve this stronger notion.

Schemes with random oracles. Our random oracle (RO) model schemes and their attributes are
summarized in the first two rows of the table of Figure 1. Both REwH1 and REwH2 efficiently transform
an arbitrary (randomized) IND-CPA scheme into a H-IND scheme with the aid of the RO. They are simple
ways to make in-practice encryption schemes H-IND secure with minimal software changes. REwH1 has
the advantage of not changing the public key and thus not requiring new certificates. It always provides
non-adaptive H-IND security. It provides adaptive H-IND security if the starting scheme has the extra
property of being anonymous in the sense of [4]. Anonymity is possessed by some deployed schemes like
DHIES [1], making REwH1 attractive in this case. But some in-practice schemes, notably RSA ones, are
not anonymous. If one wants adaptive H-IND security in this case we suggest REwH2, which provides it
assuming only that the starting scheme is IND-CPA. It does this by adding a randomizer to the public
key, so it does require new certificates. The schemes are extensions of the EwH deterministic encryption
scheme of [6] and similar to [21].

Schemes without random oracles. It is easy to see that even the existence of a non-adaptively
secure IND-CDA encryption scheme implies the existence of a PRIV-secure deterministic encryption
(DE) scheme. Achieving PRIV without ROs is already hard. Indeed, fully PRIV-secure DE without ROs
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has not yet been built. Prior work, however, does show how to construct PRIV-secure DE without ROs
for block sources [11]. (Messages being encrypted have high min-entropy even conditioned on previous
messages.) But H-IND introduces three additional challenges: (1) the min-entropy guarantee is on the
joint message-randomness distribution rather than merely on the message; (2) we want a single scheme
that is not only IND-CDA secure but also IND-CPA-secure; and (3) the adversary’s queries may be
adaptive.

We are able to overcome these challenges to the best extent possible. We provide schemes that are
H-IND-secure in the same setting as the best known PRIV ones, namely, for block sources, where we
suitably extend the latter notion to consider both randomness and messages. Furthermore, we achieve
these results under the same assumptions as previous work.

Our standard model schemes and their attributes are summarized in the last two rows of the table of
Figure 1. RtD is formed by the generic composition of a deterministic scheme and a randomized scheme
and achieves non-adaptive H-IND security as long as the base schemes meet their regular conditions.
(That is, the former is PRIV-secure for block sources and the latter is IND-CPA.) Adaptive security
requires that the deterministic scheme be a u-LTDF. (A lossy trapdoor function whose lossy branch is a
universal hash function [34, 11].) PtD is simpler, merely concatenating the message to the randomness
and then applying deterministic encryption. It achieves both non-adaptive and adaptive H-IND under the
assumption that the deterministic scheme is a u-LTDF. For both schemes, the universality assumption
on the LTDF can be dropped by modifying the scheme and using the crooked leftover hash lemma as
per [11]. (This is why the “u” is parenthesized in the table of Figure 1.)

Anonymous LTDFs. Also of independent interest, we show that any u-LTDF is anonymous. Here we
refer to a new notion of anonymity for trapdoor functions that we introduce, one that strengthens the
notion of [4]. This step exploits an adaptive variant of the leftover hash lemma of [28].

Why anonymity? It is exploited in our proofs of adaptive security. Our new notion of anonymity
for trapdoor functions is matched by a corresponding one for encryption schemes. We show that any
encryption scheme that is both anonymous and non-adaptive H-IND secure is also adaptively H-IND
secure. Anonymity of the u-LTDF, in our encryption schemes based on the latter primitive, allows us to
show that these schemes are anonymous and thereby lift their non-adaptive security to adaptive.

Related work. In the symmetric setting, several works have recognized and addressed the problem
of security in the face of bad randomness. Concern over the quality of available randomness is one of
Rogaway’s motivations for introducing nonce-based symmetric encryption [35], where security relies on
the nonce never repeating rather than being random. Rogaway and Shrimpton [36] provide a symmetric
authenticated encryption scheme that defaults to a PRF when the randomness is known.

Kamara and Katz [29] provide symmetric encryption schemes secure against chosen-randomness at-
tack (CRA). Here the adversary can obtain encryption under randomness of its choice but privacy is
only required for messages encrypted with perfect, hidden randomness. Entropy in the messages is not
considered or used. We in contrast seek privacy even when the randomness is bad as long as there is
compensating entropy in the message. Also we deal with the public key setting.

Many works consider achieving strong cryptography given only a “weak random source” [31, 17, 13].
This is a source that does have high min-entropy but may not produce truly random bits. They show
that many cryptographic tasks including symmetric encryption [31], commitment, secret-sharing, and
zero knowledge [17] are impossible in this setting. We are not in this setting. We do assume a small
amount of initial good randomness to produce keys. (This makes sense because it is one-time and
because otherwise we can’t hope to achieve anything anyway.) On the other hand our assumption on
the randomness available for encryption is even weaker than in the works mentioned. (We do not even
assume it has high min-entropy.) Our key idea is to exploit the entropy in the message, which is not done
in [31, 17, 13]. This allows us to circumvent their negative results.

Waters independently proposed hedge security as well as the PtD construction as a way to achieve
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it [39].
We should note that the term hedging was previously used by Shoup to describe an encryption

scheme that is simultaneously provably secure under one set of assumptions in the random oracle model
and provably secure under a (stronger) set of assumptions in the standard model [38].

2 Preliminaries

Notation. Vectors are written in boldface, e.g. x. If x is a vector then |x| denotes its length and x[i]
denotes its ith component for 1 ≤ i ≤ |x|. We say that x is a vector over D if x[i] ∈ D for all 1 ≤ i ≤ |x|.
Throughout, k ∈ N denotes the security parameter and 1k its unary encoding. Unless otherwise indicated,
an algorithm is randomized. The set of possible outputs of algorithm A on inputs x1, x2, . . . is denoted
[A(x1, x2, . . .)]. “PT” stands for polynomial-time.

Games. Our security definitions and proofs use code-based games [8], and so we recall some background
from [8]. A game (look at Figure 2 for examples) has an Initialize procedure, procedures to respond
to adversary oracle queries, and a Finalize procedure. A game G is executed with an adversary A as
follows. First, Initialize executes, and its outputs are the inputs to A. Then A executes, its oracle
queries being answered by the corresponding procedures of G. When A terminates, its output becomes
the input to the Finalize procedure. The output of the latter is called the output of the game, and we
let GA ⇒ y denote the event that this game output takes value y. Our convention is that the running
time of an adversary is the time to execute the adversary with the game that defines security, so that the
running time of all game procedures is included.

Public-key encryption. A public-key encryption (PKE) scheme is a tuple of PT algorithms AE =
(P,K, E ,D) with associated message length parameter n(·) and randomness length parameter ρ(·). The
parameter generation algorithm P takes as input 1k and outputs a parameter string par. The key
generation algorithm K takes input par and outputs a key pair (pk, sk). The encryption algorithm E
takes inputs pk, message m ∈ {0, 1}n(k) and coins r ∈ {0, 1}ρ(k) and returns the ciphertext denoted
E(pk,m ; r). The deterministic decryption algorithm D takes input sk and ciphertext c and outputs
either ⊥ or a message in {0, 1}n(k). For vectors m, r with |m| = |r| = v we denote by E(pk,m ; r) the
vector (E(pk,m[1] ; r[1]), . . . , E(pk,m[v] ; r[v])). We say that AE is deterministic if E is deterministic.
(That is, ρ(·) = 0.)

We consider the standard IND-CPA notion of security, captured by the game INDAE where AE =
(P,K, E ,D) is an encryption scheme. In the game, Initialize chooses a random bit b, generates param-
eters par←$ P(1k) and generates a key pair (pk, sk)←$K(par) before returning pk to the adversary.
Procedure LR, on input messages m0 and m1, returns c←$ E(pk,mb). Lastly, procedure Finalize takes
as input a guess bit b′ and outputs true if b = b′ and false otherwise. An IND-CPA adversary makes zero
or more queries (m0,m1) to LR with |m0| = |m1|. Since a simple hybrid shows that allowing a single
query is sufficient, we will unless otherwise noted restrict attention to the case where adversaries make
a single query. For IND-CPA adversary A we let Advind-cpa

AE,A (k) = 2 · Pr
[

INDA
AE,k ⇒ true

]
− 1 . We say

AE is IND-CPA secure if Advind
AE,A(·) is negligible for all PT IND-CPA adversaries A.

Following [6], for any k we define the maximum public-key collision probability by

maxpkAE(k) = max
w∈{0,1}∗

Pr
[
pk = w : par←$ P(1k) ; (pk, sk)←$K(par)

]
.

Universal hash functions. A family of functions is a tuple of algorithms H = (P,K, F ) with as-
sociated message length n(·). It is required that the domain of F (K, ·) is {0, 1}n for every k, every
par ∈ [P(1k)], and every K ∈ [K(par)]. We say that H is universal if for every k, all par ∈ [P(1k)],
and all distinct x1, x2 ∈ {0, 1}n(k), the probability that F (K,x1) = F (K,x2) is at most 1/|R(par)| where
R(par) = {F (K,x) : K ∈ [K(par)] and x ∈ {0, 1}n } and the probability is over K←$K(par). Similarly,
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we say H is pairwise-independent if for every k, all par ∈ [P(1k)], all distinct x1, x2 ∈ {0, 1}n(k), and all
y1, y2 ∈ R(par), the probability that F (K,x1) = y1 ∧ F (K,x2) = y2 is at most 1/|R(par)|2, where again
the probability is over K←$K(par).

We say a family H has 2t-bounded range if for all k, all par ∈ P(1k), |R(par)| ≤ 2t(k).
We say a family H is efficiently invertible if there is an efficient algorithm F−1 such that for all 1k,

all par ∈ [P(1k)], all K ∈ [K(par)], and all x ∈ {0, 1}n(k) it is the case that F−1(K,F (K,x)) = x.

Lossy Trapdoor Functions (LTDFs). To a deterministic PKE scheme (recall that a family of
injective trapdoor functions and a deterministic encryption scheme are, syntactically, the same object)
AE = (Pd,Kd, Ed,Dd) with message length nd(·) we can associate an (nd, `)-lossy key generator Kl. This
is a PT algorithm that, on input par, outputs a value pk for which the map Ed(pk, ·) has image size at most
2nd(k)−`(k). The parameter ` is called the lossiness of the lossy key generator. We associate to AE , lossy
key generator Kl, and a LOS adversary A the function Advlos

AE,Kl,A(k) = 2· Pr
[

LOSAAE,Kl,k ⇒ true
]
− 1,

where game LOSAE,Kl works as follows. Initialize chooses a random bit b and generates parameters
par←$ Pd(1k), if b = 0 runs (pk, sk)←$Kd(par) and if b = 1 runs pk←$Kl(par). It then returns pk (to
the adversary A). When A finishes, outputting guess b′, Finalize returns true if b = b′. We say Kl is
universal-inducing if H = (Pd,Kl, Ed) is a family of universal hash functions with message length nd.

A deterministic encryption scheme AE is a (nd, `)-lossy trapdoor function (LTDF) if there exists a
(nd, `)-lossy key generator such that Advlos

AE,Kl,A(·) is negligible for all PT A. We say it is a universal
(nd, `)-lossy trapdoor function (u-LTDF) if in addition Kl is universal-inducing.

Lossy trapdoor functions were introduced by Peikert and Waters [34], and can be based on a variety
of number-theoretic assumptions, including the hardness of the decisional Diffie-Hellman problem, the
worst-case hardness of lattice problems, and the hardness of Paillier’s composite residuosity problem
[34, 11, 37]. Boldyreva et al. [11] observed that the DDH-based construction is universal.

3 Attacks when Randomness is Bad

The traditional security model of IND-CPA for PKE schemes, given in the last section, mandates good
per-message randomness. In this section we highlight the catastrophic attacks that can occur when
randomness is bad. Consider encryption E(pk,m ; r) of a message m under public key pk and random-
ness r. For the attacks discussed below we assume that the random number generator is broken but not
necessarily under adversarial control (as was the case in the Debian vulnerability [32] and other weak
PRNG vulnerabilities [2, 26, 20]). Broken means the value r is predictable by the adversary (technically,
has little or even no min-entropy). Our eventual security definitions will make no such simplifying as-
sumption and will instead ask that our schemes achieve (the best possible) security even in the face of
adversarially-subverted random number generators.

