Cryptology ePrint Archive: Report 2012/033
A note on hyper-bent functions via Dillon-like exponents
Sihem Mesnager and Jean-Pierre Flori
Abstract: This note is devoted to hyper-bent functions with multiple trace terms (including binomial functions) via Dillon-like exponents. We show how the approach developed by Mesnager to extend the Charpin–Gong family and subsequently extended by Wang et al. fits in a much more general setting.
To this end, we first explain how the original restriction for Charpin–Gong criterion can be weakened before generalizing the Mesnager approach to arbitrary Dillon-like exponents.
Afterward, we tackle the problem of devising infinite families of extension degrees for which a given exponent is valid and apply these results not only to reprove straightforwardly the results of Mesnager and Wang et al., but also to characterize the hyper-bentness of new infinite classes of Boolean functions.
Category / Keywords: foundations / Boolean functions, hyper-bent functions, Walsh–Hadamard transform, exponential sums, Kloosterman sums, Dickson polynomial, finite field permutations, Dillon exponent.
Date: received 21 Jan 2012, last revised 23 Jan 2012
Contact author: flori at enst fr
Available format(s): PDF | BibTeX Citation
Version: 20120129:045118 (All versions of this report)
Short URL: ia.cr/2012/033
Discussion forum: Show discussion | Start new discussion
[ Cryptology ePrint archive ]