
KISS: A Bit Too Simple

Greg Rose

Qualcomm Incoroporated

Abstract. KISS (‘Keep it Simple Stupid’) is an efficient pseudo-random
number generator originally specified by G. Marsaglia and A. Zaman
in 1993. G. Marsaglia in 1998 posted a C version to various USENET
newsgroups, including sci.crypt. Marsaglia himself has never claimed
cryptographic security for the KISS generator, but others have made
the intellectual leap and claimed that it is of cryptographic quality. In
this paper we show a number of reasons why the generator does not
meet some of the KISS authors’ claims, why it is not suitable for use as
a stream cipher, and that it is not cryptographically secure. Our best
attack requires about 70 words of generated output and a few hours
of computation to recover the initial state. In early 2011, G. Marsaglia
posted a new version of KISS, which falls to a simple divide-and-conquer
attack.

1 Introduction

KISS (‘Keep it Simple Stupid’) is an efficient pseudo-random number generator
specified by G. Marsaglia and A. Zaman in 1993[1]. G. Marsaglia in 1998 posted
a C version to various USENET newsgroups, including sci.crypt, culminating
in a final version[3]. While Marsaglia himself has never claimed cryptographic
security for the KISS generator, he does hint about it, and others have made the
intellectual leap and claimed that it is of cryptographic quality. In this paper we
show a number of reasons why the generator does not meet some of the KISS
authors’ claims, why it is not suitable for use as a stream cipher, and that it
is not cryptographically secure as a pseudo-random number generator. Indeed,
this paper is written as a cautionary tale; stream ciphers and cryptographically
secure random number generators are hard to get right, even for some of the
world’s preeminent experts on the subject of randomness. We present a number
of standard attacks that damage KISS to some extent, and our best attack
requires only 70 words of generated output and on average 229.1 operations of a
simple algorithm to recover the initial state. We attempt to present the reasoning
that leads to the attacks.

Since 1998 Marsaglia has posted a number of variants of KISS (without ver-
sion numbers), including [4] in January 2011. In the sequel, we refer to this as
KISS11 for disambiguation. These variants have similar design elements but ever
increasing state sizes, making them impractical for most cryptographic uses any-
way. We present a straightforward divide-and-conquer attack on this (currently)
latest version of KISS, requiring 241 operations equivalent to key initializations.



Marsaglia’s generators are primarily intended for scientific applications such
as Monte Carlo simulations. There are many other generators in use, often with
(ridiculously) long periods, for example the Mersenne Twister[6], and later ver-
sions of KISS. We choose to examine the 1999 version of KISS rather than some
of these later proposals, because:

– It is proposed by well known and respected authors
– It has a reasonably long but not excessive (claimed) period
– It has a compact state
– The output ‘looks random’ immediately after initialization.

Other proposals often involve large state variables, often calling on simpler
RNGs to initialize these large states. For cryptographic purposes, the lack of a
well-specified initialization or keying phase, the large state, and the time required
for initialization are all undesirable. It is our opinion that most of these other
proposals are also cryptographically weak, but that doesn’t matter because they
are also impractical in the context of a stream cipher. In any case, one recent
proposal is examined below.

In section 2 we describe KISS and the components that make it up. Section 4
discusses some simple structural attacks. Mathematical properties of the compo-
nents are described in section 3, and in section 5 these properties are combined
to form a cryptanalytic key recovery attack in the known-keystream model. A
variation of the attack would even apply to unknown plaintext, if the input lan-
guage is sufficiently biased and with a significant slowdown. Finally section 6
examines the 2011 version of KISS (KISS11) and presents a simple attack.

Quotations in this document are from Marsaglia’s USENET posting[3] unless
mentioned otherwise.

2 Description of KISS

KISS consists of a combination of four sub-generators each with 32 bits of state,
of three kinds:

– one linear congruential generator modulo 232

– one general binary linear generator over the vector space GF(2)32

– two multiply-with-carry generators modulo 216, with different parameters

The four generators are updated independently, and their states are combined
to form a stream of 32-bit output words. The four state variables are treated
as unsigned 32-bit words. Figure 1 shows C code from [3], while Figure 2 shows
the structure pictorially. We refer to the state registers using the names of the
C macros.

The KISS generator, (Keep It Simple Stupid), is

designed to combine the two multiply-with-carry

generators in MWC with the 3-shift register SHR3 and

the congruential generator CONG, using addition and

exclusive-or. Period about 2^123.