Plaintext recovery attacks. Many prominent PKE schemes are vulnerable to fast plaintext recovery
attacks when randomness is predictable. As mentioned in the introduction both El Gamal encryption [22]
and Goldwasser-Micali encryption [24] are vulnerable. For the former, encryption under public key X is
E(X,M ; r) = (gr, Xr·M), so the ability to predict r immediately gives Xr and leads to message recovery.
The Goldwasser-Micali scheme fails analogously.

One can utilize Coppersmith’s method in the univariate case [16, 27] to recover plaintexts from
Rabin-SAEP [12] ciphertexts when randomness is known. The Rabin-SAEP padding function [12] for
m-bit message M and s1-bit randomness r is

(
(m‖0s0)⊕H(r)

)
‖r, where H is a random oracle mapping

s1-bit strings to (m + s0)-bit strings; the bit sizes must satisfy m < n/4 and m + s0 < n/2, where n is
the bitlength of the Rabin modulus N . For a ciphertext C whose randomness r is known, we can write
f(x) = (x · 2s0+s1 + a)2 − C where a is known. There exists a small root x0 of f(x) mod N : one such
that x0 < 2n/4; computing this root reveals the plaintext M . (Specifically, let H(r) = hL ‖ hR, where
hL is m bits long and hR is s0 bits long. Then a = hR ‖ r and x0 = M ⊕ hL.) By Coppersmith’s method
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in the univariate case [16, 27] it is possible to find a root to a degree-δ polynomial modulo N if that
root is smaller than N1/δ, which the parameters here easily satisfy. Thus a single ciphertext with known
(not necessarily adversarially-generated) randomness suffices to leak the plaintext. In fact, this is used
crucially in the proof of security of Rabin-SAEP to handle decryption queries. We note that a recent work
by Ouafi and Vaudenay [33] against the SQUASH-0 hash function also gives a “known-coins” message
recovery attack against Rabin-SAEP.

Brown [14] gives an attack against RSA-OAEP [9] with e = 3 and known randomness. The attack
is based on Coppersmith’s method and is essentially the same as the one we described above against
Rabin-SAEP. One difference is that exponentiation by e = 3 yields a cubic polynomial, reducing the
size of the small roots that can be extracted; another is that OAEP padding includes two Feistel rounds
instead of one so there are two unknowns, which means that the attack is only heuristic.

All hybrid encryption (KEM/DEM) schemes are vulnerable to plaintext recovery when randomness
is predictable, which is unfortunate due to the wide use of hybrid encryption in practice. Briefly hybrid
encryption E(pk,M ; r) first runs a key encapsulation routine (c1,K) ← ψ(pk ; r) and then encrypts
the message via symmetric encryption c2 ← E(K,M). The full ciphertext is (c1, c2). If r is predictable,
then an adversary can run ψ(pk ; r) itself to recompute K and use it to recover the plaintext. Note the
structure of some KEM/DEMs is such that even when r is not predictable, but even just re-used, then
attacks exist. Consider when the symmetric encryption is CTR-mode encryption. Then encrypting two
messages m and m′ under the same randomness r would immediately reveal m⊕m′ to the adversary.

Ciphertexts leak plaintext, randomness equality. As pointed out in the introduction, there
exists an inherent insecurity for any PKE scheme when both messages and randomness are predictable.
Given a ciphertext E(pk,m ; r) the adversary can easily determine the message via a trial-encryption
brute-force attack. Thus, any message-privacy security notion for PKE when randomness is bad will
require that the pair (m, r) has high min-entropy.

4 Security against Chosen Distribution Attack

When randomness may be bad, traditional notions such as IND-CPA are no longer achievable. We there-
fore formalize a new security goal to complement IND-CPA: indistinguishability under chosen distribution
attack. The adversary attempts to learn partial information about challenge messages when the message
and randomness are together sampled from an unpredictable source.

4.1 Sources

We generalize the notion of a source to consider a joint distribution on the messages and the randomness
with which they will be encrypted. A t-source (t ≥ 1) with vector length v(·), message length n(·),
and randomness length ρ(·) is a probabilistic algorithm M that on input 1k returns a (t + 1)-tuple
(m0, . . . ,mt−1, r). The vectors m0, . . . ,mt−1 each have v(k) elements in {0, 1}n(k) and r has v(k) elements
in {0, 1}ρ(k). We say that M has min-entropy µ(·) if

Pr [ (mb[i], r[i]) = (m, r) ] ≤ 2−µ(k)

for all k ∈ N, all b ∈ {0, . . . , t − 1}, all i ∈ {1, . . . , |r|}, all (m, r) ∈ {0, 1}n(k) × {0, 1}ρ(k), and where
the probability is over the coins used to run (m0,m1, r)←$ M(1k). We say it has conditional min-
entropy µ(·) if

Pr
[

(mb[i], r[i]) = (m, r) | ∀j < i (mb[j], r[j]) = (m′[j], r′[j])
]
≤ 2−µ(k)

for all k ∈ N, all b ∈ {0, . . . , t− 1}, all i, all (m, r), all vectors m′, r′, and over the coins used by M. In
the random oracle (RO) model, message sources have access to the RO. In this setting, the (conditional)
min-entropy requirement is independent of the coins used by the RO, meaning the bound must hold for
any fixed choice of function as the RO.
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procedure Initialize(1k):

par←$ P(1k)

(pk, sk)←$K(par)

b←$ {0, 1}
Ret par

procedure LR(M):

If pkout = true then

Ret ⊥
(m0,m1, r)←$ M(1k)

Ret E(pk,mb; r)

procedure RevealPK():

pkout← true

Ret pk

procedure Finalize(b′):

Ret (b = b′)

Figure 2: Game CDAAE,k

For any pair of vectors (m, r) of length v, we define the equality pattern of (m, r) to be the bit-valued

matrix E(m,r) with v rows and v columns for which E
(m,r)
i,j = 1 if (m[i], r[i]) = (m[j], r[j]) and E

(m,r)
i,j = 0

otherwise for 1 ≤ i ≤ j ≤ v. This always-symmetric matrix describes the equality relations between all
elements of the two vectors. A distinct t-source M with vector length v(·) is one for which

Pr
[
E(mb,r) = Iv(k) : (m0, . . . ,mt−1, r)←$ M(1k)

]
= 1

for all k ∈ N and all b ∈ {0, . . . , t− 1} and where Iv(k) denotes the v(k) by v(k) identity matrix.
We fix some notation for referring to commonly used types of sources. A t-source with vector length

v(·), message length n(·), randomness length ρ(·), and min-entropy µ(·) is referred to as

• a (µ, v, n, ρ)-mr-source when t = 1 and ρ(·) > 0;

• a (µ, v, n)-m-source when t = 1 and ρ(·) = 0;

• a (µ, v, n, ρ)-mmr-source when t = 2 and ρ(·) > 0; and

• a (µ, v, n)-mm-source when t = 2 and ρ(·) = 0.

Each “m” indicates the source outputting one message vector and an “r” indicates a randomness vector.
When the source has conditional min-entropy µ(·) we write block-source instead of source for each of the
above.

4.2 Indistinguishability under chosen-distribution attack

Let AE = (P,K, E ,D) be an encryption scheme. A CDA adversary is one whose LR queries are all
mmr-sources. Game CDAAE of Figure 2 provides the adversary with two oracles. The advantage of CDA
adversary A is

Advcda
AE,A(k) = 2 · Pr

[
CDAA

AE,k ⇒ true
]
− 1 .

In the random oracle model we allow all algorithms in Game CDA to access the random oracle; impor-
tantly, this includes the mmr-sources.

Discussion. Adversary A can query LR with an mmr-source of its choice, an output (m0,m1, r) of
which represents choices of message vectors to encrypt and randomness with which to encrypt them. (An
alternative formulation might have CDA adversaries query two mr-sources, and distinguish between the
encryption of samples taken from one of these. But this would mandate that schemes ensure privacy of
messages and randomness.) This allows A to dictate a joint distribution on the messages and randomness.
In this way it conservatively models even adversarially-subverted random number generators. Multiple
LR queries are allowed. In the most general case these queries may be adaptive, meaning depend on
answers to previous queries.

Given that multiple LR queries are allowed, one may ask why an mmr-source needs to produce message
and randomness vectors rather than simply a single pair of messages and a single choice of randomness.
The reason is that the coordinates in a vector all depend on the same coins underlying an execution
of M, but the coins underlying the execution of the sources in different queries are independent.
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Note that Initialize does not return the public key pk to A. A can get it at any time by calling
RevealPK but once it does this, LR will return ⊥. The reason is that we inherit from deterministic
encryption the unavoidable limitation that encryption cannot hide public-key related information about
the plaintexts [6]. (When the randomness has low entropy, the ciphertext itself is such information.)

As we saw in the previous section, no encryption scheme is secure when both messages and randomness
are predictable. Formally, this means chosen-distribution attacks are trivial when adversaries can query
mmr-sources of low min-entropy. Our notions (below) will therefore require security only for sources that
have high min-entropy or high conditional min-entropy.

Similarly, we inherit from deterministic encryption the unavoidable limitation that we cannot allow
arbitrary equality patterns. For simplicity we have restricted attention to adversaries that query distinct
sources. These always output message, randomness pairs that are distinct. A detailed discussion of the
role of equality patterns is given in Section 4.3.

Notions. We can assume (without loss of generality) that a CDA adversary makes a single RevealPK
query and then no further LR queries. We say A is a (µ, v, n, ρ)-adversary if all of its LR queries
are distinct (µ, v, n, ρ)-mmr-sources. We say that a PKE scheme AE with message length n(·) and
randomness length ρ(·) is IND-CDA secure for distinct (µ, v, n, ρ)-mmr-sources if for all PT (µ, v, n, ρ)
adversaries A the function Advcda

AE,A(·) is negligible. Scheme AE is H-IND secure for distinct (µ, v, n, ρ)-
mmr-sources if it is IND-CPA secure and IND-CDA secure for (µ, v, n, ρ)-mmr-sources. We can extend
these notions to distinct mmr-block-sources by restricting to adversaries that query distinct mmr-block-
sources. Theorem 4.1 below allows one to generalize from distinct sources to sources with other equality
patterns.

On adaptivity. We can consider non-adaptive IND-CDA security by restricting attention in the notions
above to adversaries that only make a single LR query. Why do we not focus solely on this (simpler)
security goal? The standard IND-CPA setting (implicitly) provides security against multiple, adaptive
LR queries. This is true because in that setting a straightforward hybrid argument shows that security
against multiple adaptive LR queries is implied by security against a single LR query [5, 3]. We wish to
maintain the same standard of adaptive security in the IND-CDA setting. Unfortunately, in the IND-CDA
setting, unlike the IND-CPA setting, adaptive security is not implied by non-adaptive security. In short
this is because a CDA adversary necessarily cannot learn the public key before (or while) making LR
queries. To see the separation, consider a PKE scheme that appends to every ciphertext the public key
used. This will not affect the security of the scheme when an adversary can only make a single query.
However, an adaptive CDA adversary can query an mmr-source, learn the public key, and craft a second
source that uses the public key to ensure ciphertexts which leak the challenge bit.

Given this, our primary goal is the stronger notion of adaptive security. That said, non-adaptive
hedge security is also relevant because in practice adaptive adversaries might be rare and, as we will
see, one can find non-adaptively-secure schemes that are more efficient and/or have proofs under weaker
assumptions.

Adaptive PRIV. A special case of our framework occurs when the PKE scheme AE being considered
has randomness length ρ(k) = 0 for all k (meaning also that adversaries query mm-sources, instead of
mmr-sources). In this case we are considering deterministic encryption, and the IND-CDA definition and
notions give a strengthening (by way of adaptivity) of the PRIV security notion from [6, 7, 11]. (For
non-adaptive adversaries the definitions are equivalent.) For clarity we will use PRIV to refer to this
special case, and let Advpriv

AE,A(k) = Advcda
AE,A(k).

