
Linear Analysis of Reduced-Round CubeHash

Tomer Ashur and Orr Dunkelman

Faculty of Mathematics and Computer Science
Weizmann Institute of Science

P.O. Box 26
Rehovot 76100, Israel

orr.dunkelman@weizmann.ac.il

Abstract. Recent developments in the field of cryptanalysis of hash func-
tions has inspired NIST to announce a competition for selecting a new cryp-
tographic hash function to join the SHA family of standards. One of the
14 second-round candidates is CubeHash designed by Daniel J. Bernstein.
CubeHash is a unique hash function in the sense that it does not iterate
a common compression function, and offers a structure which resembles a
sponge function, even though it is not exactly a sponge function.

In this paper we analyze reduced-round variants of CubeHash where the
adversary controls the full 1024-bit input to reduced-round CubeHash and
can observe its full output. We show that linear approximations with high
biases exist in reduced-round variants. For example, we present an 11-round
linear approximation with bias of 2−235, which allows distinguishing 11-
round CubeHash using about 2470 queries. We also discuss the extension
of this distinguisher to 12 rounds using message modification techniques.
Finally, we present a linear distinguisher for 14-round CubeHash which uses
about 2812 queries.

Key words: CubeHash SHA-3 competition, Linear cryptanalysis.

1 Introduction

Recent developments in the field of hash function cryptanalysis [1,18–20] along with
new results targeted against commonly used hash functions [6,11,26,27] has urged
National Institute of Standards and Technology to announce a competition for the
development of a new hash standard, SHA-3 [25].

The National Institute of Standards and Technology has received 64 hash func-
tion proposals for the competition, out of which 51 met the submission criteria and
were accepted to the first round of the competition. Following the first round of
analysis, in which the security and performance claims of the submitters were chal-
lenged, 14 candidates were selected to the second round of the SHA-3 competition.
One of these 14 candidates is CubeHash designed by Daniel J. Bernstein [4].

CubeHash is a family of cryptographic hash functions, parameterized by the
performance and security required. CubeHash has an internal state of 1024 bits,
which are processed by calling a transformation named T , a tweakable number of
times r, between introductions of new b-byte message blocks (b is also a tunable
parameter). At the end, after a final permutation, namely, T repeated 10r times,
h bits of the state are used as an output. By selecting different values of h, b, and
r, different security/performance tradeoffs are provided. Currently, several sets of



parameters are suggested, where the “normal” security values are r = 16, b = 32
(for h ∈ {224, 256, 384, 512}) [5].1

In this paper we analyze the security of several variants of CubeHash against
linear cryptanalysis. Our analysis found a linear approximation for 11-round Cube-

Hash2 with bias of 1

4
· 1
2

233
= 2−235. We limited the analysis to biases of no less than

2−256, as we felt that a hash function offering a 512-bit security (in its strongest
variant), should not be assessed with attacks taking more than 2512 queries. One can
also extend the 11-round linear approximation into a 12-round distinguisher using
simple message modification techniques [27] (or a chosen-plaintext linear cryptanal-
ysis [22]).

We note that when removing this restriction, one can find 14-round linear ap-
proximations with bias of 2−406. Exploiting this approximation requires querying
T 14 about 2812 times, which is outside the security model. At the same time, if T
or CubeHash are ever used in different settings, this may provide some indication
concerning its security.

This paper is organized as follows: In Section 2 we describe CubeHash’s com-
pression function. In Section 3 we describe the linear approximations found for
CubeHash. In Section 4 we describe how bit fixing can be used to distinguish more
rounds than in the approximation. In Section 5 we quickly cover a possible appli-
cation of our results. Finally, Section 6 concludes this paper.

2 A Brief Description of CubeHash

As mentioned before, CubeHash is a tweakable hash function, where the shared part
of all its variants is the internal state (of 1024 bits), and the use of the same round
function T .

To initialize the hash function, h (the digest size), r the number of times T is
iterated between message blocks, and b the size of the message blocks (in bytes), are
loaded into the state. Then, the state is updated using 10r applications of T . At this
point, the following procedure is repeated with any new message block: the b-byte
block is XORed into the 128-byte state, and the state is updated by applying T r

(r times applying T ) to the state. After processing the padded message, the state
is XORed with the constant 1, and is processed by applying T 10r. The output is
composed of the first h/8 bytes of the state.

The 1024 bits of the internal state are viewed as a sequence of 32 4-byte words
x00000, x00001, . . . , x11111 each of which is interpreted in a little-endian form as a 32-
bit unsigned integer. The round function T of CubeHash is based on the following
ten operations:

1. Add (modulo 232) x0jklm into x1jklm , for all (j, k, l, m).
2. Rotate x0jklm left by 7 bits, for all (j, k, l, m).
3. Swap x00klm with x01klm, for all (k, l, m).
4. XOR x1jklm into x0jklm, for all (j, k, l, m).
5. Swap x1jk0m with x1jk1m, for all (j, k, m).
6. Add (modulo 232) x0jklm into x1jklm , for all (j, k, l, m).

1We note that there is a “formal” variant of CubeHash for which r = 16, b = 1 and
h ∈ {384, 512}.

2We note that CubeHash is a full hash function which is not easily defined in the com-
mon settings. Hence, 11-round CubeHash stands for iterating 11 times the transformation
T . We remind the reader that our analysis usually assumes the adversary can choose the
full 1024-bit input to T , and observe the full 1024-bit output from T .



7. Rotate x0jklm left by 11 bits, for all (j, k, l, m).
8. Swap x0j0lm with x0j1lm, for all (j, l, m).
9. XOR x1jklm into x0jklm, for all (j, k, l, m).

10. Swap x1jkl0 with x1jkl1, for all (j, k, l).

The structure is represented in a little endian form, i.e., x00000 is composed of
the four least significant bytes of the state and x11111 is composed of the most
significant four. We note that the only nonlinear operations with respect to GF(2)
are the modular additions.

2.1 Previous Results on CubeHash

Following its simple structure, CubeHash has received a lot of cryptanalytic atten-
tion. Some of the attacks, such as the ones of [7, 21], can be applied to CubeHash,
independent of the actual T (as long as it is invertible). These attacks target the
preimage resistance of CubeHash, and exploit the fact that as all components are
invertible, and as the adversary can control b-bytes of the internal state directly, it
is possible to find a preimage in about 2512−4b CubeHash computations.