#define znew (z=36969*(z&65535)+(z>>16))

#define wnew (w=18000*(w&65535)+(w>>16))

#define MWC ((znew<<16)+wnew )

#define SHR3 (jsr^=(jsr<<17), jsr^=(jsr>>13), jsr^=(jsr<<5))

#define CONG (jcong=69069*jcong+1234567)

#define KISS ((MWC^CONG)+SHR3)

Fig. 1. C code of KISS

w
n
e
w

+
⊕

+

z
n
e
w - M

W
C

- �

?
- -

C
O
N
G

S
H
R
3

K
I
S
S

Fig. 2. Diagram of KISS



Note that only half of the state of znew contributes directly to the output of
KISS. Its placement in the diagram is intended to show this, and is not an error.

3 Properties of Components

The four registers, of three kinds, that make up KISS are independently updated,
then combined using shifts, adds, and one XOR operation. As is often the case,
the registers that use arithmetic operations are combined with XOR, while the
results that are produced bitwise are combined with addition modulo 232.

3.1 Multiply With Carry Registers

Two of the registers, wnew and znew, are Multiply With Carry generators. At
each step, the low-order 16 bits is multiplied with a constant, and the high order
16 bits from the previous step are added. The low order 16 bits are random look-
ing, and with a period determined by the entire construct. The most significant
bits of the register are not very random; in particular the MSB will be almost
always zero. But these most significant bits contribute to the long period. The
low 16 bits of znew are shifted left before being added to the whole register
wnew, presumably to cover up this nonrandomness.

With a multiplier C, this generator calculates xn = Cxn−1 mod 216C − 1.
With the stated constants, the modulus is prime, so the generator is readily
inverted.

The MWC generator concatenates two 16-bit multiply-

with-carry generators, x(n)=36969x(n-1)+carry,

y(n)=18000y(n-1)+carry mod 2^16, has period about

2^60 and seems to pass all tests of randomness. A

favorite stand-alone generator---faster than KISS,

which contains it. [sic]

The word ‘concatenates’ is somewhat misleading, as the high order bits of
wnew contribute to the output, even though Marsaglia appears to consider it
to be a 16-bit generator, but this does not affect either the period of the MWC
construction, or our later cryptanalysis.

For cryptographic purposes, initialization of these registers is somewhat im-
portant. It is easy to see that the value zero will repeat forever. Large values
will, at the first update, become smaller values that collide with the results of
updating some smaller value, and the generators will then follow the same path
as if they were initialized with those smaller values. For each register, there are
two distinct cycles of equal prime period. (We were not aware of any analytical
result, but the small state space allowed us to enumerate the cycles in a few
minutes of CPU time.) There is also another fixed point (besides zero) for each
register. Table 3.1 summarizes these details. In the table, a cycle length of ‘n/a’
denotes a value that collides and enters an existing cycle.



Register Constant no. cycles cycle length value

wnew 18,000 2 1 0 and 0x464fffff
2 589,823,999 1 and 31

3,115,319,296 n/a ≥ 0x46500000

znew 36,969 2 1 0 and 0x9068ffff
2 1,211,400,191 1 and 5

1,872,166,912 n/a ≥ 0x90690000
Table 1. Properties of the Multiply-With-Carry registers

The values shown in the table are the least values that occur in the cycle, or
the values that lead into the existing cycles.

For cryptographic purposes there are thus two bad values for each register,
and approximately half of random values enter the same cycles as other values,
which might be seen as nearly equivalent keys: only the first word generated
would be different, but the same thereafter.

Since the periods of the two registers are prime, if the initial values are not
bad, the period of MWC (that is, the combination of the two subgenerators)
will be about 259.3. The period of the least significant 16 bits will only be that
of wnew, which is about 229.1.

Two consecutive 16-bit outputs from either generator suffice to recover the
unknown upper 16 bit carry value, once the generator is in a cycle. It is only
slightly more complicated to go backwards in the cycle. Given the least significant
16 bits of an initial (out of cycle) value, and the next (in cycle) state, it is easy
to recover the most significant 16 bits of the initial value.

3.2 Properties of the Linear Congruential Generator

The linear congruential generator CONG is well studied in the literature. With
the specified parameters it has period 232.

CONG is a congruential generator with the widely used 69069

multiplier: x(n)=69069x(n-1)+1234567. It has period

2^32. The leading half of its 32 bits seem to pass

tests, but bits in the last half are too regular.

Observe that if the value is odd, the next value will be even, and vice versa.
That is, the least significant bit toggles ...010101.... Other bits exhibit patterns
with longer periods, but the attack we describe only needs the least significant
bit.

Observation. For each n < 32, the least significant n bits of CONG form a
smaller Linear Congruential Generator modulo 2n, with recurrence

xi = (69069 mod 2n)xi−1 + (1234567 mod 2n)(modulo 2n)

where mod represents a remainder operation as in C. The behaviour of the least
significant bit is just the simplest application of this observation.