Resource usage. Recall that by our convention, the running time of a CDA adversary is the time for
the execution of the adversary with game CDAAE,k. Thus, A being PT implies that the mmr-sources
that comprise A’s LR queries are also PT. This is a distinction from [11] which will be important in
our results. Note that in practice we do not expect to see sources that are not PT, so our definition
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is not restrictive. Non-PT sources were needed in [11] for showing that single-message security implied
(non-adaptive) multi-message security for deterministic encryption of block sources.

4.3 IND-CDA for non-distinct sources

Above we restricted the IND-CDA security notion to consider only attackers that query distinct t-sources.
These are sources that output vectors that have the identity equality pattern. Here we investigate
relaxations of this requirement, showing that any achievable relaxation is implied by security against
distinct sources.

Unachievable notions. We start with having no restrictions on equality patterns entirely. A relaxed
source IND-CDA adversary is one whose LR queries are all mmr-sources, these not necessarily being
distinct. Then, as in the deterministic encryption setting [6], we have that no encryption scheme can
be hedge secure against such adversaries. Let A be the adversary that makes a query M which returns
(m0,m1, r) = ((a, a), (a, a′), (r, r)) for some a 6= a′ and random r. Then A can win trivially because
the (two) components of the returned vector c are equal if b = 0 and unequal otherwise. This example
points to a fundamental limitation with encryption: equality of plaintext and randomness is leaked by
ciphertexts. To have an acheivable notion of security, then, we must ensure that CDA adversaries cannot
use plaintext-randomness equalities in order to trivially learn the challenge bit b.

Recall the equality pattern definition from the last section. The equality patterns for the pairs of
vectors ((a, a), (r, r)) and ((a, a′), (r, r)) used in the attack of the last paragraph are

E(m0,r) =

[
1 1

1 1

]
and E(m1,r) =

[
1 0

0 1

]
.

In that example, the adversary takes advantage of the fact that E(m0,r) 6= E(m1,r). We must exclude such
“trivial” adversaries by restricting attention to adversaries that only query sources M that do not leak
information via equality-patterns. One might therefore be tempted to just enforce that equality patterns
do not leak anything about b directly. This can be captured by requiring that any mmr-source outputs
vectors m0,m1, r such that E(m0,r) = E(m1,r) holds with high probability. However, this relaxation is
still trivial to win against: an attacker can choose M so that the equality pattern encodes (say) all the
bits that are common between the first messages of m0 and m1.

An achievable notion. We now give a restriction that is sufficient to bar trivial adversaries. A t-source
M has equality-pattern respect ζ(·) if there exists a family of reference equality-patterns {Êv(k)}k∈N such
that

Pr

[∨
b

E(mb,r) 6= Êv(k) : (m0, . . . ,mt−1, r)←$ M(1k)

]
≤ 2−ζ(k) (1)

for all k ∈ N and all b ∈ {0, . . . , t− 1}. In the ROM the probability above must hold with respect to any
fixed RO (i.e., the probability is taken over just the coins used by M directly.) An IND-CDA adversary
has equality-pattern respect ζ(·) if all mmr-sources it queries have equality-pattern respect at least ζ(·).
Intuitively, as long as ζ(k) is large enough for every k of interest, the equality pattern cannot leak any
information to the attacker — it is almost always certainly some fixed equality pattern. We note that
with probability related to their conditional min-entropy, block sources already output vectors whose
equality pattern is the identity matrix.

The following lemma shows that the fixed equality pattern might as well be the identity equality
pattern. In other words, the relaxation to non-distinct sources above is equivalent to security against
distinct sources.

Theorem 4.1 Let AE = (P,K, E ,D) be an encryption scheme with message length n(·) and randomness
length ρ(·). Let A be a IND-CDA adversary making q(·) LR queries, each being a (µ, v, n, ρ)-mmr-source
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with equality-pattern respect at least ζ(·). Then there exists IND-CDA adversary B such that for all k

Advcda
AE,A(k) ≤ Advcda

AE,B(k) +
4q(k)

2ζ(k)
.

B makes q(·) LR queries, each being a distinct (µ, v′, n, ρ)-mmr-source with v′ ≤ v. Adversary B runs in
at most twice the running time of A. �

Proof: Fix any k and let v = v(k), q = q(k), and ζ = ζ(k). Let adversary B work as follows. It runs A,
outputs the same bit output by A, and responds to LR queries as follows.

Let M be an mmr-source queried by A to LR. Then B runs (m0,m1, r)←$ M and computes the
equality pattern Ê = E(m0,r). Adversary B derives from Ê a vector p of size v, defined as follows. Let
c = 1. Then for j = 1 to v do the following. Let i ≤ j be the least value i such that Êi,j = 1. If i = j
then increment c and let p[j] = c. Otherwise, let p[j] = p[i]. It sets v′ to be the final value of c, which is
the number of distinct message, randomness pairs in (m0, r). The vector p keeps track of which message,
randomness pairs are (with high probability) duplicates of others for the source M.

Adversary B then defines a distinct mmr-source M′ that works as follows. It runs M to get vectors
(m0,m1, r). It then defines vectors (m′0,m

′
1, r
′) as follows. For each 1 ≤ j ≤ v, it lets i = p[j] and

sets (m′0[i],m
′
1[i], r

′[i]) = (m0[j],m1[j], r[j]). Then, it outputs the vectors (m′0,m
′
1, r
′). By construction

|m′0| = |m′1| = |r′| = v′ and, moreover, M′ is a distinct mmr-source with min-entropy µ(k). If M is a
block-source, then M′ additionally has conditional min-entropy at least µ(k).

Adversary B queries M′ and retrieves a vector c of ciphertexts. It then uses p to determine which of the
ciphertexts in c should have been duplicates. That is, for 1 ≤ j ≤ v, it lets i = p[j] and sets c′[j] = c[i].
It then returns c′ to adversary A.

We bound the advantage of A by that of B. The simulation by B is correct (it matches the IND-CDAAE,k
game A expects) as long as for each LR query the equality pattern computed by B matches the equality
pattern of the vectors output by M when run within M′. Since M is equality pattern respecting, the
equality pattern of its output always matches a reference Êv with probability at least 1− 2−ζ . So for any
query by A, the two patterns resulting from the two runs of M will not match with probability at most
2 ·2−ζ . A union bound gives that the probability of failure across all queries is at most 2q · 2−ζ . Thus

Advcda
AE,A(k) ≤ 2

(
Pr
[

CDAB
AE,k ⇒ true

]
+

2q

2ζ

)
− 1 = Advcda

AE,B(k) +
4q

2ζ
.

5 The Role of Anonymity in Adaptive CDA Security

Before detailing specific constructions, we first provide some general results on the relationship between
anonymity and adaptive hedge security. For encryption schemes, anonymity (also called key privacy)
requires that ciphertexts leak no information about the public key used to perform encryption. In the
randomized setting, this was first formalized by Bellare et al. [4]. Here we will review the key-privacy
notion for randomized encryption from [4], present a weaker variant of it that will be useful later, and
then give a new notion of key privacy in the face of chosen-distribution attacks. The last proves to be
sufficient for a general implication that any encryption scheme which is anonymous and non-adaptively
hedge secure is also adaptively hedge secure. We will finish by showing that all universal LTDFs are
anonymous in this new sense.

Some intuition. We start by highlighting some basic issues related to anonymity and adaptive hedge
security. As discussed in the previous section, IND-CDA security has the limitation that an adversary
cannot know the public key until after all of its LR queries are made. The reason is that no encryption
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scheme can be secure against chosen-distribution attacks when LR queries can be made knowing the
public key. Let AE = (P,K, E ,D) be an encryption scheme. Given a public key pk for AE , let M be the
distribution that samples (m0,m1, r) from the set of all triples for which the first bit of the ciphertext
output by E(pk,mb ; r) is b. Note that M has high conditional min-entropy for sufficiently long messages
and that it can be implemented efficiently using a loop that samples uniformly and checks the result
using pk. An adversary can always then win a variant of game CDA that instead returns pk at the end
of Initialize using M.

Moreover, consider the situation in which AE reveals public keys via its encryption algorithm. For
example, it prepends all ciphertexts with the public key pk used. (Note this does not impact message
privacy.) No such encryption scheme will meet adaptive IND-CDA security, because the adversary can
query an arbitrary high conditional min-entropy source, extract pk from the resulting ciphertexts, and
then has enough information to query the source M described above in its second query.

This implies that achieving adaptively-secure hedge encryption requires an encryption scheme that,
minimally, does not allow recovery of a public key from ciphertexts. In fact, we will formalize a stronger
notion of key privacy under chosen distribution attacks and show that this is sufficient for achieving
adaptive security.

Key-privacy with good randomness. First, however, we review the key privacy notion of [4], referred
to as indistinguishability of keys. It applies to settings where randomness is always good. Let AE be an
encryption scheme. Game IKAE,k is shown in Figure 3. The advantage of an IK adversary A is

Advik
AE,A(k) = 2 · Pr

[
IKA
AE,k ⇒ true

]
− 1 .

We say that a PKE scheme AE with message length n(·) and randomness length ρ(·) is IK secure if for
all PT adversaries A the function Advik

AE,A(·) is negligible.
Figure 3 also details game KR-UMA, which formalizes a weaker anonymity notion when good ran-

domness is used. Let AE be an encryption scheme. This notion, called key recovery under unknown
message attack, will be useful as a technical tool in Section 6. The advantage of a KR-UMA adversary A
is

Advkr-uma
AE,A (k) = Pr

[
KR-UMAA

AE,k ⇒ true
]
.

We say that a PKE scheme AE with message length n(·) and randomness length ρ(·) is KR-UMA secure
if for all PT adversaries A the function Advik

AE,A(·) is negligible.
The following gives that IK security implies KR-UMA security.

Theorem 5.1 Let AE be a PKE scheme and A be a KR-UMA adversary making at most qe queries to
Enc and qc queries to Check. Then there exists an IK adversary B such that for all k

Advkr-uma
AE,A (k) ≤ Advik

AE,B(k) + qc ·maxpkAE(k) .

Adversary B runs in time that of A and makes qe LR. �

Proof: We build IK adversary B from the KR-UMA adversary A. Adversary B, on input (pk0, pk1),
first runs A(par). When A makes a Enc query, B picks a random message and queries its LR oracle on
it, returning the result. When A makes a Check query, B determines if pk1 = pk, returning true if so
and false otherwise. When A finishes, B outputs 1 if Check ever returned true and otherwise returns 0.
Now consider the case that a = 1 in the execution of IKB

AE,k. Then B’s simulation of KR-UMAAE,k is
perfect, meaning

Pr
[

IKB
AE,k ⇒ true | a = 1

]
= Pr

[
KR-UMAA

AE,k ⇒ true
]

= Advkr-uma
AE,A (k) .

Next consider if a = 0. Then the execution of A and its queries’ responses are entirely independent of
pk1, and so the probability that A queries Check on pk1 is at most qc ·maxpkAE(k). Thus

Pr
[

IKB
AE,k ⇒ true | a = 0

]
≤ qc ·maxpkAE(k) .
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procedure Initialize(1k):

par←$ P(1k)

(pk0, sk0)←$K(par)

(pk1, sk1)←$K(par)

a←$ {0, 1}
Ret (pk0, pk1)

procedure LR(m):

r←$ {0, 1}ρ(k)

Ret E(pka,m ; r)

Game IKAE,k

procedure Finalize(a′):

Ret (a = a′)

procedure Initialize(1k):

par←$ P(1k)

(pk, sk)←$K(par)

Ret par

procedure Enc:

m←$ {0, 1}n(k)

r←$ {0, 1}ρ(k)

Ret E(pk,m ; r)

procedure Check(pk′):

win← (pk = pk′)

Ret win

Game KR-UMAAE,k

procedure Finalize():

Ret win

procedure Initialize(1k):

par←$ P(1k)

(pk0, sk0)←$K(par)

(pk1, sk1)←$K(par)

a←$ {0, 1}
Ret par

procedure Enc(M):

If pkout = true

Ret ⊥
(m, r)←$ M(1k)

Ret E(pk0,m; r)

procedure LR(M):

(m, r)←$ M(1k)

c← E(pka,m; r)

pkout← true

Ret (pk0,pk1, c)

Game ANONAE,k

procedure Finalize(a′):

Ret (a = a′)

Figure 3: Key privacy games.

