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Abstract. In this work, we study the application of higher-order dif-
ferential attacks on hash functions. We show a second-order differential
attack on the SHA-256 compression function reduced to 46 out of 64
steps. We implemented the attack and give the result in Table 1. The
best attack so far (in a different attack model) with practical complexity
was for 33 steps of the compression function.

1 Introduction

In recent years, significant advances in the field of hash function research have
been made which had a formative influence on the landscape of hash functions.
Especially the work on MD5 and SHA-1 has convinced many cryptographers that
these widely deployed hash functions can no longer be considered secure [29,30].
As a consequence, people are evaluating alternative hash functions, e.g. in the
SHA-3 initiative organized by NIST [24]. During this ongoing evaluation, not
only the three classical security requirements are considered. Researchers look at
(semi-) free-start collisions, near-collisions, etc. Whenever a ‘behavior different
from that expected of a random oracle’ can be demonstrated for a new hash
function, it is considered suspect, and so are weaknesses that are demonstrated
only for the compression function and not for the full hash function.

With the cryptographic community joining forces in the SHA-3 competition,
the SHA-2 family gets considerably less attention. Apart from being marked
as ‘relying on the same design principle as SHA-1 and MD5’, the best attack
to date on SHA-256 is a collision attack for 24 out of 64 steps with practical
complexity [10,26] and a preimage attack on 43 steps [1] having a complexity of
2254.9.

In this work, we present an attack for the SHA-256 compression function
reduced to 46 out of 64 steps with practical complexity. The attack is an appli-
cation of higher-order differentials on hash functions. Table 1 shows the resulting
example.

Higher-order differentials have been introduced by Lai in [14] and first applied
to block ciphers by Knudsen in [13]. The application to stream ciphers was
proposed by Dinur and Shamir in [9] and Vielhaber in [27]. First attempts to
apply these strategies to hash functions were published in [2].



Table 1. Example of a second-order differential collision f(y+ a1 + a2)− f(y+
a1) − f(y + a2) + f(y) = 0 for 46 steps of the SHA-256 compression function.
Values and differences are given in hexadecimal notation.

y

72939135 c1570fea 5c5d0c1d ad031d03

d83c56b6 41334f38 12f67844 0edd1fcb

016a5c6f 39094c7b 9e181d92 54bfb0fa

506781eb 0b081e5e 607a28e0 6318673a

21315086 43909ad8 23e8771b 26ca42e8

1eecc4dd 14649b3d 9076304c 29f92e96

a1

00000000 00000000 00000000 00000000

00000000 00000000 fffffffc 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000004 00000000 00000004

ef800200 fffffe00 0ffffe00 efbef7fc

a2

a3a3e47f 58cf0adb 3fa82cc6 0c907f06

3377c2cd 1997456a a8bcf700 2455c931

bffb159c 504e97b0 39e6d04a 2a582f18

37fcb1a0 d42be48e 950d8d60 ed368ca3

e4ae4c2e 989ee693 8dd81c5e 3abd607d

96c9d3bd 589c4e77 1a4afee7 b9ba6518

Recently, higher-order differential attacks have been applied to several hash
functions submitted to SHA-3 initiative organized by NIST such as Hamsi [7],
Keccak [7], and Luffa [32]. All these hash functions have in common that they rely
on a completely different design principle than SHA-256. All are permutation-
based designs following the sponge construction [3].

2 Higher-Order Differential Attacks on Hash Functions

In this section, we give a high-level description of the attack. It is an application
of higher-order differential cryptanalysis on hash functions. While a standard
differential attack exploits the propagation of the difference between a pair of
inputs to the corresponding output differences, a higher-order differential attack
exploits the propagation of the difference between differences.

Higher-order differential cryptanalysis was introduced by Lai in [14] and sub-
sequently applied by Knudsen in [13]. We recall the basic definitions that we will
need in the subsequent sections.

Definition 1. Let (S,+) and (T,+) be Abelian groups. For a function f : S →
T , the derivative at a point a1 ∈ S is defined as

∆(a1)f(y) = f(y + a1)− f(y) . (1)
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The i-th derivative of f at (a1, a2, . . . , ai) is then recursively defined as

∆(a1,...,ai)f(y) = ∆(ai)(∆(a1,...,ai−1)f(y)) . (2)

Definition 2. A one round differential of order i for f is an (i + 1)-tuple
(a1, a2, . . . , ai; b) such that

∆(a1,...,ai)f(y) = b . (3)

When applying differential cryptanalysis to a hash function, a collision for the
hash function corresponds to a pair of inputs with output difference zero. Sim-
ilarly, when using higher-order differentials we define a higher-order differential
collision for a function as follows.

