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ABSTRACT
We take a closer look at keyboard acoustic emanations specifically
for the purpose of eavesdropping over random passwords. In this
scenario, dictionary and HMM language models are not applicable;
the attacker can only utilize the raw acoustic information which
has been recorded. We investigate several existing signal process-
ing techniques for our purpose, and introduce a novel technique
– time-frequency decoding – that improves the detection accuracy
compared to previous techniques. We also carefully examine the
effect of typing style – a crucial variable largely ignored by prior
research – on the detection accuracy. Our results show that using
the same typing style (hunt and peck) for both training and decod-
ing the data, the best case success rate for detecting correctly the
typed key is 64% per character. The results also show that changing
the typing style, to touch typing, during the decoding stage reduces
the success rate, but using the time-frequency technique, we can
still achieve a success rate of around 40% per character.

Our work takes the keyboard acoustic attack one step further,
bringing it closer to a full-fledged vulnerability under realistic sce-
narios (different typing styles and random passwords). Our results
suggest that while the performance of these attacks degrades un-
der such conditions, it is still possible, utilizing the time-frequency
technique, to considerably reduce the exhaustive search complexity
of retrieving a random password.

Keywords: Keyboard acoustic emanations; random passwords;
signal processing

1. INTRODUCTION
The attacks based on acoustic emanations produced by electronic

devices have been a known source of concern and present a threat
to user privacy. Specifically, a few studies demonstrated that the
seemingly conspicuous sounds resulting from keyboard typing can
be used to learn information about the input data. Asonov and
Agrawal [1] were the first to extract frequency features from the
sound emanations of different keyboard clicks so as to identify the
different keys used. Their work concluded that the physical plate
beneath the keys causes each key to produce a different sound de-
pending on its location on the plate (similar to hitting a drum at dif-
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ferent locations). This makes keyboard typing vulnerable to eaves-
dropping attacks, in which similarities between clicks of the same
key can be used to extract information about the keys pressed and
the resulting data typed by the user.

Zhuang et al. [21, 22] improved upon the attack of [1] by obvi-
ating the need for a labeled training recording. Instead, HMM En-
glish language-based model [9] was used on a 10-minute typed En-
glish text for unsupervised training and labeling of the data (using
neural networks and Mel Frequency Cepstrum Coefficients (MFCC)).

Berger et al. [4] further utilized dictionary attacks to decode 8 let-
ter or longer English words utilizing correlation calculations. Their
work showed that keys which are in close physical proximity on the
keyboard typically have higher cross-correlation than farther ones.

In this paper, we take a fresh look at keyboard acoustic attacks
and aim to address some important aspects that prior work did not
cover or fully explore. First, we systematically investigate the pos-
sibility of eavesdropping over “random” textual passwords via key-
board acoustic emanations. Textual passwords are by far the most
dominant means of user authentication deployed today. Users are
often instructed, and at times forced, to use random passwords [8,
18]. These passwords possess relatively high bit entropy. and em-
ploy random selection of characters. Therefore, in the realm of
eavesdropping over a random password via keyboard acoustic em-
anations, a dictionary attack or an HMM language model is not
useful and prior research is not applicable.1

In addition, we examine the effect of typing style on key detec-
tion and eavesdropping ability. Our hypothesis is that the typing
style has a significant effect on the sound produced and can reduce
the sound differences among clicks of different keys (and similar-
ities between separate clicks of the same key). To our knowledge,
ours is the first work that specifies the typing style employed in
the experiments and analyzes/quantifies the impact of different typ-
ing styles. Reportedly, previous work has only used the “hunt and
peck” or “search and peck” technique [14, 19]. In this technique,
the typist presses each key individually [16]. However, in real-life
scenarios, many people employ “touch typing” [16].

The remainder of this paper is organized as follows. We start by
defining our threat model in Section 2. We continue in Section 3 by
describing the different techniques used to detect pressed key and
the performance of these techniques. We then describe, in Section
4, our experiments for testing the effect of different typing styles
for eavesdropping over random passwords, followed by the perfor-
mance of our password detection techniques in Section 5. Next, we
discuss and interpret our results in Section 6. Finally, in Section
7, we review some other work related to acoustic emanations and
password attacks.

1HMM model can still be useful for creating the training data, but
not for the actual password guessing/decoding.