Combining all the above we derive that

Advik
AE,B(k) = Pr

[
IKB
AE,k ⇒ true | a = 1

]
− Pr

[
IKB
AE,k ⇒ true | a = 0

]
≥ Advkr-uma

AE,A (k)− qc ·maxpkAE(k)

Key-privacy under chosen-distribution attack. We now formalize a notion of anonymity for
chosen-distribution attacks. Let AE = (P,K, E ,D) be an encryption scheme. Game ANONAE shown in
Figure 3 provides the adversary with two oracles. An ANON adversary A is one whose queries are all
mr-sources. The advantage of ANON adversary A is

Advanon
AE,A(k) = 2 · Pr

[
ANONA

AE,k ⇒ true
]
− 1 .

We say that a PKE scheme AE with message length n(·) and randomness length ρ(·) is ANON secure for
distinct (µ, v, n, ρ)-mr-sources if for all PT adversaries A that only query distinct (µ, v, n, ρ)-mr-sources
the function Advanon

AE,A(·) is negligible. We can extend this notion to mr-block-sources in the obvious way.
In the special case that the randomness length of AE is always zero, the ANON definition formalizes

anonymity for deterministic encryption or, equivalently, trapdoor functions, generalizing a definition
from [4].

While we will use ANON mainly as a technical tool to show schemes meet adaptive IND-CDA, it is
also of independent interest as a new security target for PKE schemes when key privacy is important.
(That is, one might want to hedge against bad randomness for anonymity as well as message privacy.)

From non-adaptive to adaptive hedge security. The following theorem shows that achieving
ANON security and non-adaptive IND-CDA security are sufficient for achieving adaptive IND-CDA
security.

Theorem 5.2 Let AE = (P,K, E ,D) be an encryption scheme with message length n(·) and randomness
length ρ(·). Let A be a IND-CDA adversary making q(·) LR queries, each being a distinct (µ, v, n, ρ)-
mmr-source (resp. block-source). Then there exist IND-CDA adversary B and ANON adversary C such

14



that for all k

Advcda
AE,A(k) ≤ q(k) ·Advcda

AE,B(k) + 2q(k) ·Advanon
AE,C(k) .

B makes one LR query consisting of a distinct (µ, v, n, ρ)-mmr-source (resp. block-source). C makes at
most q(k)− 1 Enc queries and one LR query, all these consisting of distinct (µ, v, n, ρ)-mr-sources (resp.
block-sources). Both B and C run in the same time as A. �

Before giving the proof we first fix some useful definitions. Let game CDA1AE,k be the same as
game CDAAE,k (Figure 2) except that the line of code b←$ {0, 1} is replaced by b ← 1 and Finalize is
omitted. (Recall that when Finalize is omitted, the output of the game is the output of A.) Similarly
define CDA0AE,k except with b← 0. Then a standard argument gives that

Advcda
AE,A(k) = Pr

[
CDA1AAE,k ⇒ 1

]
− Pr

[
CDA0AAE,k ⇒ 1

]
. (2)

We can analogously define ANON1AE,k and ANON0AE,k.

Proof of Theorem 5.2: Fix a k ∈ N and let q = q(k). Let A be a IND-CDA adversary against AE .
We perform a hybrid argument to bound A’s advantage. Let HYB0, · · · ,HYBq be a sequence of hybrid
games that work as shown in Figure 4 (boxed statement omitted). In game HYBi the first q − i LR
queries are answered using the m1 vector and the last i LR queries are answered using the m0 vector.
Note that HYB0 = CDA1 while HYBq = CDA0. Also defined in Figure 4 are games HYB′0, . . . ,HYB′q.

Each HYB′i is the same as HYBi except that a distinct key is used to answer the (q− i)th LR query. Let
hi = Pr

[
HYBA

i ⇒ 1
]

for 0 ≤ i ≤ q and let h′i = Pr
[

HYB′Ai ⇒ 1
]

for 0 ≤ i ≤ q. Then a union bound
gives that

Advcda
AE,A(k) =

∑
0≤i≤q−1

(hi − h′i + h′i − h′i+1 + h′i+1 − hi+1)

=
∑

0≤i≤q−1
(hi − h′i) +

∑
0≤i≤q−1

(h′i − h′i+1) +
∑

0≤i≤q−1
(h′i+1 − hi+1) . (3)

We bound each of the three sums by appropriate adversaries, details of which are given in Figure 4. First
we define ANON adversaries Ci, parameterized by i ∈ [0 .. q−1], and ANON adversaries Ci, parameterized
by i ∈ [1 .. q]. The difference between Ci and Ci is that the latter outputs the complement of A’s output
bit. By construction we have that

hi = Pr
[

ANON1
Ci1
AE,k⇒ 1

]
and h′i = Pr

[
ANON0

Ci,1
AE,k⇒ 1

]
for i ∈ [0 .. q − 1] and also that

h′i = Pr
[

ANON1CiAE,k⇒ 1
]

and hi = Pr
[

ANON0CiAE,k⇒ 1
]

for i ∈ [1 .. q]. Let C be the adversary that first chooses d←$ {0, 1} and, then j←$ [0 + d .. (q − 1) + d].
It then outputs b′ ⊕ d. By construction if d = 1, then C implements Cj and otherwise implements Cj .
Then we have that

q−1∑
i=0

(hi − h′i) +

q∑
i=1

(h′i − hi) =

q−1∑
i=0

(
Pr
[

ANON1CiAE,k⇒ 1
]
− Pr

[
ANON0CiAE,k⇒ 1

])
+

q∑
i=1

(
Pr
[

ANON1CiAE,k⇒ 1
]
− Pr

[
ANON0CiAE,k⇒ 1

])
= 2q ·Advanon

AE,k(C) (4)

where the last equality follows from multiplying the first sum by 2q · Pr[j = i ∧ d = 0] and the second
sum by 2q · Pr[j = i ∧ d = 1] (both products equal one). (The events “j = 1”, “d = 0”, and “d = 1” are
defined over the coins used in executing the respective ANON games with C.)
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procedure Initialize(1k):

(pk0, sk0)←$K(1k)

(pk1, sk1)←$K(1k)

Ret 1k

procedure RevealPK():

Ret pk0

procedure LR(M): Games HYBi , HYB′i
j ← j + 1

(m0,m1, r)←$ M(1k)

If j > q − i then b← 0 else b← 1

a← 0 ; If j = i then a← 1

c← E(pka,mb; r)

Ret c

adversary Ci(par):

Run A(par)

On query RevealPK():

Ret pk0

On query LR(M):

j ← j + 1

If j > q − i then b← 0 else b← 1

If j = q− i then (pk0, pk1, c)← LR(Mb)

Else c← Enc(Mb)

Ret c

When A halts with output b′

Ret 1− b′

adversary Ci(par):

Run A(par)

On query RevealPK():

Ret pk0

On query LR(M):

j ← j + 1

If j > q − i then b← 0 else b← 1

If j = q− i then (pk0, pk1, c)← LR(Mb)

Else c← Enc(Mb)

Ret c

When A halts with output b′

Ret b′

adversary Bi(par):

(pk1, sk1)←$K(par)

Run A(par)

On query RevealPK():

Ret pk0

On query LR(M):

j ← j + 1

If j = q − i then

c← LR(M)

Else

(m0,m1, r)←$ M)

If j < q − i then c← E(pk0,M1 ; r)

If j > q − i then c← E(pk0,M0 ; r)

Ret c

When A halts with output b′

Ret b′

Figure 4: Hybrid games and adversaries used in proof of Theorem 5.2. For an mmr-source M, the
mr-source Mb runs M to get (m0,m1, r) and outputs (mb, r).
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For the remaining sum, we define CDA adversaries Bi for i ∈ [0 .. q − 1]. By construction

h′i − h′i+1 = Pr
[

CDA1BiAE,k⇒ 1
]
− Pr

[
CDA0BiAE,k⇒ 1

]
for i ∈ [0 .. q − 1]. Let B be the CDA adversary that chooses c←$ {0, . . . , q − 1} and then executes the
code of Bc. A straightforward analysis gives that

q−1∑
i=0

(h′i − h′i+1) = q ·Advcda
AE,k(B) . (5)

Substituting into (3) according to (4) and (5) completes the proof.

Given a non-adaptively IND-CDA secure scheme, Theorem 5.2 reduces the task of showing it adap-
tively secure to that of showing it meets the ANON definition. Of course, ANON is still an adaptive
notion. (Adversaries can formulate their LR query to be a source that’s a function of previously seen ci-
phertexts.) Nevertheless, it formalizes a sufficient condition for adaptive CDA security of any PKE scheme
and captures the relationship between adaptivity and anonymity. We believe this is an interesting (and
novel) application of anonymity.

Universal LTDFs are anonymous. We now establish that u-LTDFs are anonymous. While this result
might also be of general interest, it will be specifically useful for schemes based on u-LTDFs. Intuitively
u-LTDFs are anonymous because the lossy mode admits a universal hash, implying that no information
about the public key is leaked by outputs (generated from sources with high conditional min-entropy).
One might expect that formalizing this intuition would follow from straightforward application of the
Leftover Hash Lemma (LHL) [28]. However our anonymity definitions are adaptive, so one cannot apply
the LHL (or even the generalized LHL [18]) directly. Rather, we first show an adaptive variant of the
LHL is implied by the standard LHL via a hybrid argument. See Appendix A for details. Here we use it
to prove the following theorem.

Theorem 5.3 Let AEd = (Pd,Kd, Ed,Dd) be a (deterministic) encryption scheme with message length
n(·) and an associated universal-inducing (n, `)-lossy key generator Kl. Let A be an ANON adversary
making q(·) Enc queries and a single LR query, each of these being a (µ, v, n)-m-block-source. Then
there exists LOS adversary B such that for all k

Advanon
AEd,A(k) ≤ 2 ·Advlos

AEd,B(k) + 3 ·q(k) ·v(k) ·
√

2n(k)−`(k)−µ(k) .

B runs in time that of A. �

Before giving the proof, we first consider RtD and PtD when instantiated with a deterministic encryption
scheme that is a u-LTDF. We can apply Theorem 5.3 to conclude ANON security for both schemes.
Combining this with Theorems 6.2 and 5.2 yields proof of adaptive hedge security for RtD. Likewise,
combining it with Theorems 6.3 and 5.2 yields proof of adaptive hedge security for PtD. Also Theorems 5.2
and 5.3 combine with [11, Th. 5.1] to give the first adaptively-secure deterministic encryption scheme
(based on u-LTDFs).

Proof of of Theorem 5.3: Let K0 denote Kd and K1 denote Kl. We define games Hα,β,a for α, β, a ∈
{0, 1}. For α, β, a ∈ {0, 1} let p(α, β, a) = Pr

[
HA
α,β,a(k)⇒ 1

]
. Here α selects between the normal or

universal modes for pk0, β selects between the normal and universal modes for pk1, and a selects which
of pk0 or pk1 is used to respond to the LR query of A. Then

Advanon
AE,A(k) = p(0, 0, 1)− p(0, 0, 0)

=
(
p(0, 0, 1)− p(1, 1, 1)

)
+
(
p(1, 1, 1)− p(1, 1, 0)

)
+
(
p(1, 1, 0)− p(0, 0, 0)

)
.

For a ∈ {0, 1} we can design Ba so that |p(1, 1, a)− p(0, 0, a)| ≤ 2 · Advlos
AE,Kl,Ba(k). Key here is that

the message sources that A queries to its oracles are efficient so Ba can sample from them. We describe
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procedure Initialize(1k):

(pk0, sk0)←$Kα(1k)

(pk1, sk1)←$Kβ(1k)

procedure Enc(M):

(m, r)←$ M
c← Ed(pk0, r ‖m)

Ret c

procedure LR(M):

m←$ M
c← Ed(pka,m)

Ret (pk0, pk1, c)

Game Hα,β,a

procedure Finalize(a′):

Ret a′

Figure 5: Games Hα,β,a for α, β, a ∈ {0, 1} used in the proof that any universal LTDF is anonymous.

Ba(pk0, pk1). It runs A. When A makes query Enc(M) it lets m←$ M and returns Ed(pk0,m) to A.
When A makes query LR(M) it lets m←$ M and c ← Ed(pka,m) and returns (pk0, pk1, c) to A. Let
d denote the output of A. Then B0 returns 1− d and B1 returns d.