Plumstead[7] gives a method of inferring the state of a linear congruential
generator from information about its most significant bits, which appear more
random, but the above observation implies that information from the least sig-
nificant bits cannot be extended upward; consider the analogy with knowing the
least significant bits of a simple counter.

3.3 The 3-Shift Register Generator

The generator SHR3 is updated using shifts and XOR operations that are effi-
cient. However for analysis purposes this is most easily understood as multipli-
cation modulo 2 of a 32 by 32 bit update matrix with the 32-bit register state.
The system is by definition linear and amenable to standard techniques.

SHR3 is a 3-shift-register generator with period

2^32-1. It uses y(n)=y(n-1)(I+L^17)(I+R^13)(I+L^5),

with the y’s viewed as binary vectors, L the 32x32

binary matrix that shifts a vector left 1, and R its

transpose. SHR3 seems to pass all except those

related to the binary rank test, since 32 successive

values, as binary vectors, must be linearly

independent, while 32 successive truly random 32-bit

integers, viewed as binary vectors, will be linearly

independent only about 29% of the time.

The sequence of values generated by SHR3 is not maximal length. Appendix A
lists the possible cycles. The bit sequence generated by each bit position of the
register is the output of some Linear Feedback Shift Register of degree D ≤ 32.
There are 16 different polynomials, with 64 disjoint cycles, with lengths ranging
from 1 to 306,706,140 (approximately 228.2). The expected cycle length (although
no such cycle exists) is approximately 227.7; more than half of initial values lie
on one of the longest cycles. The values 0 and 0xaea21b8f are self-perpetuating.

McQueen[5] pointed out that later versions of KISS exchange the values 13
and 17 in the formula, and do indeed lead to a single cycle with maximum length.
In particular KISS11, analyzed below, uses the correct version of this generator.

Any sequence of 32 output bits (in particular, we use the least significant
bit of consecutive output words) suffices to recover the initial state of the SHR3
register, via a simple matrix multiplication.

4 Cryptographic Deficiencies and Simple Structural
Attacks

Keying. Since the authors of KISS did not envision the generator being used
for cryptographic purposes, they did not think about issues such as setting up
‘keys’, or reinitializing with nonces. Since the state of KISS is only 128 bits, it
makes sense to simply use a 128-bit key by dividing it into 4 32-bit words, and
defining that words (both key and output) should be treated as Little- or Big-



Endian. None of the components show obvious output relationships with related
keys after a few words of output; if a nonce or initialization vector is to be used,
it could be simply XORed or added to the key, with a few rounds of output
being discarded to allow any similarities to dissipate. We equate key recovery
with recovering the exact initial state.

Time-Memory Tradeoff. Since the keyspace is the same as the state space,
standard time-memory tradeoff attacks could be easily applied. See [8] for an
overview of the past and current application of such attacks. We do not explore
them further here.

Weak keys. If the first output word is ignored, only about 2126 output sequences
can be generated, due to the colliding behaviour of the Multiply-With-Carry
generators. CONG is the only generator for which zero is not a bad value. Any
key in which one of the words initializing another register is zero will effectively
take that register out of the combined generator, leading to a shortened cycle
and possibly exposing the generator to simpler attacks. In particular, the all-zero
key results in the generator being exactly the output from CONG, a simple and
easily recognized linear congruential generator.

Cycle length. The maximum cycle length is about 232+59.3+28.2 = 2119.5. This
contradicts the KISS authors’ claim of ‘about 2123’. We hypothesize that they
expected SHR3 to generate a maximum length sequence, as in the quotation
above. Significantly shorter cycles are possible but correspondingly less likely
to happen. The shortest cycle is 232 (from CONG) occurring with probability
2−93, since there are two minimum-cycle-length values for each of the other three
generators.

Divide and Conquer. KISS updates the four sub-generators independently, and
only combines them for the output. This structure invites attacks where one
or more of the components can somehow be ignored or cancelled out to enable
an attack on the remainder. Indeed the attack below uses this technique to
some extent. Another way to apply divide-and-conquer attacks would be to take
output words from a long keystream, and combine words separated by the period
of one of the subgenerators, in such a way as to cancel it out. For example, if the
output of SHR3 really had period 232−1, words that far apart in the keystream
could be subtracted to remove the effect of that sub-generator. This technique
was used successfully in the cryptanalysis of the SSC2 stream cipher[9].

5 Key Recovery Attack in the Known Keystream Model

Marsaglia, in a different article[2], writes:

"A random number generator is like sex:

When it’s good, its wonderful;

And when it’s bad, it’s still pretty good."



Add to that, in line with my recommendations

on combination generators;

"And if it’s bad, try a twosome or threesome."