Figure 1: Acoustic Signal of a Single Key

2. THREAT MODEL
Our attack model is very similar to the one considered by prior

research on keyboard acoustic emanations [1, 21, 22, 4]. Basically,
we assume that the adversary has installed a hidden audio listening
device very close to the keyboard (or host computer) being used for
user data input. In our experiments, we consider random passwords
consisting of lower-case English alphabets.

Our attack examines in-depth the advantage which an adversary
can obtain by comparing previously taken recordings of known data
to new samples of data. We emulate this scenario by using both
training and testing data typed with the same typing style (this is
done in two typing styles, as discussed in section 4).

Another possibility is that the attacker itself gains access to the
keyboard for a limited amount of time, and uses the hunt and peck
style to capture samples with the natural audio sounds of the key-
board, minimizing the effect of the individual typing style of the
user. For this scenario, our training data is captured in a “mechani-
cal” style (discussed in Section 4.1).

We emphasize that since an HMM language-based model or dic-
tionary can not be used for the attack, and since passwords may be
as short as 6 characters, producing some form of training data is
necessary to eavesdrop over random passwords. Using the training
data, audio information can be extracted about the keyboard and
used later in the password guessing step.

Finally, we assume that the attacker has access to the device or a
service that needs authentication for a limited amount of time. The
attacker is usually allowed to make a certain number of password
trials. We suggest a method of password exhaustive search that
reduces significantly the overall search space while increasing the
probability of correct password detection.

Attack Set-Up and Tools: Throughout our experiments, we used a
standard Lenovo keyboard (model JME7053 English) for our typ-
ing, a Logitech USB PC microphone, the Recordpad (V.3.0.3) and
Matlab software. The random password characters were generated
using the Matlab script “char(‘a’ + ceil( rand(1,6) * 26) - 1).”

3. DETECTION TECHNIQUES
To develop our attack algorithms, we started by exploring tech-

niques for the detection of individual keys/characters pressed on
the keyboard.

3.1 Determining Key Press Signal
Keyboard acoustic signals have two distinct regions: push (also

referred to as press) and release (Figure 1), as demonstrated in
[1]. Our experiments showed that depending on the force sustained
while pressing the key, both the push and the release have between
1 to 3 distinct peaks. We tried using different regions sizes for de-
tecting the correlation between same key presses and found that the
best results were obtained for regions of 50 ms.

Detecting Key Press Regions: We record our signals with a sam-
pling frequency of 44.1 kHz. To detect the beginning of each press,
we calculate (utilizing the Matlab “specgram” command) the Fast
Fourier Transform (FFT) coefficients of the signal using a window
size of 440 samples. We then sum-up the FFT coefficients in the
range of 0.4-22 kHz and use a threshold to detect the beginning of
each keypress (Figure 4 and Figure 5) of the appendix. For detect-
ing the key release (which is quieter), we repeat the process using
a smaller window of 88 samples.

3.2 Existing Techniques
Dynamic Time Warping: Dynamic Time Warping (DTW) is an
algorithm which measures similarities between sequences. We used
the simple distance measure between each two elements in the sig-
nal vectors to calculate the difference between each two recordings.
We implemented the DTW function using C source code for a Mat-
lab executable (MEX)

We experimented using signal normalization based on ampli-
tude, mutual joint distribution [13], and no normalization. We
found that energy-based normalization produced the best results.
We tried using only the push, release or mean of both and found
that the latter provided the best results.

Letter Data Set We created a dataset for each letter. Each Letter
Data Set is made up of n samples that are typed for the cor-
responding alphabet letter.

