- Resettable Statistical Zero Knowledge with efficient provers: Efficient-prover Resettable Sta-tistical Zero-Knowledge proof systems exist for all languages that admit hash proof systems (e.g., QNR, QR, DDH, DCR). Furthermore, for these languages, as an application of our technique, we also construct a two-round resettable statistical witness-indistinguishable argument system.
- Resettable Statistical Zero Knowledge with unbounded provers: Under the assumption that sub-exponentially hard one-way functions exist, rSZK = SZK. In other words, every language that admits a Statistical Zero-Knowledge (SZK) proof system also admits a Resettable Statistical Zero-Knowledge (rSZK) proof system. (Further, the result can be re-stated unconditionally provided there exists a sub-exponentially hard language in SZK). Moreover, under the assumption that (standard) one-way functions exist, all languages L such that the complement of L is random self reducible, admit a rSZK, in other words: co-RSR \subseteq rSZK. The round complexity of all our proof systems is O(log n), where n is the security parameter, and all our simulators are black-box.
Category / Keywords: Resettable zero-knowledge, statistical zero-knowledge, instance dependent primitives. Date: received 21 Aug 2011, last revised 21 Aug 2011 Contact author: awadia at cs ucla edu Available formats: PDF | BibTeX Citation Version: 20110824:040924 (All versions of this report) Discussion forum: Show discussion | Start new discussion