It is a common theme in both amateur and professional cryptography to start
with a design, and as defects are discovered, to try to cover them with another
feature or another generator. In the case of KISS, this design is apparent with
the use of simple generators with known flaws to cover each others’ deficiencies.
The job of the cryptanalyst, conversely, is to find ways to expose the flaws and
defeat them in detail. In this section we not only show a key recovery attack
against KISS, but we attempt to reveal the thought process, and experiments
conducted, to arrive at this attack. This paper hopes to teach a little bit of
cryptanalysis technique.

Our goal is to take some amount of known keystream (a standard assumption
for cryptanalysis of stream ciphers) and recover the initial state of the four
registers.

We first began by analyzing the components, to better understand them, as
Marsaglia’s USENET posting was short on details. We did not try to obtain
the original technical report[1], which probably contains more analysis, in favor
of developing our own understanding. CONG was already well understood. The
Multiply With Carry generators wnew and znew were new to us, so we wrote
code to enumerate the cycle structure, and looked at how easy it was to run the
generators backwards.

When it came time to analyze the SHR3 generator, at first we accepted the
implication that it had the maximum possible period of 232 − 1, and wanted to
find the equivalent LFSR, as we were more familiar with cryptanalyzing such
structures. Using the default initial value from the KISS paper, we generated 128
output words, and selected the least significant bits for input to the Berlekamp-
Massey algorithm. As expected, a degree-32 polynomial was the output, which
did not contradict our belief that it might have a maximum length cycle. We
continued on that assumption.

Sorting out the combination of four generators seems already to be difficult,
but one of the generators, znew, only contributes to the upper half of the output
words. Concentrating on the lower half reduces the number of generators to
three. This is already an application of the Divide and Conquer strategy. The
generators are combined with both integer addition and XOR. Either the carries
from the addition must be accomodated, or we could focus on the least significant
bit, in which addition and XOR are equivalent since there is no carry in. This
approach looked promising, as the behaviour of the least significant bits of two
of the generators were easily analyzed.

The least significant bit of wnew did not exhibit any linearity or other non-
random properties we could detect, as was to be expected from Marsaglia’s de-
scription. Further, it depended on the entire 32-bit state of the register. But only
the very first output depended on the full state; the second and all subsequent
outputs were in one of the known cycles. By skipping the first output word, at



least for now, only 1,179,648,000 values (about 230.1) for the state needed to be
considered.

This suggests the first part of the attack. Assume that the cryptanalyst
knows some amount of output keystream words Zi, 0 ≤ i ≤ N for some as yet
undetermined number N . We want to apply some sort of Guess and Determine
attack. In such an attack, we guess a value for some unknown quantity, determine
from the known and guessed values some other values, and then attempt to
verify whether or not the guess was correct, that is, consistent with known
values or properties. If the verification fails, we try another guess, thus eventually
enumerating some subset of the unknown state.

Step 1. Ignore Z0. Ignore all but the least significant bits of Zi. We
will worry about the actual initial state later; for now we try to recover the
state after the first output word. We now have a sequence of N bits of known
keystream.

Step 2. Guess wnew1 (that is, the state of the register wnew immediately
after the first output). We only have to enumerate the values in cycles. From this
guess, generate the stream of least significant bits wi = wnewi&1, 1 ≤ i ≤ N .

Step 3. Guess the LSB of CONG1. As discussed above, the stream of LSBs
is alternating zeros and ones, but we don’t know which it starts with. We need
to test both. Let ci = 010101010 . . .. If this guess doesn’t work out, invert it; in
fact, we can just invert the entire sequence used in steps 4 and 5.

Step 4. Determine the possible LSBs of the SHR3 output. Set si =
Zi ⊕ wi ⊕ ci, 1 ≤ i ≤ N .

Step 5. Verify that si is the output of an LFSR. When we first imple-
mented this step, we used the discovered polynomial 1+x3+x5+x8+x18+x22+
x30 + x32 to check the parity of the corresponding output bits, with N = 100. If
our guesses for the wnew and CONG registers were correct, the sums of the bits
should all be zero, otherwise with overwhelming probability (1 − 2−67) at least
one of the parity equations would be one. This worked fine for the set of initial
values used by default in KISS, but our second trial did not find a solution!
After a bit of thought, the only reason we could think of was that there was not
a single LFSR that described the system. We already had a very simple program
to enumerate cycles in a 32-bit function, so with one minute of editing and three
minutes of computation on an Apple laptop, we were able to find the details in
Appendix A. We could have proceeded with the verification by checking all 16
of the distinct sets of LFSR taps, but instead chose the simpler approach of just
using the Berlekamp-Massey algorithm again. 64 bits of input are necessary to
discover the longest LFSR, and only surprisingly few more bits are needed to
detect if the bit stream is not linear. With high probability, an extra 5 bits will
show that. It is faster to let a small number of false positive results through this
stage and eliminate them later than to run extra bits through the Berlekamp-
Massey algorithm, which has O(n2) behaviour in the number of bits. This turns
out to be the limiting step in the attack, and could perhaps be optimized further.



