Beating Shannon requires BOTH
efficient adversaries AND non-zero advantage

Yevgeniy Dodis, NYU

In this note we formally show a well known (but not well documented) fact that in order to beat the famous Shannon lower bound on key length for one-time-secure encryption, one must simultaneously restrict the attacker to be efficient, and also allow the attacker to break the system with some non-zero (i.e., negligible) probability. Our proof handles probabilistic encryption, as well as a small decryption error.

1 Definitions

Let \((\text{Enc}, \text{Dec})\) be any encryption scheme with key space \(K\) and message space \(M\). In general, we use capital letters for random variables, and lower case letters for specific values; e.g., \(M, C, S\) denote appropriately defined random messages, ciphertexts and keys, while \(m, c, s\) denote some specific value of those. In the description below, every random variable (e.g., \(M_1\), \(S\), etc.) not explicitly defined in terms of other random variables (e.g., \(C = \text{Enc}_S(M_1)\)) will always be uniform over its corresponding domain.

Remark 1 We allow the encryption algorithm \(\text{Enc}\) to be probabilistic. However, since all our proofs easily handle this case, we will not explicitly put the randomness \(R\) in our notation. I.e., when we write \(\text{Enc}_s(m)\), we always really mean a random variable \(\text{Enc}_s(m; R)\), even for fixed \(m\) and \(s\) (let alone when either \(M\) or \(S\) are random). Similarly, when some encryption is computed inside some probability, we do not explicitly put the choice or \(R\) under \(\Pr\). E.g., \(\Pr_S[\text{Enc}_S(m) = c]\) really means \(\Pr_{S, R}[\text{Enc}_S(m; R) = c]\).

Definition 1 A (possibly probabilistic) encryption scheme \((\text{Enc}, \text{Dec})\) is called \((t, \varepsilon)\)-secure if for any message \(m_0 \in M\), and any adversary \(\text{Eve}\) running in time at most \(t\), it holds

\[
\left| \Pr_{S, M_1}[\text{Eve}(M_1, \text{Enc}_S(m_0)) = 1] - \Pr_{S, M_1}[\text{Eve}(M_1, \text{Enc}_S(M_1)) = 1] \right| \leq \varepsilon
\]

Namely, \(\text{Eve}\) cannot tell encryption of \(m_0\) from encryption of uniformly random \(M_1\).

Remark 2 The above definition is slightly weaker than the more traditional definition stating that for any messages \(m_0, m_1 \in M\), and any adversary \(\text{Eve}\) running in time at most \(t\), it holds

\[
\left| \Pr_S[\text{Eve}(\text{Enc}_S(m_0)) = 1] - \Pr_S[\text{Eve}(\text{Enc}_S(m_1)) = 1] \right| \leq \varepsilon
\]

This is OK, since we are proving a lower bound. In any event, by hybrid argument the gap between “\(\varepsilon\)s” is at most a factor of 2.
Definition 2 A (possibly probabilistic) encryption scheme \((\text{Enc}, \text{Dec})\) is called \(\gamma\)-wrong

\[
\Pr_{S,M}[\text{Dec}_S(\text{Enc}_S(M)) = M] \geq 1 - \gamma
\]

(2)

Namely, decrypting encryption of a random message almost never results in an error.

\[\diamond\]

2 Main Result

According to the values of \(t \in [0, \infty]\) and \(\varepsilon \in [0, 1]\) one can obtain different notions of security. Here we show that to beat Shannon bound \(|K| \geq |M|\) (corresponding to \(t = \infty\) and \(\varepsilon = 0\)), we really need both \(t\) to be small and \(\varepsilon\) to be non-zero. Our proof also handles decryption error.

Theorem 1 Assume \((\text{Enc}, \text{Dec})\) is at most \(\gamma\)-wrong. Then:

- **Small error needed.** Let \(v\) denote maximum bit length of a plaintext plus ciphertext. If \((\text{Enc}, \text{Dec})\) is \((v, 0)\)-secure, then \(|K| \geq |M|(1 - \gamma)\).