The DTW technique produces a distance measure between each
two signals. To match each test sample with an alphabet key, we
calculate the average distance between the test character and the
Letter Data Set of each alphabet key and pick as the best match the
one with the smallest value.
Cross-Correlation: We performed the cross-correlation (denoted
X-Corr) between the recorded signals as done in [4]. The signals
were normalized according to their energy, the X-Corr was calcu-
lated for the press and release regions and the mean value of both
was used. For each alphabet key, we took its Letter Data Set and
calculated the average of their cross-correlation measurement with
the test sample, receiving one similarity measurement for each key.
The matching alphabet letter was chosen as the one with the highest
similarity.
Frequency-based Distance Measure: We perform Frequency-domain
Features-based Distance Measure (denoted Freq-Dist) similar to
the one described in [4]. We compute the frequency-based distance
between each two signals by calculating the Euclidean difference
between the features for the press and release parts and average
them to get a distance measure. We calculate the distance between
each test sample and each alphabet Letter Data Set and chose the
letter with the smallest distance.
Frequency Features and Neural Networks: We implemented the
frequency-domain features based technique, using MFCC features
as input to neural networks, as described in [22]. We used 10 ms
windows and an 2.5 window step size , computing 13 MFCC per
window, and examined a total of 40 ms of each press. As per the
original implementation, we utilized Matlab’s newpnn() function
for creating the neural network.

3.3 Performance
The aforementioned techniques were evaluated on the initial dataset,

which was taken with the hunt and peck style (Section 4.1). For
each sample in the initial dataset, the rest of the samples in the
dataset (excluding the test sample) were used as training data. Due
to the relatively high computation requirements for the DTW algo-
rithm, we used only four instances per alphabet letter for training.



Table 1: Single Character Detection
Method Detection Rate

DTW 46.15%
Cross-Corr 73.08%

Freq-Distance 63.46%
MFCC-Neural Networks 56.73%

Time-Frequency 82.69%

We tested the key detection rate (out of 26 alphabet letters) using
each technique.

We found that the cross-correlation technique gave the best re-
sults, with a single key detection rate of 73%. The detection results
can be found in Table 1. All the techniques in the table significantly
raise the decoding rates over random guess (which is less then 4%).

The DTW technique gives lower detection results compared to
the correlation algorithm, indicating that the signals do not vary
much in time, and attempting to wrap the signals reduces the dif-
ferences between clicks of different keys.

3.4 New Technique: Time-Frequency Classi-
fication

In the time-frequency classification method (denoted Time-Frq),
we combine both the correlation calculation and the frequency-
based calculations to choose the best-matching letter for each train-
ing letter. We first calculate the frequency distance measure F for
each instance, (section 3.2) and X-Corr similarity measurement C.

To combine both elements, we first define the correlation-based
distance DC = 1− C (so both F and DC are ascending).

We examined a few methods of combining both matrices. We
tried picking the minimum of each value (min(DC,F )) and the
average of the two values (DC,F ). We also looked at (F , DC) as
a point on a 2-D space and calculate the Euclidean distance from
zero. We found that the best results were achieved using the last
method. We therefore use the Euclidean distance as our distance
measure for classifying each key (denoted as TF ), We further de-
fine the time-frequency similarity measure as STF = 1− TF and
chose the alphabet letter with the highest similarity to each test
sample.

Using the time-frequency classification technique, we get an in-
creased probability of 83% for the training data. We therefore con-
clude that both the frequency and the time data can be used together
to produce better results.

4. EFFECT OF TYPING STYLES

4.1 Datasets
To examine the effect of typing style on detection of pressed

keys, we create three datasets.

Straw Man Approach: Our first scenario involves typing each
letter multiple times (continuously) always using the same finger
before moving to the next letter. A few seconds are allowed before
typing the next letter (similar to the technique used in [1]). This
causes the finger to hit the key from a vertical position in each case.
The benefit of using this technique is that it and ensures virtually
no overlap of keyboard acoustic sounds. It also enables typing each
letter using approximately the same force and hitting the keys from
the same angle, resulting in a relatively similar sound for multiple
clicks of the same key. Overall, this technique minimizes noise or
overlap sounds during the key press and maximized the contribu-
tion of the keys hitting the underlying plate. Since the plate acts
like a “drum”, it produces the emanated audio sound ([1]) related

to its position on the plate.
This technique can therefore be used to train the system by an

attacker (not the original typist) who is trying to extract audio em-
anations which are due to the physical structure of the keyboard.

We used the above technique to take ten signal recordings for
each key of the alphabet letters as our initial data.

Hunt and Peck Typing: In the second scenario, random pass-
words are typed using the hunt and peck style. This case differs
from the first case since consecutive letters are different from each
other. This causes the finger to hit the key from possibly different
angles (depending on which key was typed earlier). For this test,
we chose to generate random passwords of 6-character each (since
the characters are chosen randomly, the data could be divided into
any password size). Since 6-character is still the minimum size of
password one can chose for many sites today, this still provides a
realistic scenario where the attacker has the highest probability of
guessing the password. We generated a total of 25 different such
random passwords, and each password was typed 3 times consecu-
tively. We refer to this data as the “Test Hunt and Peck data” in the
rest of the paper.