Definition 3. An i-th-order differential collision for a function f is an i-tuple
(a1, a2, . . . , ai) together with a value y such that

∆(a1,...,ai)f(y) = 0 . (4)

Note that the common definition of a collision for hash functions corresponds to
a higher-order differential collision of order i = 1.

Now we want to talk about the query complexity of a differential collision
of order i for a function f having an n-bit output. We are only allowed oracle
access to f and ignore all other computations, memory accesses, etc.

From (4) we see that we can freely choose i + 1 of the input parameters
which then fix the remaining ones. Hence, the expected number of solutions to
(4) is one after choosing 2n/(i+1) values for each of y and a1, . . . , ai so the query
complexity of a differential collision of order i, for a good hash/compression
function f is:

≈ (i+ 1) · 2n/(i+1) (5)

We want to note that the complexity might be much higher in practice than this
bound for the query complexity. In the following, we will show how to construct a
second-order differential collision for the compression function of a block-cipher-
based hash function. We are not aware of any algorithm for the case i = 2 faster
than 2n/2.

2.1 Higher-Order Differential Collision for Block-Cipher-Based
Compression Functions

In all of the following, we consider block ciphers E : {0, 1}k × {0, 1}n → {0, 1}n
where n denotes the block length and k is the key length. For our purposes, we
will also need to endow {0, 1}n with an additive group operation. It is however
not important, in which way this is done. A natural way would be to simply use
the XOR operation on {0, 1}n or the identification {0, 1}n ↔ Z2n and define the
addition of a, b ∈ {0, 1}n by a + b mod 2n. Alternatively, if we have an integer
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w dividing n, that is n = ` · w, we can use the bijection of {0, 1}n and Z`
2w and

define the addition as the word-wise modular addition, that is,

({0, 1}n,+) := (Z2w ,+)× · · · × (Z2w ,+)︸ ︷︷ ︸
` times

. (6)

The latter definition clearly aims very specifically at the SHA-2 design, cf. Sec-
tion 3. However, the particular choice of the group law has no influence on our
attack.

A well known construction to turn a block cipher into a compression function
is the Davies-Meyer construction. The compression function call to produce the
i-th chaining value xi from the i-th message block and the previous chaining
value xi−1 has the form:

xi = E(mi, xi−1) + xi−1 (7)

When attacking block-cipher-based hash functions, the key is not a secret param-
eter so for the sake of readability, we will slightly restate the compression function
computation (7) where we consider an input variable y = (k||x) ∈ {0, 1}k+n so
that a call to the block cipher can be written as E(y). Then, the Davis-Meyer
compression function looks like:

f(y) = E(y) + τn(y), (8)

where τn(y) represents the n least significant bits of y.
In an analogous manner, we can also write down the compression functions for

the Matyas-Meyer-Oseas and the Miyaguchi-Preneel mode which are all covered
by the following proposition.

Proposition 1 For any block-cipher-based compression function which can be
written in the form

f(y) = E(y) + L(y), (9)

where L is a linear function with respect to +, an i-th-order differential colli-
sion for the block cipher transfers to an i-th-order collision for the compression
function for i ≥ 2.

For the proof of Proposition 1, we will need following property of ∆(a1,...,ai)f(y):

Proposition 2 (Lai [14]) If deg(f) denotes the non-linear degree of a multi-
variate polynomial function f , then

deg(∆(a)f(y)) ≤ deg(f(y))− 1 . (10)

Proof (of Proposition 1). Let ∆(a1,...,ai)E(y) = 0 be an i-th-order differential
collision for E(y). Both the higher-order differential and the mode of opera-
tion for the compression function are defined with respect to the same additive
operation on {0, 1}n. Thus, from (9) we get

∆(a1,...,ai)(E(y) + L(y)) = ∆(a1,...,ai)E(y) +∆(a1,...,ai)L(y),
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so we see that all the terms vanish because the linear function L(y) has degree
one and so for i ≥ 2 we end up with an i-th-order differential collision for the
compression function because of Proposition 2. �

2.2 Second-Order Differential Collision for the Block-Cipher-Based
Compression Functions

The main idea of the attack is now to use two independent high probability
differential characteristics – one in forward and one in backward direction – to
construct a second-order differential collision for the block cipher E and hence
due to Proposition 1 for the compression function.

