Following the works of Cryan and Miltersen (MFCS'01) and by Mossel et al (STOC'03), we focus on the study of ``small-bias" generators (that fool linear distinguishers).
We prove that for most graphs, all but a handful of ``degenerate'' predicates yield small-bias generators, $f\colon \bit^n \rightarrow \bit^m$, with output length $m = n^{1 + \eps}$ for some constant $\eps > 0$. Conversely, we show that for most graphs, ``degenerate'' predicates are not secure against linear distinguishers. Taken together, these results expose a dichotomy: every predicate is either very hard or very easy, in the sense that it either yields a small-bias generator for almost all graphs or fails to do so for almost all graphs.
As a secondary contribution, we attempt to support the view that small-bias is a good measure of pseudorandomness for local functions with large stretch. We do so by demonstrating that resilience to linear distinguishers implies resilience to a larger class of attacks.
Category / Keywords: foundations / small-bias generator, dichotomy, local functions, NC0, pseudo-randomness Date: received 17 Sep 2011 Contact author: benny applebaum at gmail com Available formats: PDF | BibTeX Citation Version: 20110918:025108 (All versions of this report) Discussion forum: Show discussion | Start new discussion