In 2010, Groth constructed a NIZK argument in the common reference string (CRS) model for Circuit-SAT consisting of only 42 elements in a bilinear group. Interestingly, his argument does not (explicitly) use PCPs. But his scheme has some disadvantages -- namely, the CRS size and prover computation are both quadratic in the circuit size. In 2011, Lipmaa reduced the CRS size to quasi-linear, but with prover computation still quadratic.
Using QSPs we construct a NIZK argument in the CRS model for Circuit-SAT consisting of just 7 group elements. The CRS size is linear in the circuit size, and prover computation is quasi-linear, making our scheme seemingly quite practical. (The prover only needs to do a linear number of group operations; the quasi-linear computation is a multipoint evaluation and interpolation.)
Our results are complementary to those of Valiant (TCC 2008) and Bitansky et al. (2012), who use "bootstrapping" (recursive composition) of arguments to reduce CRS size and prover and verifier computation. QSPs also provide a crisp mathematical abstraction of some of the techniques underlying Groth's and Lipmaa's constructions.
Category / Keywords: foundations / span programs, PCPs, NIZKs, SNARGs, SNARKs, verifiable computation, bilinear groups Date: received 19 Apr 2012, last revised 18 Jun 2012 Contact author: parno at microsoft com Available format(s): PDF | BibTeX Citation Note: Updated citations. Version: 20120618:223711 (All versions of this report) Short URL: ia.cr/2012/215 Discussion forum: Show discussion | Start new discussion