Step 6. Recover SHR31. A simple matrix multiplication turns the bits
si, 1 ≤ i ≤ 32 into the initial state SHR31. At this point, with high probability,
we know all 32 bits of SHR3.

Step 7. Recover the least 16 bits of CONG1. Given the known output,
and full (assumed correct for now) values for SHR3 and wnew, the least signif-
icant 16 bits of CONG are recovered. At first we assumed that the well known
result [7] would reveal the full initial state, but we had misremembered the re-
sult. At this point we know the full state of two of the registers, half the state
of CONG, and nothing about znew.

Step 8. Guess the high 16 bits of CONG1. We have to apply the Guess and
Determine attack again, guessing one of the registers and determining the other.
It is obviously most efficient to guess the remaining contents of the register that
is partially known, rather than the whole 32 bits of the other unknown register.
We then generate 3 output words from the three known or guessed registers.

Step 9. Determine the least 16 bits of znew. From the known keystream
and the other registers, we recover the low 16 bits of znewi, 1 ≤ i ≤ 3.

Step 10. Verify consistency of the guess of CONG1. From the low 16
bits of the first two values of znew, we derive the full state of znew1. From this
we generate znew3 and verify that the least 16 bits agree with those generated
in Step 9. If not, we continue enumerating the high order bits of CONG.

Step 11. Verify the entire state. We now have a candidate for the state
of all four registers after the first output. We generate 8 words of output from
KISS with that state, and check that they agree with Zi, 1 ≤ i ≤ 8. Checking 8
values is almost certainly more than necessary.

Step 12. Recover the true initial state. Remember that we skipped the
first output Z0, because the multiply-with-carry registers might not have started
with values in their corresponding cycles. For each of the registers there are two
(or for wnew sometimes three) possible initial states. We simply need to check
which of the (up to 6) possibilities are consistent with the known output Z0.

The algorithm above is completely dominated by the time taken in Step 5;
at most a handful of candidates get through to steps 7-12. This step runs the
Berlekamp-Massey algorithm on 69 bits; in the worst possible case it will be run
on about 231.1 inputs (the possible cycles of the wnew register, times two for
the LSB of the CONG register). It takes on average about 2 hours on a single
CPU of an Apple Macbook Pro (2.66 GHz Intel Core i7), with negligible memory
usage. We did not bother optimizing or parallelizing the code. By the nature of
the Guess and Determine steps, there are no obstacles to parallelization. Possible
optimizations of this step include performing the parity checks instead; we think
this would result in a significant speed increase but we didn’t actually try it.

We note in passing that Step 5 could be done by applying a Fast Correlation
Attack to unknown plaintext, if the least significant bits of the plaintext language
are sufficiently biased and enough output is available. Of course this would take
significantly longer to run the attack.



6 KISS11

In January 2011, just after we completed the above analysis, Marsaglia posted
an article to sci.crypt and other Usenet newsgroups with a new version of
KISS, which we refer to as KISS11. In this article he presented two generators,
one based on 32-bit integer variables, and the other on 64-bit integer variables.
Here we examine only the 32-bit version, but the attack applies equally to the
larger version with correspondingly larger complexity.

static unsigned long Q[4194304],carry=0;

unsigned long int i,x,cng=123456789,xs=362436069;

unsigned long b32MWC(void)

{unsigned long t,x; static int j=4194303;

j=(j+1)&4194303;

x=Q[j]; t=(x<<28)+carry;

carry=(x>>4)-(t<x);

return (Q[j]=t-x);

}

#define CNG ( cng=69069*cng+13579 )

#define XS ( xs^=(xs<<13), xs^=(xs>>17), xs^=(xs<<5) )

#define KISS ( b32MWC()+CNG+XS )

Fig. 3. C code of KISS11

KISS11 (shown in Figure 3, with one declaration moved for readability) has
three components. The congruential generator and the 3-shift generator (CNG
and XS respectively) have new names but are otherwise the same as described
above (with XS corrected). The real change is that the two small Multiply With
Carry generators have been replaced with a single, huge Complementary Multi-
ply With Carry generator, implemented by the function b32MWC. This generator
has 222+1 words of state (the array Q and integer carry above). We don’t try to
explain how it works; for that see [4]. Marsaglia does mention its cryptographic
weakness, and attempting to hide it:

Of course, if you can observe [4194304] successive values,

then, after a little modular arithmetic to determine

the carry, you are OK.

[...]

Even though the MWC RNGs perform very well on

tests of randomness, combining with Congruential (CNG)

and Xorshift (XS) probably provides extra insurance

at the cost of a few simple instructions, (and making

the resulting KISS even harder to crack).