Touch Typing: In the third scenario, we type the same password
list – as in the Hunt and Peck case – using the touch typing tech-
nique. In this scenario, each key has its own designated finger and
the rest of the fingers may possibly touch the keyboard while typ-
ing (depending on the hands’ movement). We recall that this typing
technique is very popular among users. However, this typing style
does affect the acoustic emanations as the keys are hit from differ-
ent angles, depending both on the finger used as well as the hand
position during the typing of each key (which depends on the pre-
vious letters typed). We refer to this data as the “Test Touch Typing
data”.

4.2 Typing Style and Signal Correlation
To measure the effect of typing style on signal similarity, we

examine the maximum correlation between instances of the keys in
the test data with each Letter Data Set of the training data.

Our training data included 10 training samples using the straw
man typed dataset (Section 4.1).

Straw Man Typing: We started by using the aforementioned data
as test data itself. For each sample, we calculate the maximum
correlation with each of the other instances taken with the same key
(termed matching key). We then calculate the mean of these values.
We did this for both the press and release part of the signal. We
mark these values as PcorrMatchPrs(i) and PcorrMatchRls(i)
for each sample i of the data.

We repeat this calculation for the sample with the Letter Data
Sets of the rest of the keys (termed non-matching keys). For each
tested sample, we take the highest value of the 25 values we re-
ceived, which shows the correlation to the most likely key to be
chosen as a match to the original sample. We mark this value
as PcorrNonMatchPress(i) and PcorrNonMatchRls(i) for each
sample i of the data.

At this point, we compare the correlations of the press and re-
lease samples. If the highest correlation for the sample belongs to
the Letter Data Set of the matching alphabet key, i.e.,

PcorrMatchPrs(i) > PcorrNonMatchPrs(i), (1)

we mark the press part of the sample as a Match correlation. We
do the same for the release. We calculate the Match probability as
the number of keys found to Match (i.e., being best correlated to
the samples of the corresponding typed letter in the training data)
divided by the total number of samples. For the Straw Man Dataset,



Table 2: Probability of Keys Matching the Training Data with Typing Style Variation
Straw Man Typing Hunt and Peck Touch Typing
Press Release Press Release Press Release
56% 67% 28% 43% 13% 24%

we found that 56% of the press signals and 67% of the release
signals best matched their corresponding typed letter.
Hunt and Peck Typing: We next repeat the correlation calcula-
tions between the hunt and peck passwords test dataset and the
Straw Man initial dataset. We found that the Match probability
was reduced to 28% for the press and 43% for the release samples.

We therefore observe that the percentage of signals that are best
correlated to the training data belonging to the matching letter is
significantly reduced. Therefore, when the typing style changed
slightly it becomes more likely to choose the wrong key as the best
matching key to the new sample.
Touch Typing: We further repeated the analysis for the data taken
with the touch typing style. We calculated the correlation between
these samples to the training data. In this case, we found that the
probability of each instance matching the correct letter in the train-
ing data was reduced to 13% for the press part of the signal, and
24% for the release.

A summary of the results is presented in Table 2. In conclusion,
we observed that the maximum correlation between instances of
the same key reduces when the typing style changes. On the other
hand, the correlation to instances taken with other keys increases
which makes it hard to detect correctly the key. This confirms our
hypothesis that typing style has a strong effect on the similarity of
same key audio signals and the ability to distinguish them from
other keys.

5. PASSWORD DETECTION
Out of the five techniques explored in Section 3, we found that

the cross-correlation (X-Corr) and time-frequency classification (Time-
Frq) techniques yielded higher accuracies. In this section, we in-
vestigate the advantage that an attacker can get by using these two
techniques to eavesdrop over random passwords.

We examine the performance of these techniques and compare
the detection rates for random passwords typed with both the hunt
and peck and the touch typing styles.

We start by examining the key detection rate for each of the data
groups. We utilize as training data ten instances of each alphabet
key which reduces the effect of noise (as opposed to four instances
used in Section 4.1).