Define game R to be work like games H1,1,a except that all queries are answered by selecting c[i]←$R for
1 ≤ i ≤ |m| (instead of applying Ed to m). Here R is the range of H = (Kl, Ed). Let pR = Pr[RA(k)⇒ 1].
Now we bound

p(1, 1, 1)− p(1, 1, 0) =
(
p(1, 1, 1)− pR

)
+
(
pR − p(1, 1, 0)

)
term by term.

We design LH adversary A0 so that pR − p(1, 1, 0) ≤ Advalh
H,A0

(k). Adversary A0 first computes

(pk1, sk1)←$K1(1
k). It runs A, forwarding any Enc query M of A to its RoR oracle and return-

ing the result. It forwards any LR query of A to its RoR oracle gets back c, queries RevealPK to
retrieve pk0, and returns (pk0, pk1, c) to A. It outputs what A outputs.

We design LH adversary A1 so that p(1, 1, 1) − pR ≤ Advalh
H,A1

(k). Adversary A1 first computes

(pk0, sk0)←$K1(1
k). It runs A. When A makes Enc query M it lets m←$ M and c← Ed(pk0,m) and

returns c to A. When A makes LR query M it queries its RoR oracle to get c, queries RevealPK to
get pk1, and returns (pk0, pk1, c) to A. It outputs what A outputs.

6 Constructions of Hedged Public-key Encryption

We now build hedged public-key encryption schemes. These are schemes that simultaneously achieve
IND-CPA security and IND-CDA security. Such schemes do not sacrifice any security when randomness
is good, but should randomness be poor, IND-CDA provides another line of defense. We start with
schemes in the RO model which are easy to deploy and fast. We then analyze constructions that can
achieve security in the standard model.

6.1 Hedging in the Random Oracle Model

Randomized-encrypt-with-hash. Let AEr = (Pr,Kr, Er,Dr) be a (randomized) PKE scheme with
message length nr(·) and randomness length ρ(·). Let R : {0, 1}∗ → {0, 1}∗ be a random oracle. Let
REwH[AEr] = (Pr,K, E ,Dr) be the scheme parametrized by randomizer length κ that works as follows.
Parameter generation and decryption are the same as in AEr. Key generation, on input parr, runs
Kr(parr) to get (pkr, skr), chooses K ←$ {0, 1}κ(k), and lets pk = (pkr,K) and sk = skr. Encryption is
defined by

ER((pkr,K),m ; r) = Er(pkr,m ; r′)

where r′ is the first ρ(k) bits of R(pkr ‖K ‖ r ‖m).
Intuitively, the random oracle provides perfect and (as long as m and r are hard to predict) private

randomness. When the randomizer length κ(k) = 0 for all k, we refer to the scheme as REwH1, while
when κ(k) > 0 for all k we refer to the scheme as REwH2. The scheme extends the Encrypt-with-Hash
deterministic encryption scheme from [6], which is a special case of REwH1 when r has length 0 and κ
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is 0. The scheme is also reminiscent of constructions in the symmetric setting that utilize a PRF to
ensure good randomness [29, 36], as well as schemes using the Fujisaki-Okamoto transform [21].

REwH is hedge secure. The next theorem will establish the hedge security of REwH for various
instantiations. The scheme achieves non-adaptive IND-CDA security when AEr is IND-CPA. It achieves
adaptive IND-CDA security when AEr is additionally key-anonymous in the sense of [4] or when the
randomizer length κ is sufficiently large (e.g., κ(k) ≥ k).

Theorem 6.1 [REwH is H-IND secure] Let AEr = (Pr,Kr, Er,Dr) be a PKE scheme with message
length n(·) and randomness length ρ and let AE = REwH[AEr] = (Pr,Kr, E ,Dr) be the PKE scheme
constructed from it.

• (IND-CPA) Let A be an IND-CPA adversary Then there exists an IND-CPA adversary B such that
for all k

Advind-cpa
AE,A (k) ≤ 2 ·Advind-cpa

AEr,B (k)

where B runs in time at most max{Time(A), 2h ·Time(Er)}.
• (IND-CDA) Let A be an adversary that makes q(·) LR queries each consisting of a distinct (µ, v, n, ρ)-

mmr-source and making at most h(·) random oracle queries. Then there exists an IND-CPA adversary
B such that for all k

Advcda
AE,A(k) ≤ 2 ·Advind-cpa

AEr,B (k) +
(q(k))2v(k) + h(k)

2µ(k)
+ χ

where

χ =


min

{
h(k)

2κ(k)
,Advkr-uma

AEr,C (k)

}
if q( ·) 6= 1

h(k) ·maxpkAEr(k)

2κ(k)
if q( ·) = 1

Adversary B runs in time at most that of A and makes q(k)v(k) queries. Adversary C runs in time
at most that of A and makes q(k)v(k) Enc queries and h(k) Check queries. �

Proof: Fix some k ∈ N and let q = q(k), v = v(k), κ = κ(k), and n = n(k). We begin by proving
the IND-CPA portion of the theorem. Let A be an IND-CPA adversary that makes one LR query
and does not repeat any Hash queries (this is without loss of generality). Games G0, G1, and G2 are
shown in Figure 6. All the games include a Finalize procedure (not shown explicitly) that is the same
as the IND-CPA Finalize procedure. Game G0 (boxed statement included) implements exactly the
IND-CPAAE,k game. Game G1 removes the boxed statement, which ensured consistency between the use
of Hash in LR and with direct queries to Hash by A. In G1, independent randomness (which is never
used again in the game) is used to encrypt the challenge message. Game G2 makes this explicit. We will
now justify that

Advind-cpa
AE,A (k) = 2 · Pr

[
IND-CPAA

AE,k ⇒ true
]
− 1

= 2 · Pr
[

GA
0 ⇒ true

]
− 1 (6)

≤ 2 ·
(
Pr
[

GA
1 ⇒ true

]
+ Pr

[
GA

1 sets bad
])
− 1 (7)

= 2 ·
(
Pr
[

GA
2 ⇒ true

]
+ Pr

[
GA

2 sets bad
])
− 1 (8)

≤ 2 ·
(

Pr
[

IND-CPAB1
AEr,k ⇒ true

]
+ Pr

[
IND-CPAB2

AEr,k ⇒ true
])
− 1 (9)

= 2 ·Advind-cpa
AEr,B (k) (10)

By construction G0 is equivalent to INDAE,k, justifying (6). The fundamental lemma of game-playing [8]
justifies (7) and by construction G2 and G1 are equivalent, justifying (8). Let adversary B1 work as
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procedure Initialize(1k): Game G0 , G1

par←$ Pr(1
k) ; (pkr, skr)←$Kr(par)

K←$ {0, 1}κ ; pk ← (pkr,K)

b←$ {0, 1}
Ret pk

procedure LR(m0,m1):

r←$ {0, 1}ρ

r′←$ Hash(pk, r,mb)

c← E(pkr,mb ; r′)

Ret c

procedure Hash(P,R,M):

Y ←$ {0, 1}ρ

If P = pk ∧ H[P,R,M ] 6= ⊥ then

bad← true ; Y ← H[P,R,M ]

H[P,R,M ]← Y

Ret Y

procedure Initialize(1k): Game G2

par←$ Pr(1
k) ; (pkr, skr)←$Kr(par)

K←$ {0, 1}κ ; pk ← (pkr,K)

b←$ {0, 1}
Ret pk

procedure LR(m0,m1):

r←$ {0, 1}ρ

r′←$ {0, 1}ρ ; Hash(pk, r,mb)

c← E(pkr,mb ; r′)

Ret c

procedure Hash(P,R,M):

Y ←$ {0, 1}ρ

If P = pk ∧ H[P,R,M ] 6= ⊥ then

bad← true ; Y ← H[P,R,M ]

H[P,R,M ]← Y

Ret Y

Figure 6: Games used in the IND-CPA proof for Theorem 6.1.

follows. It simulates game G2 for A, using its LR oracle to answer A’s LR query. It outputs whatever
bit A outputs. Then, Pr[GA

2 ⇒ true] = Pr[INDB1
AEr,k ⇒ true].

Since bad is only set in G2 if A queries Hash(P,R,M) with R = r and the choice of r is independent of
the answers given to A’s queries, we have that

Pr
[

GA
2 sets bad

]
≤ h

2ρ
.

However, it is easy to construct an IND-CPA adversary against AEr that has advantage h/2ρ using
time 2 ·Time(Er). Let adversary B2 work as follows. It queries its LR oracle on two distinct messages
m0,m1 to get back ciphertext c. It then repeats h times the following procedure: (1) choose a value r
uniformly from {0, 1}ρ (but without replacement between iterations); (2) run c0 ← Er(pkr,m0 ; r) and
c1 ← Er(pkr,m0 ; r); and (3) if c = c0 let b′ = 0 or if c = c1 let b′ = 1. Finally B2 outputs b′ if it was
set during an iteration and otherwise outputs a random bit. Let “Succ” be the event that one of the
values r chosen by B2 matches the randomness used in responding to the LR query. Let “nSucc” be the
complementary event. We have that

Pr
[

INDB2
AEr,k ⇒ true

]
= Pr

[
INDB2

AEr,k ⇒ 1 | Succ
]
· Pr [ Succ ]

+ Pr
[

INDB2
AEr,k ⇒ 1 | nSucc

]
· Pr [ nSucc ]

=
h

2ρ
+

1

2

(
1− h

2ρ

)
=

h

2ρ+1
+

1

2
.

Here we have used the fact that Pr[Succ] = h/2ρ and that b′ will only be set if event Succ occurs.

Applying the definition of advantage gives that Advind-cpa
AEr,k (B2) = h/2ρ ≥ Pr[GA

2 sets bad ]. We have
justified equation (9). Let adversary B choose d←$ {1, 2} and execute the code of Bd. Then, we have
that

Pr
[

INDB
AEr,k ⇒ true

]
=

1

2

(
Pr
[

INDB1
AEr,k ⇒ true

]
+ Pr

[
INDB2

AEr,k ⇒ true
])

and combining this with the definition of IND advantage gives (10)
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We now prove the IND-CDA portion of the theorem. Informally, the sequence of games moves from the
setting of the IND-CDA experiment to one in which true random coins are used to answer challenge
queries. This is accomplished by setting a flag bad should the random oracle be queried on domain points
colliding with the public key and challenge randomness, message pairs output by a message sampler. If
bad is never set (such a query never occurs) then the challenge encryptions can be done with random
coins. Note that both message samplersM and the adversary itself can query the random oracle. While
M knows the challenge messages to be handled, we will show that the adversary (and hence, any queried
M) does not know the public key pk before the query to RevealPK. This is because at least one of
the following arguments: AEr is anonymous, we are considering only non-adaptive hedge security, or the
randomizer has sufficient length to be unpredictable. Once we are in a setting in which true random coins
are used, then we can use the IND-CPA security of AEr to conclude security.

To formalize this we use a sequence of games G0 −→ G1 −→ G2 −→ G3 −→ G4 −→ G5. The games can
be found in Figures 7 and 9. We will justify the following sequence of inequalities.

Pr
[

CDAA
AE,k⇒ true

]
= Pr

[
GA

0 ⇒ true
]

(11)

≤ Pr
[

GA
1 ⇒ true

]
+ Pr

[
GA

1 sets bad
]

(12)

= Pr
[

GA
2 ⇒ true

]
+ Pr

[
GA

2 sets bad
]

(13)

≤ Pr
[

GA
3 ⇒ true

]
+ Pr

[
GA

3 sets bad
]

+ 2 ·Advind-cpa
AEr,B (k) (14)

=
1

2
+ Pr

[
GA

3 sets bad
]

+ 2 ·Advind-cpa
AEr,B (k) . (15)

Unless otherwise indicated, the Initialize, RevealPK, and Finalize procedures used in each game are
those shown at the top of Figure 7. Game G0 (boxed statement included) implements game CDAA

AE,k,
justifying (11). Game G1 excludes the boxed statement, which ensured consistent responses for hash
queries associated to challenge points. Since games G0 and G1 are identical-until-bad we can apply the
fundamental lemma of game-playing [8] to derive (12). In G1 removal of the boxed statement means that
the coins rc[i] used with Er are not used elsewhere in the game — the table entries H[P,R,M ] storing
values rc[i] are never referred to again because P = pk. Game G2 (boxed statement omitted) is the same
as G1 except that queries to Hash made in the LR procedure are handled directly. This implements
the same functionality as in G1, justifying (13). In this game it is clear that Er uses randomness not
associated with any hash query. Game G3 is the same as G2 except that, now, challenge queries are
responded to by encrypting all zero messages.