- **Small time needed.** Let \(d\) denote maximum decryption time. If \((\text{Enc}, \text{Dec})\) is \(|K|d, \varepsilon\)-secure, then \(|K| \geq |M|(1 - \varepsilon - \gamma)\).

In other word, to beat the Shannon bound in a non-trivial way for any “functional” (e.g., \(\gamma < 1 - \frac{1}{\text{poly}}\)) encryption, one must simultaneously restrict Eve to be efficient, as well as allow for some non-zero (but possibly negligible) probability \(\varepsilon\) of security failure.

Proof of First Part. We show that \((v, 0)\)-security implies that for any messages \(m_0, m_1 \in \mathcal{M}\) and ciphertext \(c_1\), it holds:

\[
\Pr_{S,M_1}[M_1 = m_1 \text{ and } \text{Enc}_S(m_0) = c_1] = \Pr_{S,M_1}[M_1 = m_1 \text{ and } \text{Enc}_S(m_1) = c_1]
\]

(3)

To show Equation (3), consider the following \(Eve_{m_1,c_1}(m, c)\) running in time \(t = v\): output 1 if and only if \(m = m_1\) and \(c = c_1\). Since \(\varepsilon = 0\), it is immediate that Equation (1) \(\Rightarrow\) Equation (3) for the \(Eve = Eve_{m_1,c_1}\) above. In other words, \((v, 0)\)-security implies that distributions \((M_1, \text{Enc}_S(m_0))\) and \((M_1, \text{Enc}_S(M_1))\) are identical: \((M_1, \text{Enc}_S(m_0)) \equiv (M_1, \text{Enc}_S(M_1))\).

Now, pick a fresh random key \(S_1\) and look at

\[
\Delta = \Pr_{S,M_1,S_1}[\text{Dec}_{S_1}(\text{Enc}_S(m_0)) = M_1]
\]

(4)

On the one hand, it is clear that

\[
\Delta \leq \frac{1}{|M|}
\]

(5)

Indeed, if we let \(M = \text{Dec}_{S_1}(\text{Enc}_S(m_0))\), then \(M_1\) is perfectly uniform and independent of \(M\). So \(\Pr[M = M_1] \leq \frac{1}{|M|}\), indeed. On the other hand, by Equation (3), since \((M_1, \text{Enc}_S(m_0)) \equiv (M_1, \text{Enc}_S(M_1))\), we can rewrite Equation (4) as

\[
\Delta = \Pr_{S,M_1,S_1}[\text{Dec}_{S_1}(\text{Enc}_S(M_1)) = M_1]
\]

(6)
But then
\[
\Delta = \Pr_{S,M_1,S_1} [\text{Dec}_{S_1}(\text{Enc}_S(M_1)) = M_1] \\
\geq \Pr[S = S_1] \cdot \Pr_{M_1,S_1} [\text{Dec}_{S_1}(\text{Enc}_{S_1}(M_1)) = M_1] \\
\geq \frac{1}{|K|} \cdot (1 - \gamma)
\]
where the last inequality used Equation (2). Comparing the inequality above with Equation (5), we get
\[
\frac{1}{|K|} \cdot (1 - \gamma) \leq \Delta \leq \frac{1}{|M|},
\]
which implies \(|K| \geq (1 - \gamma)|M|\).

\[\blacksquare\]

Proof of Second Part. We show that \(|K|d, \varepsilon\)-security implies \(|K| \geq |M|(1 - \varepsilon - \gamma)\). For that, consider the following attacker \(Eve\) of complexity \(t = |K|d\):

\(Eve(m_1, c_1):\) output 1 if and only if there exists \(s_1 \in K\) s.t. \(\text{Dec}_{s_1}(c_1) = m_1\).