The second type of results, tried to analyze reduced-round variants of CubeHash
for collisions. In [2], a collision for CubeHash2/120-512 is given. Collisions for Cube-
Hash1/45 and 2/89 are given in [14], and for CubeHash4/48 and CubeHash4/64
are produced by [9, 10]. A more general methodology to obtain such collisions is
described in [8], where variants up to CubeHash7/64 are successfully analyzed.

A third type of attacks/observations concerning CubeHash deal with the sym-
metric structure of T . For example, if at the input all x0jklm words are equal, and
all x1jklm words are equal (not necessarily equal to the value of the x0jklm), then
the same property holds in the output as well. The first analysis of this type of
properties is given in the original submission document [4]. In [3], several additional
classes of “symmetric” states are observed, and their use is analyzed. Recently, these
classes were expanded to include a larger number of states (and structures) in [16].

Despite all the above-mentioned work, CubeHash is still considered secure, as
no attack comes close to offer complexity which is significantly better than generic
attacks.3 To the best of our knowledge this work is the first one that succeeds to
offer some non-trivial property of more than 10 rounds of T .

3 Linear Approximation of CubeHash

Linear cryptanalysis [24] is a useful cryptanalytic tool in the world of block cipher
cryptanalysis. The cryptosystem is linearly approximated (by an expression that
holds with some bias), and the adversary gains information concerning the key, by
observing sufficient amount of plaintext/ciphertext pairs satisfying the approxima-
tion.

In the context of hash functions, linear cryptanalysis has received very little
attention, unlike differential cryptanalysis. The reason for that seems that while
differential cryptanalysis can be directly used to offer collisions or preimages, lin-
ear cryptanalysis seems to be restricted to very rare cases (i.e., where the bias is
extremely high).

3We note that while the preimage attacks of [7, 21] may offer a small speed-up with
respect to generic attacks, their memoryless variants are not much faster than exhaustive
search. Moreover, as the submission document lists this as a known issue, this flaw is not
considered too harmful by many.



At the same time, the use of linear approximation to assess the security of a
hash function can shed some light on whether the underlying components offer
the required security. Moreover, linear approximations of the compression function
might be useful when discussing MACs built on top of the hash function (suggesting
a detectable linear bias in the output).

3.1 Linear Approximation of Addition Modulo 232

CubeHash uses a mixture of XORs, rotations, and additions. While the first two
can be easily handled in the linear cryptanalysis framework, the approximation of
the modular addition possess several problems, mostly due to the carry chains.

One of the papers studying the cryptographic properties of modular addition
is [12] which studies the carry effects on linear approximations. In the paper, Cho
and Pieperzyk show that approximating two consecutive bits can overcome some
of the inherent problems of carry chains. Namely, if λ is a mask of two consecutive
bits (in any position) then: λ · (x + y) = λ(x ⊕ y) with probability 3/4 (i.e., a bias
of 1/4).

We analyzed several cases where λ contains pairs of consecutive bits, e.g., two
pairs of consecutive pairs, and even when these pairs appear immediately after each
other (i.e., λ is composed of four consecutive bits set to 1). Our analysis shows
that with respect to linear cryptanalysis, these pairs can be treated as two separate
independent instances. For example, the probability that λ · (x + y) = λ(x⊕ y) for
λ whose four most significant bits are 1, while the rest are 0, is 10/16 (suggesting
the expected bias of 2 · (1/4)2 = 1/8).

3.2 The Linear Approximation of the Round Function of CubeHash

Our first attempt in understanding the security of CubeHash against linear crypt-
analysis was a very simple experiment. We looked at all possible masks which had
only one pair of two consecutive bits active, and tried to extend this mask as many
rounds as possible in the forward direction. At some point, the resulting mask had
a divided pair of bits, i.e., a pair of bits that due to the rotations used in CubeHash
were sent one to the LSB of a word, and one to the MSB of a word. Such a mask
does no longer fall under the type of masks considered in [12], and our experiments
show that such a mask has a very low bias when considering addition.

After performing the search in the forward direction, we repeated the experi-
ment, this time running the light mask in the backward direction (i.e., through T−1)
as many rounds as possible. The results obtained in these experiments are shown in
Tables 1 and 2, which present the number of possible linear approximations of that
form in the forward and the backward directions (along with the associated bias).
The longest of which covers 10 rounds in any direction.

Following the surprisingly long approximations, we decided to explore pairs of
pairs (i.e., four active bits in the starting mask), repeating the process of analyzing
the forward direction as well as the backward direction. These results are summa-
rized in Tables 3 and 4.

We also combined the forward and the backward approximations to form a series
of approximations for as many rounds as could, using the combination of this type of
approximations. In Table 5 we offer input/output masks of the best approximations
we found.

Following the fact that CubeHash aims to offer at most a 2512 security, we
decided to concentrate at approximations of bias up to 2−256 (as detecting smaller



Table 1. Number of Linear Approximations Following the Consecutive Masks Approach
(Starting from a Mask with One Consecutive Pair in the Forward Direction)