We justify (14) using two IND-CPA adversaries B1 and B2 that each make qv queries. Both adversaries
run A, simulating for A exactly game G2 in the case that the IND-CPA challenge bit is one and simulating
G3 in the case that the IND-CPA challenge bit is zero. It does this using its own LR oracle to answer
the A’s challenge queries. Adversary B1 uses the output bit of A to determine the IND-CPA challenge
bit. Adversary B2 uses whether bad was set to true in the course of the game; if so it guesses that the
IND-CPA challenge bit was set to 1. By construction then we have that

Pr
[

GA
2 ⇒ true

]
= Pr

[
IND1B1

AEr,k ⇒ 1
]

and Pr
[

GA
3 ⇒ true

]
= Pr

[
IND0B1

AEr,k ⇒ 1
]

and that

Pr
[

GA
2 sets bad

]
= Pr

[
IND1B2

AEr,k ⇒ 1
]

and Pr
[

GA
3 sets bad

]
= Pr

[
IND0B2

AEr,k ⇒ 1
]
.

Let B choose d←$ {1, 2} and execute Bd. Then a standard argument justifies (14).

In game G3 the responses to queries by adversary A are independent of the challenge bit b. Thus
Pr[GA

3 ⇒ true] = 1/2, justifying (15).

All that remains is to bound the probability that bad is set in game G3. In game G3 all query responses
are independent of the outputs of M. Thus we can delay executing M: in game G4 (Figure 9) all M
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procedure Initialize(1k): G0 – G5

parr←$ Pr(1
k) ; (pkr, skr)←$Kr(parr) ; K ←$ {0, 1}κ

pk ← (pkr,K) ; b←$ {0, 1}

procedure RevealPK(): G0 – G3

pkout← true ; Ret pk

procedure Finalize(b′): G0 – G3

Ret (b = b′)

procedure LR(M):

c← c + 1

(m∗0,m
∗
1, r
∗)←$ MHash(1k)

mc ←m∗b ; rc ← r∗

For i = 1 . . . v do

r′c[i]← Hash(pk, rc[i],mc[i])

Ret E(pkr,mc ; r′c)

procedure Hash(P,R,M): G0 , G1

Y ←$ {0, 1}ρ

If P = pk ∧ H[P,R,M ] 6= ⊥ then

bad← true ; Y ← H[P,R,M ]

If P 6= pk ∧ H[P,R,M ] 6= ⊥ then Y ← H[P,R,M ]

Ret H[P,R,M ]← Y

procedure LR(M):

c← c + 1

(m∗0,m
∗
1, r
∗)←$ MHash(1k)

mc ←m∗b ; rc ← r∗

For i = 1 . . . v do

r′c[i]←$ {0, 1}ρ ; Hash(pk, rc[i],mc[i])

mc[i]←$ {0, 1}n

Ret E(pkr,mc ; r′c)

procedure Hash(P,R,M): G2, G3

Y ←$ {0, 1}ρ

If P = pk ∧ H[P,R,M ] 6= ⊥ then bad← true

If P 6= pk ∧ H[P,R,M ] 6= ⊥ then Y ← H[P,R,M ]

Ret H[P,R,M ]← Y

Figure 7: Games used in the IND-CDA proof for Theorem 6.1.

algorithms are executed in RevealPK. The hash queries associated to the resulting challenge message,
randomness pairs are deferred until Finalize. Any sequence of queries that lead to bad being set in game
G3 results in bad being set in game G4, meaning that Pr[G3 sets bad ] = Pr[G4 sets bad ].

In game G5 (Figure 9, boxed statement excluded) we split the setting of bad into two cases. Flag bad1 is
set in the case that pkout has not yet been set, while flag bad2 is set in the case that pkout has been set
to true. Note that for the former we have dropped the requirement that H[P,R,M ] 6= ⊥ for queries that
occur before pkout is set. Moreover, we emphasize that hash queries from an execution of M happen
before pkout is set while the hash queries related to resulting challenge message, randomness pairs happen
after pkout is set. Game G6 is the same as G5 except that the boxed statement is included. It follows
bad1 being set, however, so G5 and G6 are identical-until-bad1. We have that

Pr
[

GA
4 sets bad

]
≤ Pr

[
GA

5 sets bad1 ∨GA
5 sets bad2

]
= Pr

[
GA

6 sets bad1 ∨GA
6 sets bad2

]
≤ Pr

[
GA

6 sets bad1
]

+ Pr
[

GA
6 sets bad2

]
.

We bound the probability of setting each flag in turn.

Upper bound on setting bad2. We start with bounding the probability of setting bad2, which cor-
responds to a hash query made after the public key is revealed. Note that in game G6 no query after
pkout = true can set bad2 because of a query made when pkout = false. In particular, no queries made
by a message sampler M set H[pk, ·, ·] entries. Thus the setting of bad2 can only occur because of an
A query and a query made in Finalize are the same or because two queries in Finalize are the same.
More formally, the cases are: (1) there exists values 1 ≤ u ≤ c and 1 ≤ y ≤ v such that a previous query
Hash(P,R,M) with R = ru[y] and M = mu[y] was made by A; or (2) there exists values 1 ≤ t < u ≤ c
and 1 ≤ x ≤ y ≤ v such that rt[x] = rt[y] and mu[x] = mu[y]. (Note that u 6= v because we assume that
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Adversary B1(pkr):

b←$ {0, 1} ; K ←$ {0, 1}κ ; pk ← (pkr,K)
Run A(1k)

On query Hash(P,R,M):

Y ←$ {0, 1}ρ
If P = pk ∧ H[P,R,M ] 6= ⊥ then bad← true
If P 6= pk ∧ H[P,R,M ] 6= ⊥ then Y ← H[P,R,M ]
Ret H[P,R,M ]← Y

On query LR(M):

c← c + 1
(m∗0,m

∗
1, r
∗)←$ MHash(1k)

mc ←m∗b ; rc ← r∗

For i = 1, . . . , v do
Hash(pk, rc[i],mc[i])
mc[i]←$ {0, 1}n
ctxt[i]← LRB(mc[i],m

∗
b [i])

Ret ctxt

On query RevealPK(j):

Ret pk

When A halts with output b′,
return 1 if b = b′ and 0 otherwise.

Adversary B2(pkr):

b←$ {0, 1} ; K ←$ {0, 1}κ ; pk ← (pkr,K)
Run A(1k)

On query Hash(P,R,M):

Y ←$ {0, 1}ρ
If P = pk ∧ H[P,R,M ] 6= ⊥ then bad← true
If P 6= pk ∧ H[P,R,M ] 6= ⊥ then Y ← H[P,R,M ]
Ret H[P,R,M ]← Y

On query LR(M):

c← c + 1
(m∗0,m

∗
1, r
∗)←$ MHash(1k)

mc ←m∗b ; rc ← r∗

For i = 1, . . . , v do
Hash(pk, rc[i],mc[i])
mc[i]←$ {0, 1}n
ctxt[i]← LRB(mc[i],m

∗
b [i])

Ret ctxt

On query RevealPK(j):

Ret pk

When A halts with output b′,
return 1 if bad = true and 0 otherwise

Figure 8: Adversaries used to bound the G2 to G3 transition.

A only queries distinct sources M.) Moreover, the adversary A does not learn anything about the coins
to run M in the course of the game. Let “mv[y], rv[y] collides” be the event that bad2 was set because
of query Hash(pk, ru[y],mu[y]) made by Finalize. Then

Pr
[

GA
6 sets bad2

]
= Pr

[∨
u,y

mu[y], ru[y] collides

]
≤
∑
u,y

Pr [ mu[y], ru[y] collides ]

where the or and sum are taken over 1 ≤ u ≤ q and 1 ≤ y ≤ v. For any particular value u, y there are at
most h+ (u− 1)v points in the table H which it can collide with. Applying the min-entropy of each M,
we therefore have that each probability in the sum is at most (h+ (u− 1)v)2−µ. Thus

Pr
[

GA
6 sets bad2

]
≤
∑

1≤u≤q

h+ (u− 1)v

2µ
≤ h+ q2v

2µ

Upper bound on setting bad1. The setting of bad1 happens only if A (before pk is revealed) or one
of the M algorithms queries the hash function with P = (pk,K). First consider the case where q > 1
(the adaptive setting). Relative to the event space defined by GA

6 , let “Queries K” be the event that A
queries the hash function on P = (pk′,K) for some pk′ before the public key is revealed and let “Queries
pk” be the event that A queries the hash function on P = (pk,K ′) for some K ′ before the public key is
revealed. Then we will justify that

Pr
[

GA
6 sets bad1

]
≤ Pr [ Queries K ∧ Queries pk ] (16)

in two different ways. First, we point out that the right hand side is less than or equal to both
Pr[Queries K] and Pr[Queries pk]. Since the choice of K is independent of all hash queries made be-
fore the public key is revealed, we have that

Pr [ Queries K ] ≤ h

2κ
(17)
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procedure LR(M):

c← c + 1 ; Mc ←M
For i = 1, . . . , v do

r′c[i]←$ {0, 1}ρ

mc[i]←$ {0, 1}n

Ret E(pkr,mc ; r′c)

procedure RevealPK:

For j = 1, . . . , c do

(m∗0,m
∗
1, r
∗)←$ MHash

j (1k)

mj ←m∗b ; rj ← r∗

pkout← true ; Ret pk

procedure Hash(P,R,M): G4

Y ←$ {0, 1}ρ

If P = pk ∧ H[P,R,M ] 6= ⊥ then bad← true

If P 6= pk ∧ H[P,R,M ] 6= ⊥ then Y ← H[P,R,M ]

Ret H[P,R,M ]← Y

procedure Finalize(b′):

For j = 1, . . . , c do

For i = 1, . . . , v do

Hash(pk, rj [i],mj [i])

Ret (b = b′)

procedure LR(M):

c← c + 1 ; Mc ←M
For i = 1, . . . , v do

r′c[i]←$ {0, 1}ρ

mc[i]←$ {0, 1}n

Ret E(pkr,mc ; r′c)

procedure RevealPK:

For j = 1, . . . , c do

(m∗0,m
∗
1, r
∗)←$ MHash

j (1k)

mj ←m∗b ; rj ← r∗

pkout← true ; Ret pk

procedure Hash(P,R,M): G5 G6

Y ←$ {0, 1}ρ

If pkout = false ∧ P = pk then

bad1 ← true ; Ret Y

Ret H[pk, R,M ]← Y

else if pkout = true ∧ P = pk then

If H[pk, R,M ] 6= ⊥ then bad2 ← true

Ret H[pk, R,M ]← Y

If P 6= pk ∧ H[P,R,M ] 6= ⊥ then Y ← H[P,R,M ]

Ret H[P,R,M ]← Y

procedure Finalize(b′):

For j = 1, . . . , c do

For i = 1, . . . , v do

Hash(pk, rj [i],mj [i])

Ret (b = b′)

Figure 9: Games used to bound the setting of bad in game G3 of Figure 7.

To bound Pr[Queries pk] we build a KR-UMA adversary C, as shown in Figure 10. Adversary C imple-
ments GA

6 except that: C halts after RevealPK is queried; C forwards the public-key portion of Hash
queries to its Check oracle; and C uses it’s Enc oracle to answer LR queries. Let “A queries pk” be
the event that one of A’s Hash queries included a value P = (pk,K) where pk is the one chosen by the
KR-UMAAEr,k experiment (the event being defined in the probability space defined by KR-UMAC

AEr,k).
Then we have that

Advkr-uma
AEr,k (C) = Pr

[
KR-UMAC

AEr,k ⇒ true
]

= Pr [A queries pk ] = Pr [ Queries pk ] . (18)

These equalities are justified by: (1) by construction, the probability that adversary A queries the appro-
priate pk in KR-UMAAEr,k and the probability that it queries the appropriate pk in GA

6 are the same;
and (2) such a query must occur for the event “Queries pk” to be occur in G6.

