Cryptology ePrint Archive: Report 2011/151

Direct Exponent and Scalar Multiplication Classes of an MDS Matrix

Murtaza, G. and Ikram, N.

Abstract: An MDS matrix is an important building block adopted by different algorithms that provides diffusion and therefore, has been an area of active research. In this paper, we present an idea of direct exponent and direct square of a matrix. We prove that direct square of an MDS matrix results in an MDS matrix whereas direct exponent may not be an MDS matrix. We also delineate direct exponent class and scalar multiplication class of an MDS matrix and determine the number of elements in these classes. In the end, we discuss the standing of design properties of a cryptographic primitive by replacing MDS matrix by dynamic one.

Category / Keywords: secret-key cryptography / Dynamic MDS Matrix, Direct Exponent Matrix, AES, Key Based Diffusion, MDS Matrix Classes.

Date: received 27 Mar 2011

Contact author: azarmurtaza at hotmail com

Available format(s): PDF | BibTeX Citation

Version: 20110327:123525 (All versions of this report)

Discussion forum: Show discussion | Start new discussion


[ Cryptology ePrint archive ]