Therefore, the underlying block cipher E is split into two subparts, E =
E1 ◦ E0. Furthermore, assume we are given two first-order differentials for the
two subparts, where one holds in the forward direction and one in the back-
ward direction and we assume that both have high probability. This part of the
strategy has been already applied in other cryptanalytic attacks, we refer to
Section 2.3 for related work. We also want to stress, that due to our definition
above, the following differentials are actually related-key differentials. We have

E−1
0 (y + β)− E−1

0 (y) = α (11)

and
E1(y + γ)− E1(y) = δ (12)

where the differential in E−1
0 holds with probability p0 and in E1 holds with

probability p1. Using these two first-order differentials, we can now construct a
second-order differential collision for the block cipher E. This can be summarized
as follows (see also Figure 1).

1. Choose a random value for X and compute X∗ = X + β, Y = X + γ, and
Y ∗ = X∗ + γ.

2. Compute backward from X,X∗, Y, Y ∗ using E−1
0 to obtain P, P ∗, Q,Q∗.

3. Compute forward from X,X∗, Y, Y ∗ using E1 to obtain C,C∗, D,D∗.
4. Check if P ∗ − P = Q∗ −Q and D − C = D∗ − C∗ is fulfilled.

Due to (11) and (12),

P ∗ − P = Q∗ −Q = α, resp. D − C = D∗ − C∗ = δ, (13)

will hold with probability at least p20 in the backward direction, resp. p21 in
the forward direction. Hence, assuming that the differentials are independent
the attack succeeds with a probability of p20 · p21. It has to be noted that this
independence assumption is quite strong, cf. [22]. However, if this assumption
holds, the expected number of solutions to (13) is 1, if we repeat the attack
about 1/(p20 · p21) times. As mentioned before, in our case, there is no secret key
involved, so message modification techniques (cf. [30]) can be used to improve
this complexity.
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E−1
0

Q Q∗

γ

α

β
γ

α

β

Fig. 1. Schematic view of the attack.

The crucial point is now that such a solution constitutes a second-order
differential collision for the block cipher E. We can restate (13) as

Q∗ −Q− P ∗ + P = 0 (14)

E(Q∗)− E(P ∗)− E(Q) + E(P ) = 0 (15)

If we set α := a1 and the difference Q− P := a2 we can rewrite (15) as

E(P + a1 + a2)− E(P + a1)− E(P + a2) + E(P ) = 0, (16)

that is, we have found a second-order differential collision for the block cipher
E. Because of Proposition 1 the same statement is true for the compression
function.

2.3 Related Work

The attack presented in this paper stands in relation to previous results in the
field of block cipher and hash function cryptanalysis. Figure 1 suggests that it
stands between the boomerang attack and the inside-out attack which were both
introduced by Wagner in [28] and also the rectangle attack by Biham et al. [4].
For the related-key setting, we refer to [5] (among others).

A previous application of the boomerang attack to block-cipher-based hash
functions is due to Joux and Peyrin [12], who used the boomerang attack as
a neutral bits tool. Another similar attack strategy for hash functions is the
rebound attack introduced in [20], which was successfully applied to several SHA-3
candidates [17,21] and the ISO/IEC standard Whirlpool [15]. Furthermore, the
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second-order differential related-key collisions for the block cipher used in Sec-
tion 2.2 are called differential q-multi-collisions introduced by Biryukov et al.
in [6] with q = 2.

3 Application to SHA-256

In this section, we will show how to construct a second-order differential colli-
sion for SHA-256 reduced to 46 (out of 64) steps following the attack strategy
described in the previous section. Since the complexity of the attack is quite
low, only 246 compression function evaluations, we implemented the attack. An
example for a second-order differential collision for SHA-256 reduced to 46 steps
is shown in Table 1.

3.1 Previous Results on SHA-256

In the light of the break-through results of Wang et al. on the hash functions
MD5 and SHA-1, the analysis of SHA-256 is of great interest. In the last few
years several cryptanalytic results have been published for SHA-256. In this
section, we briefly discuss existing work.