Really, the only cryptographic strength of this subgenerator is its huge (just over
227 bits) state. For the first 16 megabytes of output, it is behaving like a Vernam
cipher. For simplicity in the discussion below, we refer to R = 222 as the number
of outputs in a “round”, that is, a full pass through the array Q.

We assume that the contents of Q, cng and xs are initialized completely
randomly and independently of each other. Note that the initial value of carry
is explicitly set to zero. We assume that the output stream from KISS is known
to the attacker (a standard cryptographic assumption); call this output stream
Zi, i = 1...

Some observations:

1) at every stage, carry will usually be only 28 bits in length. The exception
is when the high order 28 bits of the input Q value are all zero, carry will (almost
never, but depending on the input carry value) become 0xFFFFFFFF. This is
rare enough not to worry about in the attack below.

1a) if you know the input value Q[t], the output carry value is almost entirely
defined by the most significant 28 bits. 15/16ths of the time, whether the optional
subtraction of 1 happens is determined by comparing the least significant and
most significant 4 bits of the input Q[t], independent of the input carry.

2) at every stage t, the output of b32MWC will be the input value of
Q[t mod R] to the calculation of b32MWC R steps later.

3) CNG and XS are easily invertible (see above).

4) b32MWC is also invertible; if you know both the input Q[j] and the output
Q[j] not only can you derive the output carry, you can also derive the input carry.

5) given (3) and (4), you can run the generator backwards if you need to.

The simple attack we present is a trivial application of the divide-and-conquer
method, splitting the generator into two parts.

1. Start by guessing (enumerating) the 264 possible pairs (xs0 and cng0).

2. Run the subgenerators CNG and XS forward R+3 rounds, and calculate
Mi−1 = Zi− cngi−xsi, (1 <= i <= R+ 3). These are possible candidate values
for the Q[i− 1 mod R] values.

3. If we guessed the initial values correctly in the first step, then M0 should
be the output Q[0] (hence also the input to the calculation of Q[R]), and MR

should be the output Q[0] after R steps. From these, we can calculate carryR,
and from carryR and MR+1 (which we hope equals output Q[1]) we can check
whether, in fact, the computation given input and output Q[1], and what we
just calculated, agree with each other. If they don’t, go back to step 1. If they
do (which might happen randomly), do the same for R + 2, and R + 3. At this
point, if all checks worked, with high probability we must have guessed CNG
and XS correctly.

4. Run b32MWC backwards to recover the initial settings of Q[i].

The expected work to do this is about 285 times the work to generate out-
put words, which is a pretty normal measure. That is 264/2 (since you expect
to search half the values) times about 222 words generated (because of the
huge state space). The attack requires a little more than 222 words of known
keystream, again because of the size of the state. Another way to look at this is



that it’s about 263 times the cost of doing a key setup (independent of how you
actually set up that huge key!).

However this attack can be significantly optimized. First we note that most
of the generated values of from CNG and XS are not used in the important
validation step; of the R+3 pairs of values generated, only the first three and last
three are used. Secondly, we note that both generators can be jumped forward
a known amount (in our case R steps) with very much less complexity than
simply evaluating the functions R times. In the case of XS, we can precompute
the update matrix, and compute xsR by multiplying xs0 by it. Similarly, CNG
can be jumped forward using a modular “square and multiply” exponentiation
calculation.

When enumerating the possible initial values of XS and CNG, there is no
reason to enumerate them as counters. Since the values all fall on cycles (a
single cycle in both cases, given the corrected values in XS) the values can be
enumerated in the sequence produced by the cycle. For example, we start with
cng0 = 0, and quickly calculate cngR from that. By iterating CNG we easily
calculate cng1..cng3 and cngR+1..cngR+3 as required above. After testing this
value (and presumably failing), we can test the next value by discarding cng0,
using the old cng1 as the new cng0, similarly rolling over cngR and so on. The
cycle of XS can be handled in the same way. Only once the correct values for
cng0 and xs0 have been identified is it necessary to run the generators R steps
to recover the initial values of the Q array. Parallelization of this attack is a
bit more tricky, but still easy. With this optimization, about 263 operations on
average can be expected to recover the key. Since the Q array is so large, this
corresponds to about 241 key setup operations.

7 Conclusion

We conclude that the KISS generator, unsurprisingly, should not be used in
any context where cryptographic security is important. Its period is more than
sufficient for tasks like simulations, so long as it is correctly initialized, but care
should be taken with this initialization step. Its period (maximum, expected,
and minimum) is not as long as its authors claim.