We calculate the similarity measure – max correlation for cross-
correlation and STF similarity for time-frequency classification –
between each tested instance and each alphabet key letter in the
training data. For each technique, we chose as the best matching
letter the one with the highest similarity measurement.

5.1 Initial Dataset, Straw Man Approach
The initial data is typed with the Straw Man Approach (as dis-

cussed in section 4.1). Each instance in the dataset is utilized as a
test instance, with the rest of the dataset used as the training data
(excluding the test instance).

As a result, we found that the cross-correlation statistics calcu-
lated using this technique resulted in a 83% accuracy rate per key
(since we now use ten keys per training, this raised the result up
from 73% when only four training instances were used). When
using the time-frequency based classification, we found that the

Table 3: Single Character Detection Rates, best character guess

Training → Hunt & Peck Touch Typing
Testing Stage → Hunt & Peck Touch Typing Touch Typing

X-Corr 53.78% 33.78% 49.33%
Time-Frq 64.67% 40.67% 58.89%

Random Guess 3.84%

Table 4: Single Character Detection Rates, 5-character guess

Training → Hunt & Peck Touch Typing
Testing Stage → Hunt & Peck Touch Typing Touch Typing

X-Corr 79.33% 63.78% 76.00%
Time-Frq 88.22% 74.89% 85.11%

Random Guess 19.23%

results further improved (to 89%). We conclude that when the typ-
ing is repetitive, the underlying physical characteristics of the key-
board has strong effect on the acoustic emanations and the ability
to eavesdrop is relatively high.

5.2 Test Data, Hunt and Peck Style
For this dataset, we calculate the similarity measures using the

initial data (straw man approach dataset) as our training data and
the hunt and peck dataset as our test dataset.

We find that the cross-correlation performance is reduced to a
54% accuracy rate per key. We found that utilizing the time-frequency
technique improved the detection rate to 65% per character. We
conclude that the angle at which the finger hits the key affects the
acoustic signal emanated and reduces the detection accuracy com-
pared to typing the same key continuously.

5.3 Test Data, Touch Typing Style
We repeated the testing process for the passwords typed with

the touch typing style (using the straw man dataset as our train-
ing data). We find that utilizing the cross-correlation technique for
key detection, the accuracy rate is reduced to 34%. For the time-
frequency based classification, we observe that the rate of detection
per correct character has increased to 41%.

5.4 Best Guesses Search
To raise our detection rate, we tried to create a list of additional

keys to be checked against our recorded password. We imple-
mented this by creating a list of keys having the highest max cor-
relation and a list of keys with the lowest TF distance from the test
character. When examining the ordered list of highest matching al-
phabet letters, we saw that the probability of the key matching each
of the letters reduces significantly after the fifth letter.

We therefore implement a “Best Guesses Search” – in which
for each typed character, we create a list of the 5 best matching
keys. We then determine the probability of a correct detection for



Table 5: 6-Character Password Detection Rates
Method → EXHAUSTIVE SEARCH BRUTE FORCE

Cross-Correlation Time-Frequency
Training Stage → Hunt & Peck Touch Hunt & Peck Touch
Testing Stage → Hunt & Peck Touch Touch Hunt & Peck Touch Touch
No. of Trials ↓

1 2.42% 0.15% 1.44% 7.31% 0.38% 4.17% 3.24E−07%
2 2.92% 0.19% 1.80% 8.87% 0.59% 5.14% 6.47E−07%
3 3.42% 0.24% 2.16% 10.43% 0.80% 6.12% 9.71E−07%

15, 625 24.00% 5.33% 22.67% 42.67% 21.33% 34.67% 0.0051%

the five keys. Using the correlation-based technique, we found that
the probability of each character to be in the list of the top five
keys increased to 79% for the hunt and peck data. For the touch
typing data, in contrast, the probability that the key is in the first
five choices was found to be 64%.

For the time-frequency based classification, we found that the
probability of each character to be in the list of the top 5 keys in-
creased to 88%. For the touch typing data, the rate increased to
75%. Our Results (for single key and five key guesses) are summa-
rized in Tables 3 and 4, respectively. The results corresponding to
the two best guesses are depicted in Table 6 of the appendix. (see
Appendix).