Thus, combining Equation 17 with 16 and Equation 18 with 16 gives that

Pr
[

GA
6 sets bad1

]
≤ min

{
h

2κ
,Advkr-uma

AEr,C (k)

}
.

We now turn to the case in which q = 1, which means that A is non-adaptive. Recall that for non-
adaptive security, we can assume without loss that A queries RevealPK immediately after its single
query to LR. Thus no hash queries are affected by the output of the LR query, and, in turn, by the
public key AEr. The probability of any individual hash query (P,R,M) having P = (pk,K) is thus at
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adversary C(1k):

Run A(1k)

On query Hash(P,R,M):

Y ←$ {0, 1}ρ

d← Check(pk∗,K∗)

If d = 0 ∧ H[P,R,M ] 6= ⊥ then Y ← H[P,R,M ]

Ret H[P,R,M ]← Y

On query LR(M):

c← c + 1 ; Mc ←M
For i = 1, . . . , v do

c[i]← Enc

Ret c

On query RevealPK:

For j = 1, . . . , c do

(m∗0,m
∗
1, r
∗)←$ MHash

j (1k)

Halt with no output

Figure 10: Adversary used to bound the setting of bad1 in game G6 of Figure 9.

most 2−κ ·maxpkAEr(k). We therefore can conclude that

Pr
[

GA
6 sets bad1

]
≤
h ·maxpkAEr(k)

2−κ
.

6.2 Hedging via Composition

For the following, let AEr = (Pr,Kr, Er,Dr) be a (randomized) PKE scheme with message length nr(·) and
randomness length ρ(·). LetAEd = (Pd,Kd, Ed,Dd) be a (deterministic) PKE scheme with message length
nd(·) and randomness length always 0. Associate to AEc for c ∈ {d, r} the function maxclenc(k) mapping
any k to the maximum length (over all possible public keys, messages, and if applicable, randomness) of
a ciphertext output by Ec.

Deterministic-then-randomized. Our first attempt is to perform hedged encryption via applying
deterministic encryption and then randomized. More formally let DtR[AEr,AEd] = (P,K, E ,D) with
randomness length ρ and message length nd be the scheme that works as follows. Parameter generation
algorithm P runs parr←$ Pr(1k) and pard←$ Pd(1k) and outputs par = (parr, pard). Key generation K
just runs (pkr, skr)←$Kr(parr) and (pkd, skd)←$Kd(pard) and outputs pk = (pkr, pkd) and sk =
(skr, skd). We define encryption by

E((pkr, pkd),m ; r) = Er(pkr, c ‖ 10` ; r) ,

where c = Ed(pkd,m) and ` = nr − |c| − 1. Here we need that nr(k) > maxclend(k) for all k. Decryption
is defined in the natural way.

The scheme will clearly inherit IND-CPA security from the application of Er. If the deterministic
encryption scheme is PRIV secure for min-entropy µ, then the composition will also be secure if the
message has min-entropy at least µ. However, our strong notion of IND-CDA security requires that
schemes be secure if the joint distribution on the message and randomness has high min-entropy. If the
entropy is unfortuitously split between both the randomness and the message, then there is no guarantee
that the composition will be secure.
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Randomized-then-deterministic. We can instead apply randomized encryption first, and then de-
terministic encryption. Define RtD[AEr,AEd] = (P,K, E ,D) with randomness length ρ and message
length nr to work as follows. The parameter and key generation algorithms are as for scheme DtR.
Encryption is defined by

E((pkr,pkd),m ; r) = Ed(pkd, c ‖ 10`) .

where c = Er(pkr,m ; r) and ` = nd − |c| − 1. Here we need that nd(k) > maxclenr(k) for all k. The
decryption algorithm D works in the natural way. As we will see below, this construction avoids the
security issues of the previous, as long as the randomized encryption scheme preserves the min-entropy
of its inputs. (For example, if for all k, all parr ∈ [Pr(1k)], and all (pkr, skr) ∈ [Kr(parr)], Er(pkr, ·) is
injective in (m, r).) Many encryption schemes have this property; El Gamal [22] is one example.

Security of RtD. Intuitively, the hedged security of the RtD construction is inherited from the IND-CPA
security of the underlying randomized scheme AEr and the PRIV security of the underlying deterministic
scheme AEd. As alluded to before, we have one technical requirement on AEr for the IND-CDA proof to
work. We say AEr = (Pr,Kr, Er,Dr) with message length nr(·) and randomness length ρ(·) is one-to-one
(1-1) if for any k, any parr ∈ [Pr(1k)], and any (pkr, skr) ∈ [Kr(parr)] their do not exist (m, r) 6= (m′, r′)
such that Er(pkr,m ; r) = Er(pkr,m

′ ; r′). Being 1-1 gives us two properties needed by the scheme. First,
it implies that the equality pattern of a vector of inputs to Er is equal to the equality pattern of the vector
encrypted under the same key. Second, it implies that min-entropy is preserved, meaning for any k, any
parr ∈ [Pr(1k)], any (pkr, skr) ∈ [Kr(parr)], and for all c ∈ {0, 1}∗ and any (µ, 1, nr, ρ)-mr-source M it
holds that Pr

[
c = Er(pkr,m ; r) : (m, r)←$ M(1k)

]
= 2−µ. We have the following theorem.

Theorem 6.2 [RtD is H-IND secure] Let AEr = (Pr,Kr, Er,Dr) be a 1-1 PKE scheme with message
length nr(·) and randomness length ρ(·). Let AEd = (Pd,Kd, Ed,Dd) be a (deterministic) encryption
scheme with message length nd(·) so that nd(·) ≥ maxclenr(·). Let AE = RtD[AEr,AEd] = (P,K, E ,D)
be the PKE scheme defined above.

• (IND-CPA) Let A be an IND-CPA adversary. Then there exists an IND-CPA adversary B such that
for any k

Advind-cpa
AE,A (k) = Advind-cpa

AEr,B (k)

where B runs in time that of A plus the time to run Ed once.

• (IND-CDA) Let A be a CDA adversary that makes at most q LR queries, each consisting of a distinct
(µ, v, nr, ρ)-mmr-source (resp. block-source). Then there exists a PRIV adversary B such that for
any k

Advcda
AE,A(k) ≤ Advpriv

AEd,B(k)

where B runs in time that of A plus the time to run at most q(k) ·v(k) executions of Er and makes at
most q LR queries each consisting of a distinct (µ, v,maxclenr)-mm-source (resp. block-source). �

Note that the second part of the theorem states the result for either sources or just block-sources. Before
proving in more detail, we give a sketch. The first part of the theorem is immediate from the IND-CPA
security of AEr. For the second part, any mmr-source M queried by A is converted into an mm-source
M′ to be queried by B. This is done by having M′ run M to get (m0,m1, r) and then outputting the
pair of vectors (Er(pk,m0 ; r), Er(pk,m1 ; r)). (The ciphertexts are the “messages” for Ed.) Because AEr
is 1-1, M′ is a source of the appropriate type.

Proof of Theorem 6.2: We first show IND-CPA security. Let A be an IND-CPA adversary against
AE = RtD[AEr,AEd] = (P,K, E ,D), where AEr = (Pr,Kr, Er,Dr) is a randomized PKE scheme and
AEd = (Pd,Kd, Ed,Dd) is a deterministic PKE scheme with plaintext length nd. We build an IND-CPA
adversary B against AEr using A; the adversary is shown in Figure 11. Adversary B, on input pkr, runs
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Adversary B(1k, pkr)

par←$ Pd(1k)
(pkd, skd)←$Kd(par) ; pk ← (pkr, pkd)
Run A(1k,pk).

On query LR(m0,m1):

c← LRB(m0,m1)
`← nd − |c| − 1
c′ ← Ed(pkd, c ‖ 10`)
Ret. c′

When A halts with output b′, halt and output b′.

Adversary B(1k)

par←$ Pr(1
k)

(pkr, skr)←$Kr(par)
Run A(1k).

On query RevealPK():

pkd ← RevealPKB()
pk ← (pkr,pkd)
Ret. pk

On query LR(M):

c← LRB(M∗(M))
Ret. c

M∗(M):

(m0,m1, r)←$ M
For i in 1 to |m0| do:

`0 ← nd − |Er(pkr,m0[i] ; r[i])| − 1
x0[i]← Er(pkr,m0[i] ; r[i]) ‖ 10`0

`1 ← nd − |Er(pkr,m1[i] ; r[i])| − 1
x1[i]← Er(pkr,m1[i] ; r[i]) ‖ 10`1

Ret. (x0,x1)

When A halts with output b′, halt and output b′.

Figure 11: Adversaries for the proof of Theorem 6.2.

Pd and Kd to generate a keypair (pkd, skd) for the deterministic PKE scheme. It then runs adversary
A with public key (pkr,pkd). When A queries LR with a pair of messages (m0,m1), B forwards the
query to its own LR oracle. When B receives ciphertext c, it returns to adversary A the encryption
Ed(pkd, c ‖ 10`), where ` = nd − |c| − 1 is the amount of padding necessary to make c fit in the plaintext
space of AEd. When A outputs a guess bit b′, B also outputs this same guess. It is easy to see that the
simulation is perfect and the advantages are equal.

We next show IND-CDA security. Let A be a CDA adversary making q LR queries, each a v-vector
(µ, nr, ρ)-source, and attacking AE constructed as in the theorem statement from AEr and AEd. We will
build PRIV adversary B against AEd as follows; the adversary is shown on the right side of Figure 11.
Adversary B, at the start of the game, runs Pr and Kr to generate keys (pkr, skr) for the randomized
encryption scheme. It then runs adversary A and answers queries as follows. On query RevealPK, B
queries its own RevealPK adversary to learn pkd and then returns (pkr,pkd) to A. On query LR(M)
for mmr-source (resp. block-source) M, B constructs mm-source (resp. block-source) M∗ so as to run
M to get vector (m0,m1, r) and then output the pair

(Er(pkr,m0 ; r), Er(pkr,m1 ; r)) ,

where each component in each vector in the pair is padded out with a single 1 followed by the appropriate
number of 0s to make it length nd. The details of M∗ are shown in Figure 11. Since AEr is 1-1, it follows
that M∗ is a distinct source (resp. block-source) with the appropriate min-entropy.

Finally, when A halts with guess bit b′, B outputs the same guess. Again, it is easy to see the simulation
is perfect.

6.3 Hedging by Randomizing Deterministic Encryption

For the following, let AEr = (Pr,Kr, Er,Dr) be a (randomized) PKE scheme with message length nr(·) and
randomness length ρ(·). LetAEd = (Pd,Kd, Ed,Dd) be a (deterministic) PKE scheme with message length
nd(·) and randomness length always 0. Associate to AEc for c ∈ {d, r} the function maxclenc(k) mapping
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any k to the maximum length (over all possible public keys, messages, and if applicable, randomness) of
a ciphertext output by Ec.

Pad-then-Deterministic. Our final construction dispenses entirely with the need for a dedicated
randomized encryption scheme, instead using simple padding to directly construct a (randomized) en-
cryption scheme from a deterministic one. Scheme PtD[AEd] = (Pd,Kd, E ,D) with randomness length ρ
and message length n works as follows. Parameter and key generation are inherited form the underlying
(deterministic) encryption scheme. Encryption is defined by

E(pkd,m ; r) = Ed(pkd, r ‖m)

where we require that nd(k) ≥ ρ(k) + n(k). Decryption proceeds by applying Dd, to retrieve r ‖m, and
then returning m.

Security. The IND-CDA security of PtD is inherited immediately from the PRIV security of the AEd
scheme. The more challenging part is proving the IND-CPA security. For this we will need a stronger
assumption on the underlying deterministic encryption scheme — that it is a u-LTDF.

Theorem 6.3 [PtD is H-IND secure] Let AEd = (Pd,Kd, Ed,Dd) be a deterministic encryption scheme
with message length nd(·). Let AE = PtD[AEd] = (P,K, E ,D) be the PKE scheme defined above with
message length n(·) and randomness length ρ(·) such that n(k) = nd(k)− ρ(k) for all k.

• (IND-CPA) Let Kl be a universal-inducing (nd, `)-lossy key generation algorithm for AEd. Let A be
an IND-CPA adversary. Then there exists a LOS adversary B such that for all k

Advind-cpa
AE,A (k) ≤ Advlos

AEd,Kl,B(k) +
√

23n(k)−`(k)+2 .