Rounds Bias Number of Approximations

1 1

4
· 1

2

0
= 2−2 480

1 1

4
· 1

2

1
= 2−3 16

1 1

4
· 1

2

2
= 2−4 480

1 1

4
· 1

2

3
= 2−5 16

2 1

4
· 1

2

11
= 2−13 432

2 1

4
· 1

2

12
= 2−14 16

2 1

4
· 1

2

15
= 2−17 16

2 1

4
· 1

2

16
= 2−18 416

2 1

4
· 1

2

17
= 2−19 16

2 1

4
· 1

2

20
= 2−22 16

3 1

4
· 1

2

29
= 2−31 384

3 1

4
· 1

2

30
= 2−32 16

3 1

4
· 1

2

33
= 2−35 16

3 1

4
· 1

2

35
= 2−37 352

3 1

4
· 1

2

36
= 2−38 16

3 1

4
· 1

2

39
= 2−41 16

4 1

4
· 1

2

66
= 2−68 336

4 1

4
· 1

2

67
= 2−69 16

4 1

4
· 1

2

70
= 2−72 16

4 1

4
· 1

2

74
= 2−76 288

4 1

4
· 1

2

75
= 2−77 16

4 1

4
· 1

2

78
= 2−80 16

5 1

4
· 1

2

113
= 2−115 272

5 1

4
· 1

2

114
= 2−116 240

5 1

4
· 1

2

115
= 2−117 16

5 1

4
· 1

2

117
= 2−119 16

5 1

4
· 1

2

118
= 2−120 16

6 1

4
· 1

2

169
= 2−171 208

6 1

4
· 1

2

170
= 2−172 16

6 1

4
· 1

2

171
= 2−173 160

6 1

4
· 1

2

172
= 2−174 16

6 1

4
· 1

2

173
= 2−175 16

6 1

4
· 1

2

175
= 2−177 16

7 1

4
· 1

2

236
= 2−238 96

7 1

4
· 1

2

237
= 2−239 16

7 1

4
· 1

2

238
= 2−240 144

7 1

4
· 1

2

239
= 2−241 16

7 1

4
· 1

2

240
= 2−242 16

7 1

4
· 1

2

242
= 2−244 16

8 1

4
· 1

2

346
= 2−348 32

8 1

4
· 1

2

347
= 2−349 16

8 1

4
· 1

2

350
= 2−352 16

8 1

4
· 1

2

353
= 2−355 80

8 1

4
· 1

2

354
= 2−356 16

8 1

4
· 1

2

357
= 2−359 16

9 1

4
· 1

2

445
= 2−447 16

9 1

4
· 1

2

481
= 2−483 32

9 1

4
· 1

2

485
= 2−487 16

10 1

4
· 1

2

550
= 2−552 16

biases requires more than 2512 queries). The longest possible approximation which
adheres to this restriction is of 11 rounds and has a bias of 2−235 which is fully
described in Table 6.



Table 2. Number of Linear Approximations Following the Consecutive Masks Approach
(Starting from a Mask with One Consecutive Pair in the Backward Direction)

Rounds Bias Number of Approximations

1 1

4
· 1

2

2
= 2−4 496

1 1

4
· 1

2

3
= 2−5 480

1 1

4
· 1

2

4
= 2−6 16

2 1

4
· 1

2

12
= 2−14 448

2 1

4
· 1

2

13
= 2−15 16

2 1

4
· 1

2

14
= 2−16 16

2 1

4
· 1

2

18
= 2−20 416

2 1

4
· 1

2

19
= 2−21 32

3 1

4
· 1

2

29
= 2−31 368

3 1

4
· 1

2

30
= 2−32 32

3 1

4
· 1

2

31
= 2−33 16

3 1

4
· 1

2

41
= 2−43 336

3 1

4
· 1

2

42
= 2−44 48

4 1

4
· 1

2

60
= 2−62 304

4 1

4
· 1

2

61
= 2−63 16

4 1

4
· 1

2

62
= 2−64 32

4 1

4
· 1

2

85
= 2−87 256

4 1

4
· 1

2

86
= 2−88 48

5 1

4
· 1

2

102
= 2−104 240

5 1

4
· 1

2

103
= 2−105 32

5 1

4
· 1

2

104
= 2−106 16

5 1

4
· 1

2

134
= 2−136 224

5 1

4
· 1

2

135
= 2−137 16

6 1

4
· 1

2

149
= 2−151 192

6 1

4
· 1

2

150
= 2−152 16

6 1

4
· 1

2

151
= 2−153 16

6 1

4
· 1

2

197
= 2−199 144

6 1

4
· 1

2

198
= 2−200 48

7 1

4
· 1

2

212
= 2−214 112

7 1

4
· 1

2

213
= 2−215 32

7 1

4
· 1

2

214
= 2−216 16

7 1

4
· 1

2

277
= 2−279 80

7 1

4
· 1

2

278
= 2−280 32

8 1

4
· 1

2

308
= 2−310 48

8 1

4
· 1

2

309
= 2−311 16

8 1

4
· 1

2

310
= 2−312 32

8 1

4
· 1

2

407
= 2−409 48

8 1

4
· 1

2

409
= 2−411 16

9 1

4
· 1

2

418
= 2−420 32

10 1

4
· 1

2

477
= 2−479 16

For those interested in assessing the full security that might be offered by the
1024-bit transformation T , we note that there also exists a 14-round linear approxi-
mation with a bias of 2−406. We outline the full 14-round approximation in Tables 7
and 8.

4 Message Modification Techniques — A Chosen-Plaintext

Linear Approximations

Linear cryptanalysis relies on collecting a large number of input/output pairs, and
verifying whether they satisfy the approximation or not. In [22] Knudsen and Math-



Table 3. Number of Approximations with a Given Bias Starting from a Pair of Pair of
Active Bits (Forward Direction)