The security of SHA-256 against preimage attacks was first studied by Isobe
and Shibutani in [11]. They presented a preimage attack on 24 steps. Later this
was improved by Aoki et al. to 43 steps in [1]. Both attacks are only slightly
faster than the generic attack, which has a complexity of about 2256. In [18],
Mendel et al. studied the security of SHA-256 with respect to collision attacks.
They presented the collision attack on SHA-256 reduced to 19 steps. After that
these results have been improved by several researchers. In particular, Nikolic
and Biryukov improved in [25] the collision techniques, leading to a collision
attack for 23 steps of SHA-256. The best collision attacks so far are extensions of
[25]. Indesteege et al. [10] and Sanadhya and Sarkar[26], both presented collision
attacks for 24 steps. We want to note that in contrast to the preimage attacks all
these attacks are of practical complexity. Furthermore, Indesteege et al. showed
non-random properties for SHA-2 for up to 31 steps. At the rump session of
Eurocrypt 2008, Yu and Wang announced that they had shown non-randomness
for SHA-256 reduced to 39 steps [31]. In the same presentation they also provided
a practical example for 33 steps. However, no details have been published to date.
We are not aware of any attack on SHA-256 with practical complexity for more
than 33 steps.

3.2 Description of SHA-256

SHA-256 is an iterated hash function that processes 512-bit input message blocks
and produces a 256-bit hash value. In the following, we briefly describe the
hash function. It basically consists of two parts: the message expansion and the
state update transformation. A detailed description of the hash function is given
in [23].
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Message Expansion. The message expansion of SHA-256 splits the 512-bit
message block into 16 words Mi, i = 0, . . . , 15, and expands them into 64 ex-
panded message words Wi as follows:

Wi =

{
Mi 0 ≤ i < 16
σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 16 ≤ i < 64

. (17)

The functions σ0(X) and σ1(X) are given by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X � 3)
σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X � 10)

(18)

State Update Transformation. The state update transformation starts from
a (fixed) initial value IV of eight 32-bit words and updates them in 64 steps. In
each step one 32-bit word Wi is used to update the state variables Ai, Bi, . . . ,Hi.
One step of SHA-256 is given in Figure 2.

Ai+1

Ai

Bi+1

Bi

Ci+1

Ci

Di+1

Di

Ei+1

Ei

Fi+1

Fi

Gi+1

Gi

Hi+1

Hi

Σ1

f1

Ki

Wi

Σ0

f0

Fig. 2. The step function of SHA-256.

For the definition of the step constants Ki we refer to [23]. The bitwise
Boolean functions f1 and f0 used in each step are defined as follows:

f0(X,Y, Z) = X ∧ Y ⊕ Y ∧ Z ⊕X ∧ Z
f1(X,Y, Z) = X ∧ Y ⊕ ¬X ∧ Z (19)

The linear functions Σ0 and Σ1 are defined as follows:

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22)
Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25)

(20)

After the last step of the state update transformation, the initial values and
the output values of the last step are combined in the feed-forward (Davies-
Meyer construction). The result is the final hash value or the initial value for
the next message block.
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3.3 Differential Characteristics

In this section, we present the differential characteristics used to construct a
second-order differential collision for SHA-256 reduced to 46 out of 64 steps.
Finding the differential characteristics for both backward and forward direction
is the most important and difficult part of the attack. Not only the differential
characteristics need to be independent, but also they need to have high proba-
bility in order to result in a low attack complexity. As noted before, in general,
the assumption on independent characteristics is quite strong, cf. [22].

A common approach to construct differential characteristics, which have a
high probability, is to use a linearized approximation of the attacked hash func-
tion. Finding a differential characteristic in the linearized approximation is not
difficult, since it depends only on the differences and not on the actual values. In
the case of SHA-256 we approximate all modular additions by the xor operation
and the Boolean functions f0 and f1 by the 0-function. Using this approxima-
tion we found suitable differential characteristics for SHA-256. Note that similar
characteristics were used to construct a related-key rectangle distinguisher for
34 steps of the SHACAL-2 block cipher [16].

Table 2. Differential characteristic for steps 1-21 using signed-bit-differences.

i chaining value message prob

0

B: +3

2−10E: +10 -24 -29

H: -12 -17 -23

1
C: +3

2−4

F: +10 -24 -29

2
D: +3

2−4

G: +10 -24 -29

3
E: +3

2−7

H: +10 -24 -29

4 F: +3 2−1

5 G: +3 2−1

6 H: +3 -3 2−1

7

...
...

...
...