As a design rule, updating the component generators independently leads to
easy analysis, which is both a good and a bad thing. Exchanging values between
the various state registers might defeat the kind of attack we have applied, but
it would also make any kind of rigorous analysis impossible, and might make the
generator weaker in ways that are difficult to deduce but damaging in practice.

We would like to thank our colleague David Jacobson for help with the linear
algebra, and the anonymous reviewers who provided suggestions for improve-
ment.

References

1. G. Marsaglia and A. Zaman. The KISS generator. Technical report, Department
of Statistics, Florida State University, Tallahassee, FL, USA, 1993.



2. G. Marsaglia. Re: Random numbers in C: Some suggestions, Message-ID
369B9AE9.52C98810@stat.fsu.edu, various newsgroups including sci.crypt, 12 Jan
1999.

3. G. Marsaglia. Random numbers for C: The END?, Message-ID
36A5FC62.17C9CC33@stat.fsu.edu in newsgroups sci.math and sci.stat.math,
20 Jan 1999.

4. G. Marsaglia. RNGs with periods exceeding 10(̂40million), Message-ID ¡603ebe15-
a32f-4fbb-ba44-6c73f7919a33@t35g2000yqj.googlegroups.com¿ in newsgroups
sci.math, comp.lang.c and sci.crypt, 16 Jan 2011.

5. C. McQueen. Private communication.
6. M. Matsumoto, T. Nishimura. Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Transactions on Mod-
eling and Computer Simulation 8 (1): 330, 1998.

7. J. Plumstead. Inferring a sequence generated by a linear congruence. In Proceedings
of the 23rd IEEE Symposium on Foundations of Computer Science. IEEE, New
York, 1982, pp. 153-159.

8. J. Hong, P. Sarkar. Rediscovery of time memory tradeoffs, IACR Eprint Report
2005/090, 2005. http://eprint.iacr.org/2005/090

9. P. Hawkes, G. Rose, F. Quick. A Practical Cryptanalysis of SSC2, Selected Areas
in Cryptography 2001, LNCS.

A Cycles of the SHR3 Generator

The register SHR3 has a number of disjoint cycles, as shown in the following
table. For each cycle, the hexadecimal value of the smallest value in the cycle
is shown, along with the cycle length, and the characteristic polynomial of the
shortest LFSR that generates the same bits as the least significant bit position
in the word. The LFSR is found using the Berlekamp-Massey algorithm on some
sample output. There are 12 distinct cycle lengths, and 16 distinct polynomials
(LFSRs).