Rounds Bias Number of Approximations

1 1

4
· 1

2

1
= 2−3 115472

1 1

4
· 1

2

3
= 2−5 228128

1 1

4
· 1

2

5
= 2−7 113152

2 1

4
· 1

2

7
= 2−9 232

2 1

4
· 1

2

8
= 2−10 448

2 1

4
· 1

2

14
= 2−16 848

2 1

4
· 1

2

15
= 2−17to 1

4
· 1

2

33
= 2−35 301480

3 1

4
· 1

2

23
= 2−25 208

3 1

4
· 1

2

25
= 2−27 384

3 1

4
· 1

2

35
= 2−37 352

3 1

4
· 1

2

37
= 2−39 to 1

4
· 1

2

71
= 2−73 188144

4 1

4
· 1

2

45
= 2−47 184

4 1

4
· 1

2

53
= 2−55 320

4 1

4
· 1

2

73
= 2−75 304

4 1

4
· 1

2

77
= 2−79 to 1

4
· 1

2

149
= 2−151 98288

5 1

4
· 1

2

87
= 2−89 160

5 1

4
· 1

2

94
= 2−96 256

5 1

4
· 1

2

121
= 2−123 128

5 1

4
· 1

2

122
= 2−124to 1

4
· 1

2

229
= 2−231 61056

6 1

4
· 1

2

123
= 2−125 128

6 1

4
· 1

2

139
= 2−141 192

6 1

4
· 1

2

179
= 2−181 272

6 1

4
· 1

2

185
= 2−187to 1

4
· 1

2

343
= 2−345 33632

7 1

4
· 1

2

181
= 2−183 96

7 1

4
· 1

2

201
= 2−203 128

7 1

4
· 1

2

249
= 2−251 64

7 1

4
· 1

2

257
= 2−259 to 1

4
· 1

2

477
= 2−479 14256

8 1

4
· 1

2

251
= 2−253 64

8 1

4
· 1

2

288
= 2−290 64

8 1

4
· 1

2

368
= 2−370 48

8 1

4
· 1

2

369
= 2−371 to 1

4
· 1

2

693
= 2−695 3120

9 1

4
· 1

2

371
= 2−373 32

9 1

4
· 1

2

395
= 2−397 16

9 1

4
· 1

2

423
= 2−425 16

9 1

4
· 1

2

481
= 2−483 to 1

4
· 1

2

859
= 2−861 336

10 1

4
· 1

2

425
= 2−427 16

10 1

4
· 1

2

571
= 2−573 32

10 1

4
· 1

2

597
= 2−599 16

10 1

4
· 1

2

697
= 2−699 to 1

4
· 1

2

993
= 2−995 48

11 1

4
· 1

2

620
= 2−622 32

11 1

4
· 1

2

663
= 2−665 16

12 1

4
· 1

2

681
= 2−683 32

13 1

4
· 1

2

737
= 2−739 32

14 1

4
· 1

2

786
= 2−788 32

15 1

4
· 1

2

855
= 2−857 32

16 1

4
· 1

2

983
= 2−985 32

iassen show that there are cases in which one can “help” the linear approximation
to be satisfied by properly selecting the inputs.



Table 4. Number of Approximations with a Given Bias Starting from a Pair of Pair of
Active Bits (Backward Direction)

Rounds Bias Number of Approximations

1 1

4
· 1

2

0
= 2−2 464

1 1

4
· 1

2

1
= 2−3 240

1 1

4
· 1

2

2
= 2−4 448

1 1

4
· 1

2

3
= 2−5 to 1

4
· 1

2

7
= 2−9 411040

2 1

4
· 1

2

5
= 2−7 216

2 1

4
· 1

2

11
= 2−13 400

2 1

4
· 1

2

13
= 2−15 368

2 1

4
· 1

2

17
= 2−19 to 1

4
· 1

2

37
= 2−39 250224

3 1

4
· 1

2

19
= 2−21 184

3 1

4
· 1

2

29
= 2−31 352

3 1

4
· 1

2

31
= 2−33 304

3 1

4
· 1

2

35
= 2−37 152

3 1

4
· 1

2

39
= 2−41 to 1

4
· 1

2

83
= 2−85 136544

4 1

4
· 1

2

37
= 2−39 152

4 1

4
· 1

2

66
= 2−68 528

4 1

4
· 1

2

75
= 2−77 120

4 1

4
· 1

2

77
= 2−79 144

4 1

4
· 1

2

80
= 2−82 to 1

4
· 1

2

172
= 2−174 69664

5 1

4
· 1

2

77
= 2−79 120

5 1

4
· 1

2

109
= 2−111 96

5 1

4
· 1

2

111
= 2−113 192

5 1

4
· 1

2

113
= 2−115 240

5 1

4
· 1

2

125
= 2−127 to 1

4
· 1

2

269
= 2−271 43344

6 1

4
· 1

2

111
= 2−113 96

6 1

4
· 1

2

163
= 2−165 168

6 1

4
· 1

2

169
= 2−171 176

6 1

4
· 1

2

179
= 2−181 112

6 1

4
· 1

2

187
= 2−189 to 1

4
· 1

2

387
= 2−389 18672

7 1

4
· 1

2

165
= 2−167 56

7 1

4
· 1

2

223
= 2−225 24

7 1

4
· 1

2

228
= 2−230 64

7 1

4
· 1

2

238
= 2−240 112

7 1

4
· 1

2

258
= 2−260 to 1

4
· 1

2

539
= 2−541 5904

8 1

4
· 1

2

225
= 2−227 24

8 1

4
· 1

2

353
= 2−355 32

8 1

4
· 1

2

381
= 2−383 16

8 1

4
· 1

2

413
= 2−415 to 1

4
· 1

2

617
= 2−619 272

9 1

4
· 1

2

481
= 2−483 32

9 1

4
· 1

2

527
= 2−529 16

9 1

4
· 1

2

679
= 2−681 32

10 1

4
· 1

2

550
= 2−552 32

10 1

4
· 1

2

773
= 2−775 16

11 1

4
· 1

2

599
= 2−601 16

11 1

4
· 1

2

863
= 2−865 16

12 1

4
· 1

2

953
= 2−955 16

In the case of modular addition, the linear approximation which we use is satis-
fied whenever one of the LSBs of the approximated bits is 0. This allows preselecting
inputs for which the approximation holds with probability 1.

When considering an extension of the linear approximation shown in Table 6 by
calculating it one round backward as described in Table 9, we can fix 80 input bits to
zero, thus ensuring that the approximation holds for the first layer of additions with
probability 1. These 80 bits are the ones masked by x10001 = 0008 0888x, x10011 =



Table 5. A trade-off of biases and rounds. Each line shows the best bias in this setting

Rounds Input mask Output mask Bias

7 x00001 = 0600 1806,x00011 = 0600 1806, x00000 = 0018 0606,x00010 = 0018 0606, 1

4
· 1

2

81
= 2−83

x00101 = 00c0 3030, x00111 = 00c0 3030, x01101 = 0000 0060,x01111 = 0000 0060,
x01001 = 000c 0303,x01011 = 000c 0303, x10001 = 0018 0606,x10011 = 0018 0606,
x10100 = 0000 0030,x10110 = 0000 0030, x10101 = c0c0 0300,x10111 = c0c0 0300,
x11001 = 000c 0303,x11011 = 000c 0303 x11101 = 6001 8060,x11111 = 6001 8060

8 x00000 = 0600 1806,x00010 = 0600 1806, x00000 = 0018 0606,x00010 = 0018 0606, 1