5.5 Training, Touch Typing Style
We now examine the case where the training is also performed

using continuous typed characters. In this scenario, the attacker
first eavesdrops over a user typing continuous text. He records the
text and uses language model tools to detect the keys pressed. Then,
when the user types his password (testing phase), the attacker uses
the previous recordings he has as training data to decode the char-
acters typed.

To perform this test, we first type each letter continuously and
record the audio signal, using touch typing. We use the typed
signals to create the training data. We then compare using both
the cross-correlation and the time-frequency method to decode the
password data based on the recorded training data.

Our tests show that as expected, the password decoding has sig-
nificantly improved in this case (compared to training with hunt
and peck style data). We summarize the results in Table 3.

5.6 Password Decoding
Next, we look at the advantage that an eavesdropper can achieve

by using an exhaustive search to detect an n-character password
(i.e., by making use of a certain number of trials). While a brute-
force attack on the entire password space would take 26n ≃ 24.7×n

trials, we introduce the Best Guesses Search, which reduces signif-
icantly the computing complexity and speeds-up the attack. There-
fore, it can be used when limited-time access is available to a device
that requires password authentication. We also provide the success
probabilities of finding the correct password when the attacker is
only allowed up to three trials (a common scenario).

For the Best Guesses Search, we chose for each character the
closest five keys. We therefore reduce the number of tests to:

N(n) = 5n ≃ 22.3×n (2)

This yields a probability of detecting the full password to:

PrPasswordDetection(n) = (Pchar5)n (3)

Pchar5 is the probability that a char matches one of the five
guesses.

Overall, this means that our attack can cut down the entropy of
the password by a factor of about 2 (from 4.7 to 2.3).

We compare the accuracies of the cross-correlation and time-
frequency classification techniques for detecting n − character
passwords for the Best Guesses Search as well as when performing
a small number of trials. We test the Best Guesses Search detec-
tion probability for 6-character passwords (which includes 56 =
15625 trials) and verify that it indeed matches our calculations us-
ing Equation 3.

All of the detection rates are summarized in Table 5. The detec-
tion rates, for the case involving 1 to 3 trials are obtained directly
from the detection rates corresponding to the best matching single
character listed in Tables 3, 4 and 6. We emphasize that for the Best
Guesses Search, even when the passwords are typed with touch typ-
ing and the training uses hunt & peck typed data, the performance
is still considerably better than a brute force attack (which would
produce on average 0.005% success rate for the size of our search
space).

Finally, we use the probabilities from Table 4 to calculate the
password search space size (as per Equation 2) and the average
detection probabilities (as per Equation 3) for the Best Guesses
Search. We show results for passwords of length up to 12 char-
acters in Figures 2 and 3 of the appendix. We see that the Best
Guesses Search significantly reduces the search space size and im-
proves the detection probability for passwords of different length.

6. DISCUSSION
Our research establishes that keyboard acoustic eavesdropping

attacks are affected by detection technique, typing style, and type
of input data and provides insights about their impact.

6.1 Detection Technique
We explored several techniques, including DTW, time-based cor-

relation and frequency features. Our work shows that the signals
do not “stretch” significantly in time which results in the poorer
performance of the DTW technique relative to other techniques.
We observe that the similarities in signals emanated from the same
key are detectable both in the frequency and in the time domain.
We present a new technique which combines this information and
achieves improved detection results based on both time and fre-
quency data.

6.2 Typing Style
Our work demonstrates that while the underlying plate contributes

to the key sound, the typing style also contributes to it significantly.
One of our observations is that while there are still sound differ-
ences between some of the keys (which confirms our perception
that some keys sound “different”), when examining all the alpha-
bet keys in the keyboards, it becomes hard to distinguish between
a single key and all the other alphabet keys.



We found, from our experiments, that the accuracy of detecting
a single character on the keyboard is reduced when moving from
hunt and peck typing to touch typing (Tables 3, 4 and 6). There-
fore, users who employ touch typing are less prone to keyboard
acoustic eavesdropping. Since in real-life many users touch type,
in practice, keyboard acoustic attacks may not constitute to be as
significant a threat as believed to be.