Cycle length Value LFSR Polynomial

1 0 0
1 0xaea21b8f 1 + x
2 0x4655eac4 1 + x2

4 0x3aca807f 1 + x + x2 + x3

585 0x86c8 1 + x2 + x5 + x6 + x9 + x10 + x12

585 0x163de9 1 + x2 + x5 + x6 + x9 + x10 + x12

585 0x16bb21 1 + x + x2 + x3 + x5 + x7 + x9 + x11 + x12 + x13

585 0x2479f9 1 + x + x2 + x3 + x5 + x7 + x9 + x11 + x12 + x13

585 0x32c2d8 1 + x + x2 + x3 + x5 + x7 + x9 + x11 + x12 + x13

585 0x4305a3 1 + x + x2 + x3 + x5 + x7 + x9 + x11 + x12 + x13

585 0x43836b 1 + x2 + x5 + x6 + x9 + x10 + x12

585 0x55384a 1 + x2 + x5 + x6 + x9 + x10 + x12

585 0x677c5a 1 + x + x2 + x3 + x5 + x7 + x9 + x11 + x12 + x13

585 0x67fa92 1 + x2 + x5 + x6 + x9 + x10 + x12

585 0x835009 1 + x2 + x5 + x6 + x9 + x10 + x12

585 0x956de0 1 + x + x2 + x3 + x5 + x7 + x9 + x11 + x12 + x13

585 0xa729f0 1 + x2 + x5 + x6 + x9 + x10 + x12

585 0xf211ba 1 + x + x2 + x3 + x5 + x7 + x9 + x11 + x12 + x13

1170 0xc4e50 1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x14

1170 0xcc898 1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x14

1170 0x1a73b9 1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x14

1170 0x1af571 1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x14

1170 0x28b161 1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x14

1170 0x7d0fe3 1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x14

1170 0x7d892b 1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x14

2340 0x1883 1 + x + x4 + x12 + x14 + x15

2340 0xc56d3 1 + x + x4 + x12 + x14 + x15

2340 0xcd01b 1 + x + x4 + x12 + x14 + x15

2340 0x16a3a2 1 + x + x4 + x12 + x14 + x15

2340 0x1aedf2 1 + x + x4 + x12 + x14 + x15

2340 0x24617a 1 + x + x4 + x12 + x14 + x15

2340 0x3e12c3 1 + x + x4 + x12 + x14 + x15

131071 0x2114a 1 + x + x2 + x4 + x5 + x9 + x10 + x11 + x14 + x16 + x17

131071 0xdfa 1 + x3 + x4 + x6 + x9 + x12 + x14 + x15 + x16 + x18

262142 0xc7de 1 + x + x3 + x5 + x6 + x7 + x9 + x10 + x12

+x13 + x14 + x17 + x18 + x19

Continued on next page



Cycle length Value LFSR Polynomial

524284 0x13f0 1 + x2 + x3 + x4 + x5 + x8 + x9 + x11 + x12

+x15 + x17 + x20

76676535 0x1 1 + x + x3 + x6 + x7 + x8 + x9 + x10 + x11 + x12

+x13 + x14 + x15 + x16 + x17 + x20 + x21 + x22 + x23

+x24 + x25 + x26 + x27 + x28 + x29

76676535 0xd 1 + x2 + x3 + x4 + x6 + x18 + x20 + x30

76676535 0x12 1 + x + x3 + x6 + x7 + x8 + x9 + x10 + x11 + x12

+x13 + x14 + x15 + x16 + x17 + x20 + x21 + x22 + x23

+x24 + x25 + x26 + x27 + x28 + x29

76676535 0x13 1 + x2 + x3 + x4 + x6 + x18 + x20 + x30

76676535 0x1e 1 + x2 + x3 + x4 + x6 + x18 + x20 + x30

76676535 0x1f 1 + x + x3 + x6 + x7 + x8 + x9 + x10 + x11 + x12

+x13 + x14 + x15 + x16 + x17 + x20 + x21 + x22 + x23

+x24 + x25 + x26 + x27 + x28 + x29

76676535 0x26 1 + x2 + x3 + x4 + x6 + x18 + x20 + x30

76676535 0x27 1 + x + x3 + x6 + x7 + x8 + x9 + x10 + x11 + x12

+x13 + x14 + x15 + x16 + x17 + x20 + x21 + x22 + x23

+x24 + x25 + x26 + x27 + x28 + x29

76676535 0x38 1 + x2 + x3 + x4 + x6 + x18 + x20 + x30

76676535 0x39 1 + x + x3 + x6 + x7 + x8 + x9 + x10 + x11 + x12

+x13 + x14 + x15 + x16 + x17 + x20 + x21 + x22 + x23

+x24 + x25 + x26 + x27 + x28 + x29

76676535 0x43 1 + x + x3 + x6 + x7 + x8 + x9 + x10 + x11 + x12

+x13 + x14 + x15 + x16 + x17 + x20 + x21 + x22 + x23

+x24 + x25 + x26 + x27 + x28 + x29

76676535 0x50 1 + x + x3 + x6 + x7 + x8 + x9 + x10 + x11 + x12

+x13 + x14 + x15 + x16 + x17 + x20 + x21 + x22 + x23

+x24 + x25 + x26 + x27 + x28 + x29

76676535 0x77 1 + x2 + x3 + x4 + x6 + x18 + x20 + x30

76676535 0xae 1 + x2 + x3 + x4 + x6 + x18 + x20 + x30

153353070 0x11 1 + x + x2 + x5 + x6 + x7 + x18 + x19 + x20 + x21 + x30 + x31

153353070 0x2 1 + x + x2 + x5 + x6 + x7 + x18 + x19 + x20 + x21 + x30 + x31

153353070 0x3 1 + x + x2 + x5 + x6 + x7 + x18 + x19 + x20 + x21 + x30 + x31

153353070 0xe 1 + x + x2 + x5 + x6 + x7 + x18 + x19 + x20 + x21 + x30 + x31

153353070 0xf 1 + x + x2 + x5 + x6 + x7 + x18 + x19 + x20 + x21 + x30 + x31

153353070 0x1c 1 + x + x2 + x5 + x6 + x7 + x18 + x19 + x20 + x21 + x30 + x31

153353070 0x24 1 + x + x2 + x5 + x6 + x7 + x18 + x19 + x20 + x21 + x30 + x31

306706140 0x4 1 + x3 + x5 + x8 + x18 + x22 + x30 + x32

306706140 0x6 1 + x3 + x5 + x8 + x18 + x22 + x30 + x32

306706140 0x8 1 + x3 + x5 + x8 + x18 + x22 + x30 + x32

306706140 0x9 1 + x3 + x5 + x8 + x18 + x22 + x30 + x32

306706140 0xa 1 + x3 + x5 + x8 + x18 + x22 + x30 + x32

306706140 0xb 1 + x3 + x5 + x8 + x18 + x22 + x30 + x32

306706140 0x2c 1 + x3 + x5 + x8 + x18 + x22 + x30 + x32