4
· 1

2

121
= 2−123

x01101 = 6660 0060,x01111 = 6660 0060, x01101 = 0000 0060,x01111 = 0000 0060,
x10001 = 0600 1806,x10011 = 0600 1806, x10001 = 0018 0606,x10011 = 0018 0606,
x10101 = 00c0 c003,x10111 = 00c0 c003, x10101 = c0c0 0300,x10111 = c0c0 0300,
x11101 = 6060 0180,x11111 = 6060 0180 x11101 = 6001 8060,x11111 = 6001 8060

9 x00001 = 0018 1998,x00011 = 0018 1998, x00000 = 0018 0606,x00010 = 0018 0606, 1

4
· 1

2

155
= 2−157

x00101 = c0cc c000,x00111 = c0cc c000, x01101 = 0000 0060,x01111 = 0000 0060,
x01001 = 0c0c cc00,x01011 = 0c0c cc00, x10001 = 0018 0606,x10011 = 0018 0606,
x10100 = 00c0 c003,x10110 = 00c0 c003, x10101 = c0c0 0300,x10111 = c0c0 0300,
x11001 = 0c0c cc00,x11011 = 0c0c cc00 x11101 = 6001 8060,x11111 = 6001 8060

10 x00001 = 0018 1998,x00011 = 0018 1998, x00001 = 0018 0606,x00011 = 0018 0606, 1

4
· 1

2

197
= 2−199

x00101 = c0cc c000,x00111 = c0cc c000, x00101 = c030 3000,x00111 = c030 3000,
x01001 = 0c0c cc00,x01011 = 0c0c cc00, x01001 = 0c03 0300,x01011 = 0c03 0300,
x10100 = 00c0 c003,x10110 = 00c0 c003 x10100 = 0030 3330,x10110 = 0030 3330,
x11001 = 0c0c cc00,x11011 = 0c0c cc00 x11001 = 0c03 0300,x11011 = 0c03 0300

11 x00001 = 0018 1998,x00011 = 0018 1998, x00000 = 8199 8001,x00010 = 8199 8001, 1

4
· 1

2

233
= 2−235

x00101 = c0cc c000,x00111 = c0cc c000, x01101 = 1818 0060,x01111 = 1818 0060,
x01001 = 0c0c cc00,x01011 = 0c0c cc00, x10001 = 8199 8001,x10011 = 8199 8001,
x10100 = 00c0 c003,x10110 = 00c0 c003, x10101 = 0030 3330,x10111 = 0030 3330,
x11001 = 0c0c cc00,x11011 = 0c0c cc00 x11101 = 1819 9800,x11111 = 1819 9800

12 x00000 = 1819 9800,x00010 = 1819 9800, x00000 = 9980 0181,x00010 = 9980 0181, 1

4
· 1

2

287
= 2−289

x01101 = e799 9f81,x01111 = e799 9f81, x01101 = 1800 6018,x01111 = 1800 6018,
x10001 = 1819 9800,x10011 = 1819 9800, x10001 = 9980 0181,x10011 = 9980 0181,
x10101 = 0003 0333,x10111 = 0003 0333, x10101 = 3033 3000,x10111 = 3033 3000,
x11101 = 0181 9980,x11111 = 0181 9980 x11101 = 1998 0018,x11111 = 1998 0018

13 x00000 = 0666 0006,x00010 = 0666 0006, x00001 = 6000 6066,x00011 = 6000 6066, 1

4
· 1

2

345
= 2−347

x01101 = e667 e079,x01111 = e667 e079, x00101 = 0303 3300,x00111 = 0303 3300,

x10001 = 0666 0006,x10011 = 0666 0006, x01001 = 0030 3330,x01011 = 0030 3330,
x10101 = 00c0 ccc0,x10111 = 00c0 ccc0, x10100 = 03cf 333f ,x10110 = 03cf 333f ,
x11101 = 6066 6000,x11111 = 6066 6000 x11001 = 0030 3330,x11011 = 0030 3330

14 x00001 = 3ccc fc0f ,x00011 = 3ccc fc0f , x00001 = 3033 3000,x00011 = 3033 3000, 1

4
· 1

2

405
= 2−407

x00101 = 67e0 79e6,x00111 = 67e0 79e6, x00101 = 9980 0181,x00111 = 9980 0181,
x01001 = 667e 079e,x01011 = 667e 079e, x01001 = 1998 0018,x01011 = 1998 0018,
x10100 = 6660 0060,x10110 = 6660 0060, x10100 = 999f 81e7,x10110 = 999f 81e7,
x11001 = 667e 079e,x11011 = 667e 079e x11001 = 1998 0018,x11011 = 1998 0018

0008 0888x, x10101 = 1100 0101x, x10111 = 1100 0101x and the whole words x11101

and x11111. We note that one can pick other sets of bits (where any fixed bit from
x0jklm can be exchanged for a bit in x1jklm).

Fixing bits for the next layer is a bit more tricky, as it requires to fix some
internal state bit (after an XOR or addition) is 0. This task is a bit harder due to
carry issues. More precisely, to fix bit i of x1jklm after the first five operations of
T , it is required that bit i of x

1jklm is 0 after the first operation of T . This specific
bit depends on the corresponding carry chain.

A simple solution would be to fix one of the words x
0jklm or x

1jklm to zero,
ensuring no carrys are produced during the addition x

1jklm ← x
0jklm + x

1jklm. By
additionally fixing bit i of both x

0jklm and x
1jklm to zero, we can guarantee that

the bit that enters the second layer of additions is indeed zero.



