Cryptology ePrint Archive: Report 2010/442
Algebraic Pseudorandom Functions with Improved Efficiency from the Augmented Cascade
Dan Boneh and Hart Montgomery and Ananth Raghunathan
Abstract: We construct an algebraic pseudorandom function (PRF) that is more efficient than the classic Naor- Reingold algebraic PRF. Our PRF is the result of adapting the cascade construction, which is the basis of HMAC, to the algebraic settings. To do so we define an augmented cascade and prove it secure when the underlying PRF satisfies a property called parallel security. We then use the augmented cascade to build new algebraic PRFs. The algebraic structure of our PRF leads to an efficient large-domain Verifiable Random Function (VRF) and a large-domain simulatable VRF.
Category / Keywords: foundations / pseudorandom functions
Publication Info: ACM CCS 2010
Date: received 13 Aug 2010
Contact author: dabo at cs stanford edu
Available formats: PDF | BibTeX Citation
Note: This is the full version of the extended abstract titled "Algebraic Pseudorandom Functions with Improved Efficiency from the Augmented Cascade" that appears in ACM CCS 2010.
Version: 20100817:100737 (All versions of this report)
Discussion forum: Show discussion | