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Abstract

Keccak is one of the five hash functions selected for the final round of the
SHA-3 competition and its inner primitive is a permutation called Keccak-
f . In this paper, we find that for the inverse of the only one nonlinear
transformation of Keccak-f , the algebraic degrees of any output coordinate
and of the product of any two output coordinates are both 3 and also 2
less than its size 5. Combining the observation with a proposition from an
upper bound on the degree of iterated permutations, we improve the zero-
sum distinguisher of full 24 rounds Keccak-f permutation by lowering the
size of the zero-sum partition from 21590 to 21579.

Keywords: hash functions, higher order differentials, algebraic degree,
zero-sum, SHA-3.

1. Introduction

Zero-sum distinguisher, introduced by Aumasson and Meier in [1], is a
method to generate zero-sum structures for iterated permutation, which com-
bines higher order differentials with inside-out technique and is mainly de-
cided by the algebraic degree of the permutation. Zero-sum distinguisher is
deterministic and valid although it generate zero-sum structures with a small
advantage relatively to generic method[3]. Zero-sum distinguisher can also
be used to create partitions of inputs in many different zero-sum structures
for the permutation[3][5].

Keccak [2] is a family of cryptographic sponge functions which is one of
the five hash functions selected for the third(and final) round of the SHA-
3 competition and its core component is a permutation named Keccak-f ,

Preprint submitted to Elsevier January 12, 2011



which is composed of several iterations of 5 round transformations. In 2009,
a zero-sum distinguisher for the 16 rounds Keccak-f permutation is given
in [1]. Since then, the zero-sum distinguishers for more rounds Keccak-
f permutation are obtained [4][5][6] and the known lowest size of zero-sum
partition of full 24 rounds Keccak-f is 21590.

In this paper, we study the property of the inverse of the nonlinear trans-
formation of Keccak-f and observe that the algebraic degree of the product
of any two output coordinates of the inverse of the nonlinear transformation
is 2 less than its size, which helps us lower the size of zero-sum partition of
full 24 rounds Keccak-f from 21590 to 21579.

The rest of the paper is organized as follows. Section 2 simply shows the
description of the permutation Keccak-f . In Section 3, zero-sum distin-
guishers of iterated permutation are recalled. An improved zero-sum distin-
guisher for full 24 rounds Keccak-f permutation is presented in Section 4
and Section 5 concludes our results.

2. Description of the permutation Keccak-f

The size of permutation Keccak-f [2] is 1600 and the state can be rep-
resented by a 3-dimensional binary matrix of size 5 × 5 × 64. The 5 round
transformations are called θ, ρ, π, χ and ι. Only the transformation χ
is nonlinear and its degree is 2 while the degree of its inverse is 3. The
Boolean components of χ are listed in table 1 and more details of permuta-
tion Keccak-f are available in [2].

Table 1. Boolean components of χ
Output Corresponding Boolean function
χ0 x0 + x2 + x1x2
χ1 x1 + x3 + x2x3
χ2 x2 + x4 + x3x4
χ3 x0 + x3 + x0x4
χ4 x1 + x4 + x0x1

3. Zero-sum distinguishers for iterated permutation

Firstly, we introduce the notions of higher order derivatives relation to
zero-sum distinguisher.
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3.1. Higher order derivatives

Higher order derivatives was introduced into cryptography by Lai in
1994[9] and their properties are investigated in [9][8].

Definition 1: Let f(x) be a Boolean function from Fn
2 to F2, the deriva-

tive of f at point a ∈ Fn
2 is defined as

∆af(x) = f(x⊕ a)⊕ f(x).

The i-th(i > 1) derivative of the f at points {a1, a2, ..., ai} is defined as

∆(i)
a1,...,ai

f(x) = ∆ai(∆
(i−1)
a1,...,ai−1

),

where ∆
(i−1)
a1,...,ai−1 is the (i − 1)-th derivative of f at points {a1, a2, ..., ai−1}.

The 0-th derivative of f is defined to be f(x) itself.
Higher order derivatives should be computed at points that are linearly

independent, otherwise the derivative will trivially be zero. Note that the
degree of the derivative of a function is at least 1 less than the degree of the
function. This implies that the (d + 1)-th derivative of n-variable Boolean
function of degree d is zero, which is used in many cryptanalysis methods,
such as zero-sum distinguisher.

3.2. Zero-sum properties

Note that the permutation used in a hash function does not depend on
any secret parameter, the property of the permutation can be exploited from
the middle. The zero-sum property introduced by Aumasson and Meier
in [1] is based on higher order differentials and inside-out technique. Its
main idea is taking higher order derivatives at initial states inverted from
an intermediate internal state subspace, which is different from traditionally
higher order differential distinguisher taking derivatives directly at initial
state subspace. So zero-sum distinguisher lowers the order of higher order
derivatives nearly a half with the cost of some inverted computations.

Here we give the definitions of zero-sum and zero-sum partition and more
details are revised to [1][6].

Definition 2: Let F be a function from Fn
2 into Fm

2 . A zero-sum for F
of size K is a subset {x1, ..., xK} ⊂ Fn

2 of elements which sum to zero and for
which the corresponding images by F also sum to zero, i.e.,

K∑
i=1

xi =
K∑
i=1

F (xi) = 0.
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Definition 3: Let P be a permutation from Fn
2 into Fn

2 . A zero-sum
partition for P of size K = 2k is a collection of 2n−k disjoint zero-sums
Xi = {xi,1, ..., xi,2k} ⊂ Fn

2 , i.e.,

2n−k⋃
i=1

Xi = Fn
2 and

2k∑
j=1

xi,j =
2k∑
j=1

P (xi,j) = 0,∀1 ≤ i ≤ 2n−k.

4. Improved Zero-Sum Distinguisher for Keccak-f

4.1. An Observation of permutation Keccak-f

We respectively give the Boolean components of χ−1 and the product of
any two output coordinates of χ−1 in table 2 and 3.

Table 2. Boolean components of χ−1

Output Corresponding Boolean function
χ−1
0 0 + 2 + 4 + 12 + 14 + 34 + 134
χ−1
1 0 + 1 + 3 + 02 + 04 + 23 + 024
χ−1
2 1 + 2 + 4 + 01 + 13 + 34 + 013
χ−1
3 0 + 2 + 3 + 04 + 12 + 24 + 124
χ−1
4 1 + 3 + 4 + 01 + 03 + 23 + 023

where 12 · · ·n means that x1x2 · · ·xn.

Table 3. Product of any two output coordinates of χ−1

Product Corresponding Boolean function
χ−1
0 χ−1

1 0 + 01 + 02 + 03 + 04 + 023 + 024
χ−1
0 χ−1

2 2 + 4 + 02 + 04 + 12 + 14 + 34 + 034 + 134
χ−1
0 χ−1

3 0 + 2 + 03 + 04 + 12 + 23 + 24 + 34 + 123 + 124
χ−1
0 χ−1

4 4 + 03 + 04 + 14 + 24 + 124 + 134
χ−1
1 χ−1

2 1 + 01 + 12 + 13 + 14 + 013 + 134
χ−1
1 χ−1

3 0 + 3 + 01 + 02 + 04 + 13 + 23 + 014 + 024
χ−1
1 χ−1

4 1 + 3 + 01 + 03 + 14 + 23 + 34 + 023 + 234
χ−1
2 χ−1

3 2 + 02 + 12 + 23 + 24 + 024 + 124
χ−1
2 χ−1

4 1 + 4 + 01 + 12 + 13 + 24 + 34 + 012 + 013 + 034 + 234
χ−1
3 χ−1

4 3 + 03 + 13 + 23 + 34 + 013 + 023
where 12 · · ·n means that x1x2 · · ·xn.
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From the table 3, An interesting observation of the inverse of the nonlinear
layer of permutation Keccak-f is obtained.

Observation: For the inverse of the only one nonlinear transformation
of Keccak-f , the algebraic degrees of any output coordinate and of the
product of any two output coordinates are both 3 and also 2 less than its
size 5.

4.2. Discussion of the upper bound on the degree of iterated permutations

High algebraic degree is an important design principle for cryptographic
algorithm. It is difficult to determine the algebraic degree when the round
of the algorithm is too big. Estimating the upper bound of the algebraic
degree is a relatively feasible way. In [7], Canteaut and Videau gave an
upper bound of the degree of composition of nonlinear functions and used
it to estimate algebraic degree of the whole algorithm. In the rump session
of Crypto 2010, Boura, Canteaut and Cannière proposed an improved upper
bound for iterated permutation with a nonlinear layer composed of parallel
applications of small balanced Sboxes[6]. Here we discuss the latter upper
bound and give a proposition with visualized bound in some case.

Theorem 1[6]: Let F be a function from Fn
2 into Fn

2 corresponding to
the concatenation of m smaller balanced Sboxes, S1, ..., Sm, defined over Fn0

2 .
Let δk be the maximal degree of the product of any k coordinates of anyone
of these smaller Sboxes. Then, for any function G from Fn

2 into Fl
2, we have

deg(G ◦ F ) ≤ n− n− deg(G)

γ
,

where

γ = max1≤i≤n0−1
n0 − i
n0 − δi

.

Most notably, we have

deg(G ◦ F ) ≤ n− n− deg(G)

n0 − 1
.

Moreover, if n0 ≥ 3 and all Sboxes have degree at most n0 − 2, we have

deg(G ◦ F ) ≤ n− n− deg(G)

n0 − 2
.

Lemma 1: Let F be a function from Fn
2 into Fn

2 corresponding to the
concatenation of m smaller Sboxes, S1, ..., Sm, defined over Fn0

2 . Let δi be
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the maximal degree of the product of any i coordinates of anyone of these
Sboxes. If n0 ≥ 2k − 1 (k ≥ 1) and δi ≤ n0 − 1 for any i from 1 to n0 − 1
and δi ≤ n0 − 2 for any i from 1 to k − 1 when k ≥ 2, Then, we have

(n0 − k)(n0 − δi)− (n0 − i) ≥ 0

for any i from 1 to n0 − 1.
Proof: When k = 1, then we have

(n0 − k)(n0 − δi)− (n0 − i) = (n0 − 1)(n0 − δi)− (n0 − i)
≥ (n0 − 1)− (n0 − i)
≥ (n0 − 1)− (n0 − 1) = 0.

When k ≥ 2, then we have

(n0 − k)(n0 − δi)− (n0 − i) ≥ (n0 − k)× 2− (n0 − i)
≥ 2(n0 − k)− (n0 − 1)

≥ n0 − 2k + 1 ≥ 0.

Firstly, from the proof of theorem 1, one can know that the condition
that the Sboxes are balanced in the theorem is to confirm that the inequation
δi ≤ n0 − 1 is satisfied for any i from 1 to n0 − 1, but it is not a necessary
condition for that, so it is not necessary to limit the condition to balanced
Sboxes, i.e., the condition in theorem 1 can be generalized.

Secondly, the parameter γ in the theorem is also used to confirm that the
inequation (n0 − k)(n0 − δi) − (n0 − i) ≥ 0 is satisfied for any i from 1 to
n0−1 and lemma 1 tells us that the positive integer n0−k also does in some
case, so we have the following visualized upper bound.

Proposition 1: Let F be a function from Fn
2 into Fn

2 corresponding to
the concatenation of m smaller Sboxes, S1, ..., Sm, defined over Fn0

2 . Let δi
be the maximal degree of the product of any i coordinates of anyone of these
Sboxes. If n0 ≥ 2k − 1 (k ≥ 1) and δi ≤ n0 − 1 for any i from 1 to n0 − 1
and δi ≤ n0− 2 for any i from 1 to k− 1 when k ≥ 2, Then, for any function
G from Fn

2 into Fl
2, we have

deg(G ◦ F ) ≤ n− n− deg(G)

n0 − k
.

Actually, when the conditions of proposition 1 are satisfied and n0 is an
even number, then the parameter γ can be improved to n0 − k − 1

2
which is

not relation to this paper.
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4.3. Improved zero-sum partition for full round Keccak-f

Let R denote the Keccak-f round permutation. Note that χ is the only
nonlinear transformation of R, Combining observation and proposition 1, we
have

deg(G ◦R) ≤ n− n− deg(G)

3

and

deg(G ◦R−1) ≤ n− n− deg(G)

2
,

where G is any function from F 5
2 into F l

2. Our upper bounds on the degree
of the inverse Keccak-f is less than the bounds in [6] when the rounds is
more than 7 and the comparison is listed in table 4.

Table 4. Comparison of the upper bounds on deg(R−r).
round bound in [6] our bound
1 3 3
2 9 9
3 27 27
4 81 81
5 243 243
6 729 729
7 1309 1309
8 1503 1454
9 1567 1532
10 1589 1566
11 1596 1583
12 1598 1591
13 1599 1595
14 1597
15 1598
16 1599

Combing the same upper bounds on deg(Rr) with that in [6] and our new
lower upper bounds on deg(R−r), we have a zero-sum partition of size 21579

for the full Keccak-f permutation less than the original size 21590. Indeed,
one can consider the intermediate states after the 3 linear layers θ, ρ and π
in the 11-th round because the upper bound of the backward 10 rounds 1566
and that of forward 13 rounds 1578[6] are both at least 1 less than 1579.
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5. Conclusion and discussion

In this paper, we gave a lower size zero-sum partition of full 24 rounds
Keccak-f permutation which is based on an interesting observation on the
inverse of the nonlinear transformation of the permutation. One can verify
that some of the products of three output coordinates also have degree only
3, these properties may be used to more practical cryptanalysis on Keccak
in the future.
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