21

b
a
ck

w
a
rd

In Table 2 and Table 3 the differential characteristic for both forward and
backward direction are shown. Furthermore, the probabilities for each step of
the differential characteristics are given. Note that we always assume that the
differential characteristic in the message expansion will hold with probability 1.
To describe the differential characteristic we use signed-bit differences introduced
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by Wang et al. in the cryptanalysis of MD5 [30]. The advantage of using signed-
bit differences is that there exists a unique mapping to both xor and modular
differences. This turned out to be very useful in the attack.

Table 3. Differential characteristic for steps 21-46 using signed-bit-differences.
Note that conditions imposed by the characteristic in steps 21-29 are fulfilled in
a deterministic way using message modification techniques.

i chaining value message prob

21

B: +6 +9 +18 +20 +25 +29

-31 2−23

C: +31

E: -9 -13 -19

F: -18 -29

G: -31

H: +2 -3 +7 +8 +13 -16 -20 +26 +30

22

C: +6 +9 +18 +20 +25 +29

2−12
D: +31

F: -9 -13 -19

G: -18 -29

H: -31

23

A: -31

2−10D: +6 +9 +18 +20 +25 +29

G: -9 -13 -19

H: -18 -29

24

B: -31

2−7E: +6 +20 +25

H: -9 -13 -19

25
C: -31

2−4

F: +6 +20 +25

26
D: -31

2−4

G: +6 +20 +25

27
E: -31

2−4

H: +6 +20 +25

28 F: -31 2−1

29 G: -31 2−1

30 H: -31 +31 1

31 1

...
...

...
...

44 1

45 -13 +24 +28 2−6

46
A: -13 +24 +28

E: -13 +24 +28

fo
rw

a
rd

m
es

sa
g
e

m
o
d
ifi

ca
ti

o
n
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3.4 Complexity of the Attack

Using the differential characteristics given in the previous section, we can con-
struct a second-order differential collision for SHA-256 reduced to 46 out of 64
steps. The differential characteristic used in backward direction holds with prob-
ability 2−28 and the differential characteristic used in forward direction holds
with probability 2−72. Hence, assuming that the two differential characteristics
are independent and using the most naive method, i.e. random trials, to fulfill
all the conditions imposed by the differential characteristics would result in an
attack complexity of 22·(72+28) = 2200. This is too high for an attack on reduced
SHA-256, since the complexity of the generic attack is 285 (see (5)). However, the
complexity of the attack can be significantly improved by using message modi-
fication techniques. Furthermore, some conditions at the end of the differential
characteristics can be ignored which also improves the attack complexity.

Ignoring conditions at the end. As was already observed by Wang et al.
in the cryptanalysis of SHA-1, conditions resulting from the modular addition
in the last steps of the differential characteristic can be ignored [29]. Hence, in
the case of the attack on SHA-256, we can ignore 6 conditions in step 46 in
the characteristic used in forward direction and 3 conditions in step 1 in the
characteristic used in backward direction. This improves the complexity of the
attack by a factor of 22·(3+6) = 218 resulting in a complexity of 2182.

Impact of additional less probable characteristics. Even if all message
conditions for the two characteristic are already in place, there exist a num-
ber of differential characteristics which hold with the same or a slightly lower
probability. If also these differential characteristics are allowed, the complexity
of the attack can be improved. This has been systematically studied for SHA-1
in [19]. We achieve a significant speedup in the attack on SHA-256 by allowing
these additional characteristics. For instance by changing the signs of the differ-
ences in chaining variable H0, we get 23 additional differential characteristics for
the backward direction which all hold with the same probability as the original
differential characteristic given in Table 2. Similarly, we also get 23 additional
differential characteristic by changing the signs of the differences in chaining
variable H3. This already improves the complexity of the attack by a factor of
26. Furthermore, if we do not block the input differences of f1 and f0 in step 1,
we get 24 additional characteristics which again holds with the same probability.
Thus, by allowing additional differential characteristics the complexity of the
attack can be improved by a factor of 210, resulting in an attack complexity
of 2172. We want to stress, that in practice there exists many more additional
differential characteristics that can be used and hence the attack complexity is
much lower in practice.

Message modification. As already indicated in Section 2 message modification
techniques can be used to significantly improve the complexity of the attack.
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The notion of message modification has been introduced by Wang et al. in the
cryptanalysis of MD5 and other hash functions [30]. The main idea is to choose
the message words and internal chaining variables in an attack on the hash
function to fulfill the conditions imposed by the differential characteristic in a
deterministic way. Luckily, by using message modification techniques, we can
fulfill all conditions imposed by the differential characteristic in steps 21-29 by
choosing the expanded message words W21, . . . ,W29 accordingly. This improves
the complexity of the attack by a factor of 22·66 = 2132 resulting in an attack
complexity of 240.