B runs in time that of A.

• (IND-CDA) Let A be a CDA adversary that makes at most q LR queries each consisting of a distinct
(µ, v, n, ρ)-mmr-source (resp. block-source). Then there exists a PRIV adversary B such that for all k

Advcda
AE,A(k) ≤ Advpriv

AEd,B(k)

where B runs in time that of A and makes at most q LR queries each consisting of a distinct
(µ, v, nd)-mm-source (resp. block-source). �

One might think that concluding IND-CPA can be based just on PtD being IND-CDA secure, since
the padded randomness provides high min-entropy. However, this approach does not work because an
IND-CPA adversary expects knowledge of the public-key before making any LR queries, while a CDA
adversary only learns the public-key after making its LR queries. This issue, which also arised in another
context, is discussed in more detail in [7]. We use a different approach (which may be of independent
interest) to prove this part of Theorem 6.3. Intuitively, our proof strategy corresponds to using the
standard LHL 2n(k) times, once for each possible message the IND-CPA adversary might query.

Proof of Theorem 6.3: We first briefly prove IND-CDA. Let A be a CDA adversary against AE .
We can easily construct a PRIV adversary B against AEd. B runs A and on LR query M, a distinct
(µ, v, nr, ρ)-mmr source (resp. block-source) queries M′ that samples from M to get (m0,m1, r) and
outputs ((m0, r), (m1, r)). This results in a distinct (µ, v, nd) mm-source (resp. block-source), where
nd = nr + ρ. The simulation is perfect and security follows.

Next we show IND-CPA. Let A be an IND-CPA adversary against PtD. We will go through a series
of game transitions to prove the theorem. Game G0 is simply the IND-CPA game, so by definition
Advind-cpa

PtD,A (k) = 2 · Pr
[
GA0 (k)

]
− 1. Game G1 is identical to G0 except that Initialize uses the lossy

key generation algorithm Kl. We will define a LOS adversary B such that

Pr
[
GA0 (k)⇒ true

]
− Pr

[
GA1 (k)⇒ true

]
≤ Advlos

AE,Kl,B(k) .

Adversary B, shown in Figure 12, when given a public key pk that is either from Kd or Kl, simply runs
adversary A as in games G0 and G1 with pk; if there is a gap between A’s success probability in games
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Adversary B(1k, pk)

b←$ {0, 1}∗
Run A(1k,pk).

On query LR(m0,m1):

c←$ E(pk,mb)
Ret. c

When A halts with output b′, halt and output (b = b′).

Adversary C(1k,par)

b←$ {0, 1}
For m in 0nr to 1nr :

c[m]← RoR(Mm)
pk←$ RevealPK()
Run A(1k).

On query LR(m0,m1):

c← c[mb]
Ret. c

Mm:

r←$ {0, 1}nd−nr

Ret. r ‖m

When A halts with output b′, halt and output (b = b′).

Figure 12: Adversaries for the proof of Theorem 6.3

G0 and G1, then B will be able to distinguish whether the key is lossy or not.

Game G2 is the same as G1 except that LR returns a uniform element from the range of the hash function
(instead of returning the encryption of mb). We claim that there is an unbounded ALH adversary C such
that

Pr
[
GA1 (k)⇒ true

]
− Pr

[
GA2 (k)⇒ true

]
≤ Advalh

H,C(k) ,

where H = (Kl, Ed) is a universal family of hash functions. The LH adversary C, shown in Figure 12,
proceeds as follows. First, C makes q = 2n queries to its RoR oracle, where {0, 1}n is the plaintext space
of PtD. The ith RoR query is an m-source of vector length 1 consisting of a uniform string of nd−n bits
concatenated with mi, the ith message in the plaintext space {0, 1}n according to some known ordering
on {0, 1}n (i.e., lexigraphical order). It is easy to see that due to the padded uniform bits, each m-source
has min-entropy of at least nd − n bits, even conditioned on all the previous queries. Let the answers C
receives to its q RoR queries be called y1, . . . , yq. Next, C calls oracle RevealPK and learns pk′. At
this point, C runs adversary A as in games G1 and G2, flipping a bit b and giving A the public key pk′.
On oracle query LR(m0,m1) from A, C finds the j such that mb = mj , the jth message in the plaintext
space according to the known ordering. Adversary C answers the LR query with yj . When A finishes
with output b′, C outputs 1 if b = b′ and 0 otherwise.

Finally, we claim that Pr
[
GA2 (k)⇒ true

]
= 1/2. This is true since the answer to the LR query no longer

depends on the bit b. Combining the above equations we get

Advind-cpa
PtD,A (k) ≤ Advlos

AEd,Kl,B(k) + 2 ·Advalh
H,C(k)

≤ Advlos
AEd,Kl,B(k) + 2 · 2n(k) ·

√
2nd(k)−`(k)−(nd(k)−n(k))

≤ Advlos
AEd,Kl,B(k) +

√
23n(k)−`(k)+2 ,

proving the theorem.

6.4 RtD and PtD Without Universality

We have shown that RtD and PtD meet adaptive CDA security when instantiating the deterministic
encryption scheme with a u-LTDF. One can also instantiate with LTDFs that are not necessarily universal.
This allows a wider variety of instantiations, including several that are more efficient than the best known
u-LTDFs (see [11] for a discussion).
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We follow a strategy from [11] to replace u-LTDFs with the composition of a LTDF and a pairwise-
independent hash. let AEd = (Pd,Kd, Ed,Dd) be any deterministic PKE scheme and H = (P,K, F, F−1)
be a family of efficiently invertible pairwise-independent permutations with the same input and output
length as the message length ofAEd. We can build a new deterministic encryption schemeAEpw[AEd,H] =
(Ppw,Kpw, Epw,Dpw) by composing the two as follows. The parameter generation Ppw runs pard←$ Pd(1k)
as well as par←$ P(1k) and outputs parameters par = (pard,par). To compute Kpw(par), first run
(pk, sk)←$Kd(pard) and then randomly choose a function key K by running K←$K(par). The key
pair output is ((pk,K), (sk,K)). Encryption is defined by Epw((pk,K),M) = Ed(pk, F (K,M)) and
decryption works in the natural way. Note that if AEd is an LTDF, then so too is AEpw[AEd,H].

The resulting deterministic scheme will not in general be anonymous. However, one can provide a
direct analysis of PtD and RtD using AEpw[AEd,H] as the underlying deterministic scheme by applying
the “crooked” leftover hash lemma from [11]. We omit the details.
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A Adaptive Variants of the Leftover Hash Lemma

In this section we present a generalization of the leftover hash lemma. Informally, the leftover hash lemma
(LHL) [28] states that a universal family of functions H = (P,K, F ) is a strong extractor, meaning that
F (K,X) is statistically indistinguishable from a uniform point when X is drawn from a high min-entropy
source. A well-known argument (c.f., [41, Lemma 6]) extends the LHL to block sources1.

We generalize this lemma to an adaptive variant2. Game ALHH,k is shown in Figure 13. Recall that
as defined in Section 2, for every k, all par ∈ [P(1k)] we let R(par) = { F (K,x) : K ∈ [K(par)] and x ∈
{0, 1}n }. We denote by h←$ (R(par))|m| selecting |m| range points independently at random from
R(par). An LH adversary may make multiple RoR queries, each being a vector m-source over {0, 1}n(k).
The setting is adaptive because each query can depend on replies to previous ones. The adversary makes
a single RevealPK query and after that makes no RoR queries. In Lemma A.1 we bound the advantage
of any adversary in this game, formally defined as

Advalh
H,A(k) = 2 · Pr

[
ALHA

H(k)⇒ true
]
− 1 .

We also define games ALH1H,A and ALH0H,A to be the same as ALHH,A with b = 1 and b = 0,
respectively. A standard argument shows that

Advalh
H,A(k) = Pr

[
ALH1AH(k)⇒ true

]
− Pr

[
ALH0AH(k)⇒ false

]
.

1Chung and Vadhan [15] presented an improved analysis of the leftover hash lemma for block sources. Although their
tight analysis can slightly improve the parameters of our resulting schemes, we chose for simplicity to follow the more basic
approach of [41].

2We note that hashing of block sources in an adaptive setting was also considered by Lu [30] in the context of the bounded
storage model.
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procedure Initialize(1k):

par←$ P(1k)

K←$K(par)

b←$ {0, 1}
Ret par

procedure RoR(M):

If pkout = true then Ret ⊥
m←$ M(1k)

If b = 1 then h← F (K,m)

Else h←$ (R(par))|m|

Ret h

procedure RevealPK: Game ALHH,k

pkout← true

Ret K

procedure Finalize(b′):

Ret (b = b′)

Figure 13: Game ALH (Adaptive Leftover Hash) associated to a family of functions H = (P,K, F ).

Lemma A.1 Let H = (P,K, F ) be a universal family of hash functions with associated message length
n(·) and 2t-bounded range. Let A be an LH adversary making q RoR queries, each being a (µ, v, n)-m-
block-source `-vector m-source. Then for all k

Advalh
H,A(k) ≤ q(k) ·v(k) ·

√
2t(k)−µ(k) . �

Proof: Fix a k ∈ N and let q = q(k). The proof proceeds by a hybrid argument. From A we build LH
adversaries Bi that each only query a single time to the RoR oracle, see Figure 14. More specifically,
the ith query by A is answered via a RoR query. All queries before this are answered with random range
points and all queries after are answered by simulating directly F . Note that A does not reveal the key
until after it has completed all its RoR queries, and so each Bi is free to reveal K as indicated.

We also define games HYBa for 0 ≤ a ≤ q as shown in Figure 14. By construction we have that HYBA
0

is equivalent to both ALH1AH and ALH1B1
H and that HYBA

q is equivalent to both ALH0AH and ALH0
Bq
H .

This means in particular that

Pr
[

ALH1AH ⇒ 1
]

= Pr
[

HYBA
0 ⇒ 1

]
= Pr

[
ALH1B1

H ⇒ 1
]

and

Pr
[

ALH0AH ⇒ 1
]

= Pr
[

HYBA
q ⇒ 1

]
= Pr

[
ALH0

Bq
H ⇒ 1

]
.

Moreover, we have that for 1 ≤ i ≤ q − 1 it holds that

Pr
[

HYBA
i ⇒ 1

]
= Pr

[
ALH0BiH ⇒ 1

]
= Pr

[
ALH1

Bi+1

H ⇒ 1
]
.

We thus have that

Advalh
H,A(k) = Pr

[
HYBA

0 ⇒ 1
]
− Pr

[
HYBA

q ⇒ 1
]

=

q−1∑
j=0

(
Pr
[

HYBA
j ⇒ 1

]
− Pr

[
HYBA

j+1 ⇒ 1
])

=

q∑
j=1

(
Pr
[

ALH1BiH ⇒ true
]
− Pr

[
ALH0BiH ⇒ false

])
=

q∑
j=1

(
Pr
[

ALH1BH ⇒ true | i = j
]
− Pr

[
ALH0BH ⇒ false | i = j

])
= q ·Advalh

H,B(k) .

where the event “i = j” occurs when adversary B’s random choice of index i matches the specific value
of j. The last equality comes from multiplying by q · Pr [ i = j ], which is equal to one. By [41, Lemma 6]
we have that

Advalh
H,B(k) ≤ v(k) ·

√
2t(k)−µ(k)

which, plugging into the equation above, completes the proof.
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procedure Initialize(1k):

par←$ P(1k)

K←$K(par)

j ← 0

b←$ {0, 1}
Ret par

procedure RoR(M):

j ← j + 1

m←$ M(1k)

If j ≤ i then h←$ (R(par))|m|

Else h← F (K,m)

Ret h

procedure RevealPK: Game HYBi

Ret K

procedure Finalize(b′):

Ret b′

BRoR,RevealPK
i (par):

j ← 0

b′←$ ARoR’,RevealPK’(par)

Ret b′

procedure RoR’(M):

j ← j + 1

If j < i then

m←$ M(1k)

h←$ (R(par))|m|

If j = i then

h←$ RoR(M)

K ← RevealPK()

If j > i then

m←$ M(1k)

h← F (K,m)

Ret h

procedure RevealPK’:

Ret K

Figure 14: Games used in proof of Lemma A.1.
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