Table 6. The 11-round linear approximation with bias 1

4
· 1

2

233
= 2−235

Round Mask Bias Hamming
(before the round) Weight

Input x00001 = 0018 1998, x00011 = 0018 1998 1

4
· 1

2

33
= 2−35 76

x00101 = c0cc c000, x00111 = c0cc c000,
x01001 = 0c0c cc00, x01011 = 0c0c cc00,
x10100 = 00c0 c003, x10110 = 00c0 c003,
x11001 = 0c0c cc00, x11011 = 0c0c cc00

1 x00000 = 0600 1806, x00010 = 0600 1806, 1

4
· 1

2

39
= 2−41 64

x01101 = 6660 0060, x01111 = 6660 0060,

x10001 = 0600 1806, x10011 = 0600 1806,

x10101 = 00c0 c003, x10111 = 00c0 c003,

x11101 = 6060 0180, x11111 = 6060 0180

2 x00001 = 0600 1806, x00011 = 0600 1806, 1

4
· 1

2

17
= 2−19 52

x00101 = 00c0 3030, x00111 = 00c0 3030,

x01001 = 000c 0303, x01011 = 000c 0303,

x10100 = 0000 0030, x10110 = 0000 0030,

x11001 = 000c 0303, x11011 = 000c 0303

3 x00000 = 0001 8000, x00010 = 0001 8000, 1

4
· 1

2

13
= 2−15 28

x01101 = 6018 1800, x01111 = 6018 1800,

x10001 = 0001 8000, x10011 = 0001 8000,

x10101 = 0000 0030, x10111 = 0000 0030,

x11101 = 0000 1800, x11111 = 0000 1800

4 x00001 = 0001 8000, x00011 = 0001 8000, 1

4
· 1

2

3
= 2−5 16

x00101 = 0c00 0000, x00111 = 0c00 0000,

x01001 = 00c0 0000, x01011 = 00c0 0000,

x11001 = 00c0 0000, x11011 = 00c0 0000

5 x01101 = 0000 0006, x01111 = 0000 0006 1

4
· 1

2

1
= 2−3 4

6 x10100 = 0000 0300, x10110 = 0000 0300 1

4
· 1

2

5
= 2−7 4

7 x00000 = 0018 0000, x00010 = 0018 0000, 1

4
· 1

2

15
= 2−17 16

x10001 = 0018 0000, x10011 = 0018 0000,

x10101 = 0000 0300, x10111 = 0000 0300,

x11101 = 0001 8000, x11111 = 0001 8000

8 x00001 = 0018 0000, x00011 = 0018 0000, 1

4
· 1

2

21
= 2−23 28

x00101 = c000 0000, x00111 = c000 0000,

x01001 = 0c00 0000, x01011 = 0c00 0000,

x10100 = c0c0 0300, x10110 = c0c0 0300,

x11001 = 0c00 0000, x11011 = 0c00 0000

9 x00000 = 0018 0606, x00010 = 0018 0606, 1

4
· 1

2

41
= 2−43 52

x01101 = 0000 0060, x01111 = 0000 0060,

x10001 = 0018 0606, x10011 = 0018 0606,

x10101 = c0c0 0300, x10111 = c0c0 0300,

x11101 = 6001 8060, x11111 = 6001 8060

10 x00001 = 0018 0606, x00011 = 0018 0606, 1

4
· 1

2

35
= 2−37 64

x00101 = c030 3000, x00111 = c030 3000,

x01001 = 0c03 0300, x01011 = 0c03 0300,

x10100 = 0030 3330, x10110 = 0030 3330,

x11001 = 0c03 0300, x11011 = 0c03 0300

11 x00000 = 8199 8001, x00010 = 8199 8001, 76
x01101 = 1818 0060, x01111 = 1818 0060,

x10001 = 8199 8001, x10011 = 8199 8001,

x10101 = 0030 3330, x10111 = 0030 3330,

x11101 = 1819 9800, x11111 = 1819 9800

As the above approach sets many bits to zero (namely 33 bits to increase the
bias by a factor 2), we offer a more efficient approach. One can fix only bits i−1, i in
x

0jklm and i−1, i in x
1jklm to zero. Even if there is a carry entering bit i−1, it does

not produce carry that affects the i’th bit, and we are assured that bit i after the
addition is indeed 0. Therefore, to ensure that all the appropriate bits in x1jklm are



Table 7. The 14-round linear approximation with bias 1

4
· 1

2

405
= 2−407 rounds 1-9

Round Mask Bias Hamming
(before the round) Weight

input x00001 = 3ccc fc0f , x00011 = 3ccc fc0f , 1

4
· 1

2

60
= 2−62 160

x00101 = 67e0 79e6, x00111 = 67e0 79e6,
x01001 = 667e 079e, x01011 = 667e 079e,
x10100 = 6660 0060, x10110 = 6660 0060,
x11001 = 667e 079e, x11011 = 667e 079e

1 x00000 = 0003 0333, x00010 = 0003 0333, 1

4
· 1

2

54
= 2−56 100

x01101 = f03c f333, x01111 = f03c f333,
x10001 = 0003 0333, x10011 = 0003 0333,
x10101 = 6660 0060, x10111 = 6660 0060,
x11101 = 3000 3033, x11111 = 3000 3033

2 x00001 = 0003 0333, x00011 = 0003 0333, 1

4
· 1

2

34
= 2−36 76

x00101 = 1819 9800, x00111 = 1819 9800,
x01001 = 0181 9980, x01011 = 0181 9980,
x10100 = 6018 1800, x10110 = 6018 1800,
x11001 = 0181 9980, x11011 = 0181 9980

3 x00000 = c0c0 0300, x00010 = c0c0 0300, 1

4
· 1

2

40
= 2−42 64

x01101 = 0ccc 000c, x01111 = 0ccc 000c,
x10001 = c0c0 0300, x10011 = c0c0 0300,
x10101 = 6018 1800, x10111 = 6018 1800,
x11101 = 0c0c 0030, x11111 = 0c0c 0030

4 x00001 = c0c0 0300, x00011 = c0c0 0300, 1

4
· 1

2

18
= 2−20 52

x00101 = 0018 0606, x00111 = 0018 0606,
x01001 = 6001 8060, x01011 = 6001 8060,
x10100 = 0000 0006, x10110 = 0000 0006,
x11001 = 6001 8060, x11011 = 6001 8060

5 x00000 = 0000 3000, x00010 = 0000 3000 , 1
4
· 1

2

14
= 2−16 28

x01101 = 0c03 0300, x01111 = 0c03 0300,
x10001 = 0000 3000, x10011 = 0000 3000,
x10101 = 0000 0006, x10111 = 0000 0006,
x11101 = 0000 0300, x11111 = 0000 0300

6 x00001 = 0000 3000, x00011 = 0000 3000, 1

4
· 1

2

4
= 2−6 16

x00101 = 0180 0000, x00111 = 0180 0000,
x01001 = 0018 0000, x01011 = 0018 0000,
x11001 = 0018 0000, x11011 = 0018 0000