Additional costs coming from the message expansion. So far we assumed
that the differential characteristic in the message expansion of SHA-256 will hold
with probability 1. However, since the message expansion of SHA-256 is not lin-
ear, this is not the case in practice. Indeed most of the conditions that have
to be fulfilled to guaranty that the characteristic holds in the message expan-
sion can be fulfilled by choosing the expanded message words and differences
in steps 21-29 accordingly. Only the conditions for step 5 and step 6 imposed
by the differential characteristic used in backward direction cannot be fulfilled
deterministically (see Table 2). In step 6 we need that:

W ∗
6 −W6 = -3 (21)

Furthermore, to ensure that there will be no difference in W5 we need that:

W ∗
21 − σ0(W ∗

6 )− (W21 − σ0(W6)) = 0 (22)

Since (21) will hold with a probability of 2−1 and (22) will hold with probability
2−2, this adds an additional factor of 22·3 = 26 to the attack complexity. Hence,
the final complexity of the attack is 246.

Implementation. Even though the complexity of the attack was estimated to
be about 246, we expected that the complexity will be lower in practice due
to the impact of additional differential characteristics. This was also confirmed
by our implementation. In Table 1, an example of a second-order differential
collision for 46 steps of SHA-256 is shown.

4 Future Work

4.1 Extending the Attack to More Steps

The attack on 46 steps of SHA-256 can be improved in several ways. First, since
the generic complexity to construct a second-order differential collision is 285,
one could extend the attack to more steps by adding steps at the beginning. In
other words, the differential characteristic given in Table 2 can be extended by
1 (maybe 2) steps. The result is a theoretical attack for 47 (maybe 48) steps.
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Another possibility is to add steps at the end. However, since the backward
diffusion is worse than forward diffusion in SHA-256, this does not lead to better
results. Second, probably the more interesting approach is to extend the attack
to more steps by adding steps in the middle. This can be done by extending
the differential characteristic given in Table 3. The advantage of adding steps
in the middle instead of adding steps at the beginning or end is that in the
current attack only 9 expanded message words are used for message modification
(steps 21-29) and hence several expanded message words are left which can
still be used for message modification. In other words, by using these expanded
message words for message modification, one could extend the attack to more
steps by adding steps in the middle without increasing the complexity of the
attack. Unfortunately, by adding steps in the middle we could not find differential
characteristics for both backward and forward direction anymore which are still
independent. However, by using more sophisticated search techniques, like the
one invented by De Cannière and Rechberger for SHA-1 [8], one might find such
characteristics again. This is part of future work.

4.2 Application to SHA-512

The structure of SHA-512 is very similar to SHA-256. Only the sizes of all
words are increased from 32 to 64 bits and the linear functions Σ0, Σ1, σ0, σ1 are
redefined. Also the number of steps is increased from 64 to 80. Since the design
of SHA-512 is very similar to SHA-256 the attack presented in this section for
reduced SHA-256 extends in a straight forward way to SHA-512. Furthermore,
due to the larger hash size of SHA-512 compared to SHA-256 also the complexity
of the generic attack increases, i.e. 2170 (because of (5)). Hence, the attack can
be extended to more steps than it was the case for SHA-256 by adding steps
at the beginning. Also, due to the larger word size and hence worse diffusion
within the words adding steps in the middle becomes easier. Thus, we expect
that several steps can be added in the middle as well. This is work in progress.

5 Conclusion

In this work, we have shown an application of higher-order differential crypt-
analysis on block-cipher-based hash functions. Therefore, we adapted several
techniques known from block cipher cryptanalysis to hash functions. Applying
these techniques to SHA-256 led to an attack for 46 (out of 64) steps of the
compression function with practical complexity. The best known attack so far
with practical complexity was for 33 steps. Since the structure of SHA-512 and
SHA-256 is very similar, the attack transfers to SHA-512 in a straight forward
way. Furthermore, due to the larger word size and output size, attacks for more
than 46 steps may be expected. In our opinion, the attack seems applicable to a
wider range of hash function constructions. In particular, several of the SHA-3
candidates seem to be a natural target for this attack.
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