6.3 Type of Input Data
Our research shows that detection of random password poses a

significant challenge, since only the (raw) audio signal is available
as input to the attack. On the other hand, attacks on English-text or
weak passwords may achieve better results due to the underlying
language model and the dictionary tools, as demonstrated by prior
research [21, 22, 4]. This means that random passwords are less
vulnerable to keyboard eavesdropping attacks.

We can conclude that users who employ random passwords are
less susceptible to keyboard acoustic attacks than those who em-
ploy weak passwords. On the other hand, our attacks on random
passwords are still orders of magnitude more successful than ran-
dom guessing or brute-forcing attempts (as depicted in Table 5).
For example, with only 3 trials, for touch typed passwords, our at-
tacks are better by a factor of about 150,000; with 16,457 trials,
they are better by a factor of about 2,000.

7. OTHER RELATED WORK
Acoustic emanations were also utilized for eavesdropping on dot

matrix printers. In [5], Briol showed that significant information
can be extracted about the printed text, using acoustic emanations
to distinguish between the letters ‘W’ and ‘J’. In [2], Backes et al.
presented an attack which recovers English printed text from the
printer audio sounds.

In a proof-of-concept work published on the web [12], Shamir
and Tromer explore inferring of CPU activities associated with RSA
decryption via acoustic emanations to learn the RSA private keys.

In [7], Halevi and Saxena studied acoustic emanations in order to
learn key exchange information during the wireless device pairing
operation.

Additional methods to extract keyboard input focus on other sources
of information (i.e., other than audio). In [3], Balzaroni et al. ex-
plored recovering keyboard input based on video of the typing ses-
sion. In [15], Song et al. showed that timing information of key-
presses can be used to exploit weaknesses in SSH protocol. In
[23], accelerometer data from modern mobile phones (iPhone 4)
was used to implement keyboard dictionary attacks.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we took a fresh look at the vulnerability of key-

board typing to audio emanations. Our work shows that keyboard
eavesdropping is affected by a few variables: typing style, input
data and detection technique. We show that while the detection
performance is reduced for realistic typing styles, keyboard typing
still remains vulnerable to eavesdropping attacks.

Our work further provides an objective measure for the perfor-
mance of key detection. This can be used as a basis for improving
future language and dictionary based attacks (whose success relies
on the underlying raw key detection capability) as well as assessing
the contribution of the language model to the final detection results.

Overall, we found that the strength of acoustic eavesdropping
attacks is limited when using different typing styles and random
passwords, and may therefore not be as significant a threat as previ-
ously believed to be under such realistic and security-sensitive set-

tings. On the other hand, we define a Best Guesses Search, which
reduces by half the entropy of the typed random passwords and
therefore considerably speeds-up the exhaustive search.

This work can be extended to also include numbers (e.g., nu-
meric PINs or credit card numbers). Since all the keys are posi-
tioned on the keyboard in a similar way and share the same un-
derlying physical plate, we expect the detection behavior to be the
same. However, it would be interesting to verify this in the future
work. Also, looking at the combination of the Shift key with other
characters is interesting since an overlap is expected between the
acoustic emanations of the keys which may make it harder to de-
tect the pressed keys.

Testing laptop keyboard acoustic emanations is another interest-
ing further step. We conducted preliminary tests and noticed that
the press signal is evident in laptop keyboard recordings. However,
the release audio signal either had very low volume or was not no-
ticeable at all in the recorded signal. Therefore, laptop keyboard
eavesdropping needs to rely only on the key press and is likely to
be less successful than traditional keyboard eavesdropping.
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APPENDIX
A. ADDITIONAL FIGURES AND TABLES
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Figure 2: Best Guesses Search space size

4 5 6 7 8 9 10 11 12

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Password Length

S
uc

ce
ss

 R
at

e

Password Detection Rate

 

 
Best Guesses Search, Hunt and Peck Training
Best Guesses Search, Touch typing Training
Brute Force search

Figure 3: Best Guesses Search detection probability
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Figure 4: Recording of Multiple Keys
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Figure 5: Sum of FFT Coefficients

Table 6: Single Character Detection Rates, 2-character guess

Training Stage → Hunt and Peck Touch Typing
Testing Stage → Hunt and Peck Touch Typing Touch Typing

Cross-Correlation 64.89% 43.78% 61.78%
Time-Frequency 78.44% 53.33% 72.67%
Random Guess 3.84%