7 x01101 = c000 0000, x01111 = c000 0000 1

4
· 1

2

2
= 2−4 4

8 x10100 = 0000 0060, x10110 = 0000 0060 1

4
· 1

2

6
= 2−8 4

9 x00000 = 0003 0000, x00010 = 0003 0000, 1

4
· 1

2

16
= 2−18 16

x10001 = 0003 0000, x10011 = 0003 0000,
x10101 = 0000 0060, x10111 = 0000 0060,
x11101 = 0000 3000, x11111 = 0000 3000

zero one needs to set the mask bits masked by 000c 0cccx of x00001, x00011, x10001,
and x10011, the bits masked by c00c 0001x of x00101, x00111, x10101, and x10111, and
those masked by 0c0c cc00 in x01000, x01001, x01010, x01011, x11000, x11001, x11010, and
x11011 to zero. Fixing these 116 bits (10 of which are shared with the previous 80),
assures that all the additions in the first round of the 12-round approximation follow
the approximation, i.e., “saving” their “contribution” to the bias, and resulting in

a bias of 1

4
· 1

2

233
= 2−235.

We note that the number of bits set to 0 is 186, leaving 838 bits to be randomly
selected. This is sufficient to generate the 2470 possible inputs to T 12, needed for
using this chosen-plaintext linear approximation successfully, in a distinguishing
attack on 12-round CubeHash.



Table 8. The 14-round linear approximation with bias 1

4
· 1

2

405
= 2−407 rounds 10-14

Round Mask Bias Hamming
(before the round) Weight

10 x00001 = 0003 0000, x00011 = 0003 0000, 1

4
· 1

2

22
= 2−24 28

x00101 = 1800 0000, x00111 = 1800 0000,
x01001 = 0180 0000, x01011 = 0180 0000,
x10100 = 1818 0060, x10110 = 1818 0060,
x11001 = 0180 0000, x11011 = 0180 0000

11 x00000 = c003 00c0, x00010 = c003 00c0, 1

4
· 1

2

42
= 2−44 52

x01101 = 0000 000c, x01111 = 0000 000c,
x10001 = c003 00c0, x10011 = c003 00c0,
x10101 = 1818 0060, x10111 = 1818 0060,
x11101 = 0c00 300c, x11111 = 0c00 300c

12 x00001 = c003 00c0, x00011 = c003 00c0, 1

4
· 1

2

36
= 2−38 64

x00101 = 1806 0600, x00111 = 1806 0600,
x01001 = 0180 6060, x01011 = 0180 6060,
x10100 = 0006 0666, x10110 = 0006 0666,
x11001 = 0180 6060, x11011 = 0180 6060

13 x00000 = 3033 3000, x00010 = 3033 3000, 1

4
· 1

2

58
= 2−60 76

x01101 = 0303 000c, x01111 = 0303 000c,
x10001 = 3033 3000, x10011 = 3033 3000,
x10101 = 0006 0666, x10111 = 0006 0666,
x11101 = 0303 3300, x11111 = 0303 3300

14 x00001 = 3033 3000, x00011 = 3033 3000, 100
x00101 = 9980 0181, x00111 = 9980 0181,
x01001 = 1998 0018, x01011 = 1998 0018,
x10100 = 999f 81e7, x10110 = 999f 81e7,
x11001 = 1998 0018, x11011 = 1998 0018

Table 9. The round that extends the 11-round approximation to 12 rounds (and the bits
to fix

Round Input mask Input bits fixed to 0

-1 x00000 = 0018 1998, x00010 = 0018 1998 x10001 = 0008 0888x, x10011 = 0008 0888x

x01101 = 81e7 999f , x01111 = 81e7 999f x10101 = 1100 0101x, x10111 = 1100 0101x

x10001 = 0018 1998, x10011 = 0018 1998 x11101 = ffff ffffx, x11111 = ffff ffffx

x10101 = 3300 0303, x10111 = 3300 0303
x11101 = 8001 8199, x11111 = 8001 8199

-0.5 x00101 = f30c 0300x, x00111 = f30c 0300x x00001 = 000c 0cccx, x00011 = 000c 0cccx

x01000 = 0c0c cc00x, x01001 = 0c0c cc00x x00101 = c00c 0001x, x00111 = c00c 0001x

x01010 = 0c0c cc00x, x01011 = 0c0c cc00x x01000 = 0c0c cc00x, x01001 = 0c0c cc00x

x01101 = 8001 8199x, x01111 = 8001 8199x x01010 = 0c0c cc00x, x01011 = 0c0c cc00x

x10001 = 0018 1998x, x10011 = 0018 1998x x10001 = 000c 0cccx, x10011 = 000c 0cccx

x10101 = c00c 003, x10111 = c00c 003 x10101 = c00c 0001x, x10111 = c00c 0001x

x11000 = 0c0c cc00x, x11001 = 0c0c cc00x x11010 = 0c0c cc00x, x11011 = 0c0c cc00x

x11010 = 0c0c cc00x, x11011 = 0c0c cc00x x10001 = 000c 0cccx, x10011 = 000c 0cccx

0 x00001 = 0018 1998, x00011 = 0018 1998
x00101 = c0cc c000, x00111 = c0cc c000
x01001 = 0c0c cc00, x01011 = 0c0c cc00
x10100 = 00c0 c003, x10110 = 00c0 c003
x11001 = 0c0c cc00, x11011 = 0c0c cc00

−0.5 stands for the mask that enters the second addition of the additional round.

5 Distinguishing Reduced-Round Variants of the

Compression Function of CubeHash

Given the linear approximations presented in the previous sections, it is possible to
distinguish a black box which contains up to 12-round CubeHash from a random
permutation. Of course, for any unkeyed primitive this distinguishing can be done



by just comparing the input/output of a few queries to the black box with the
input/output produced by the publicly available algorithm. If we want to offer some
cryptographic settings in which distinguishing attacks make sense, we either need
to consider keyed variants (either of the round function T or of the hash function,
e.g., in MACs) or to discuss known-key distinguishers [23].