Now, let us compute both probabilities when we apply Equation (1) to this \(Eve\). First,

\[
\Pr_{s,M_1} [\text{Eve}(M_1, \text{Enc}_S(M_1)) = 1] = \Pr_{s,M_1} [\exists s_1 \text{ s.t. } \text{Dec}_{s_1}(\text{Enc}_S(M_1)) = M_1] \\
\geq \Pr_{s,M_1} [\text{Dec}_S(\text{Enc}_S(M_1)) = M_1] \\
\geq 1 - \varepsilon
\]
where the last inequality used Equation (2). By Equation (1), we get

\[
\Pr_{s,M_1} [\text{Eve}(M_1, \text{Enc}_S(m_0)) = 1] \geq \Pr_{s,M_1} [\text{Eve}(M_1, \text{Enc}_S(M_1)) = 1] - \varepsilon \geq 1 - \varepsilon - \gamma \quad (7)
\]

On the other hand,

\[
\Pr_{s,M_1} [\text{Eve}(M_1, \text{Enc}_S(m_0)) = 1] = \Pr_{s,M_1} [\exists s_1 \text{ s.t. } \text{Dec}_{s_1}(\text{Enc}_S(m_0)) = M_1] \\
\leq \sum_{s_1} \Pr_{s,M_1} [\text{Dec}_{s_1}(\text{Enc}_S(m_0)) = M_1]
\]

However, for any \(s_1\), if we let \(M = \text{Dec}_{s_1}(\text{Enc}_S(m_0))\), then \(M_1\) is perfectly uniform and independent of \(M\). So \(\Pr[M = M_1] \leq \frac{1}{|M|}\), which means that

\[
\Pr_{s,M_1} [\text{Eve}(M_1, \text{Enc}_S(m_0)) = 1] \leq \sum_{s_1} \frac{1}{|M|} = \frac{|K|}{|M|} \quad (8)
\]

Combining Equation (7) and Equation (8), we get \(1 - \varepsilon - \gamma \leq \frac{|K|}{|M|}\) or \(|K| \geq |M|(1 - \varepsilon - \gamma)\).

\[\blacksquare\]

Tightness: Both bounds are nearly tight, which can be shown by tweaking the generalization of the one-time pad (OTP) encryption for general cardinality \(N\) message spaces (not just the power of 2, which can be accomplished by addition modulo \(N\)). For simplicity, we only do it for two special cases \(\varepsilon = 0\) and \(\gamma = 0\), leaving the common generalization as a (tedious) exercise.

First, assume \(\varepsilon = 0\). Take any \(|M|\) of cardinality \(N\), and any subset \(M_0 \subseteq M\) of cardinality \(N(1 - \gamma)\). Start with the OTP scheme over \(M_0\) (so that \(|K| = N(1 - \gamma)\) as well), and enlarge it to
all of \(\mathcal{M} \) by taking any fixed \(m_0 \in \mathcal{M}_0 \) and defining \(\text{Enc}_s(m_1) = \text{Enc}_s(m_0) \), for \(m_1 \in \mathcal{M} \setminus \mathcal{M}_0 \). The addition of these \(\gamma N \) messages (which decrypt incorrectly) to our OTP does not affect the security of the scheme (since \(\text{Enc}(m_0) \) is perfectly secure), but creates a decryption error with probability \(\gamma \) with \(|\mathcal{K}| = |\mathcal{M}|(1 - \gamma) \).

Second, assume \(\gamma = 0 \). Now, for any \(\mathcal{M} \) of cardinality \(N \), take the OTP for \(\mathcal{M} \) (so that \(|\mathcal{K}| = N \)), and simply remove \(\varepsilon N/2 \) keys from \(\mathcal{K} \), defining the actual set \(\mathcal{K}_0 \) of \(N(1 - \varepsilon/2) \) keys. One can imagine sampling a key \(s \leftarrow \mathcal{K}_0 \) but first sampling the key \(s \leftarrow \mathcal{K} \) and claiming that Eve unconditionally won the game if \(s \in \mathcal{K} \setminus \mathcal{K}_0 \). Equivalently, we can always actually run Eve on a fully uniform key \(s \) from \(\mathcal{K} \), but then declare Eve victorious anyway if \(s \in \mathcal{K} \setminus \mathcal{K}_0 \). Clearly, when \(s \) is fully uniform, Eve has probability exactly \(1/2 \) telling apart encryptions of \(m_0 \) from \(M_1 \), so now her probability is at most \(1/2 + \varepsilon/2 \), creating distinguishing advantage at most \(\varepsilon \) with \(|\mathcal{K}_0| = |\mathcal{M}|(1 - \varepsilon/2) \).