Such possible “application” is an a Even-Mansour [15] variant of 11-round T (or
any other number of rounds), i.e., EM -T 11

k1,k2
(P ) = T 11(P ⊕ k1) ⊕ k2. If 11-round

T is indeed good as a source of nonlinearity (for a linear T , the entire security
of CubeHash collapses), then XORing an unknown key before and after these 11
rounds, should result in a good pseudo-random permutation. Using our linear ap-
proximations, one can distinguish this construction from a random permutation.

We emphasize that as our results are linear in nature, they require that the
adversary has access both to the input to the nonlinear function as well as its
output. To the best of our knowledge, there is no way to use this directly in a hash
function setting.

6 Conclusions

In this paper we presented a series of approximations for the SHA-3 candidate
CubeHash. The analysis challenges the strength of CubeHash’s round function, T ,
and shows that (from linear cryptanalysis point of view), offers adequate security. At
the same time, the security margins offered by 16 iterations of T seems to be on the
smaller side, as future works on CubeHash may find better linear approximations.

Acknowledgement

The authors wish to thank Prof. Adi Shamir for his guidance and assistance an-
alyzing CubeHash, Nathan Keller for providing core ideas in this paper, Daniel
J. Bernstein for his insightful and mind-provoking comments on previous versions
of this article. Finally, we wish to thank Michael Klots for his technical assistance,
which was crucial for finding our results.

References

1. Andreeva, E., Bouillaguet, C., Fouque, P.A., Hoch, J.J., Kelsey, J., Shamir, A., Zim-
mer, S.: Second Preimage Attacks on Dithered Hash Functions. In Smart, N.P., ed.:
EUROCRYPT. Volume 4965 of Lecture Notes in Computer Science., Springer (2008)
270–288

2. Aumasson, J.P.: Collision for CubeHash2/120-512. NIST mailing list (2008) Available
online at http://ehash.iaik.tugraz.at/uploads/a/a9/Cubehash.txt.

3. Aumasson, J.P., Brier, E., Meier, W., Naya-Plasencia, M., Peyrin, T.: Inside the
Hypercube. In Boyd, C., Nieto, J.M.G., eds.: ACISP. Volume 5594 of Lecture Notes
in Computer Science., Springer (2009) 202–213

4. Bernstein, D.J.: CubeHash specification (2.B.1). Submission to NIST (2008)
5. Bernstein, D.J.: CubeHash specification (2.B.1). Submission to NIST (2009)
6. Biham, E., Chen, R.: Near-Collisions of SHA-0. [17] 290–305
7. Bloom, B., Kaminsky, A.: Single Block Attacks and Statistical Tests on CubeHash.

IACR ePrint Archive, Report 2009/407 (2009)
8. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Linearization framework for collision

attacks: Application to cubehash and md6. In Matsui, M., ed.: ASIACRYPT. Volume
5912 of Lecture Notes in Computer Science., Springer (2009) 560–577



9. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Real Collisions
for CubeHash-4/48. NIST mailing list (2009) Available online at
http://ehash.iaik.tugraz.at/uploads/5/50/Bkmp ch448.txt.

10. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Real Collisions
for CubeHash-4/64. NIST mailing list (2009) Available online at
http://ehash.iaik.tugraz.at/uploads/9/93/Bkmp ch464.txt.

11. Cannière, C.D., Rechberger, C.: Finding SHA-1 Characteristics: General Results and
Applications. In Lai, X., Chen, K., eds.: ASIACRYPT. Volume 4284 of Lecture Notes
in Computer Science., Springer (2006) 1–20

12. Cho, J.Y., Pieprzyk, J.: Multiple Modular Additions and Crossword Puzzle Attack
on NLSv2. In Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R., eds.: ISC. Volume
4779 of Lecture Notes in Computer Science., Springer (2007) 230–248

13. Cramer, R., ed.: Advances in Cryptology - EUROCRYPT 2005, 24th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings. In Cramer, R., ed.: EUROCRYPT.
Volume 3494 of Lecture Notes in Computer Science., Springer (2005)

14. Dai, W.: Collisions for CubeHash1/45 and CubeHash2/89 (2008) Available online at
http://www.cryptopp.com/sha3/cubehash.pdf.

15. Even, S., Mansour, Y.: A Construction of a Cipher from a Single Pseudorandom
Permutation. J. Cryptology 10(3) (1997) 151–162

16. Ferguson, N., Lucks, S., McKay, K.A.: Symmetric States and their Structure: Improved
Analysis of CubeHash. IACR ePrint Archive, Report 2010/273 (2010) Presented at
the SHA-3 second workshop, Santa Barbara, USA, August 23-24, 2010.

17. Franklin, M.K., ed.: Advances in Cryptology - CRYPTO 2004, 24th Annual Inter-
national CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004,
Proceedings. In Franklin, M.K., ed.: CRYPTO. Volume 3152 of Lecture Notes in
Computer Science., Springer (2004)

18. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. [17] 306–316

19. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In
Vaudenay, S., ed.: EUROCRYPT. Volume 4004 of Lecture Notes in Computer Science.,
Springer (2006) 183–200

20. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. [13] 474–490

21. Khovratovich, D., Nikolic’, I., Weinmann, R.P.: Preimage attack on
CubeHash512-r/4 and CubeHash512-r/8 (2008) Available online at
http://ehash.iaik.tugraz.at/uploads/6/6c/Cubehash.pdf.

22. Knudsen, L.R., Mathiassen, J.E.: A Chosen-Plaintext Linear Attack on DES. In
Schneier, B., ed.: FSE. Volume 1978 of Lecture Notes in Computer Science., Springer
(2000) 262–272

23. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In
Kurosawa, K., ed.: ASIACRYPT. Volume 4833 of Lecture Notes in Computer Science.,
Springer (2007) 315–324

24. Matsui, M.: Linear Cryptoanalysis Method for DES Cipher. In: EUROCRYPT. (1993)
386–397

25. National Institute of Standards and Technology: Cryptographic Hash Algorithm Com-
petition. http://www.nist.gov/hash-competition (2008)

26. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities. In Naor, M., ed.: EUROCRYPT.
Volume 4515 of Lecture Notes in Computer Science., Springer (2007) 1–22

27. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. [13] 19–35


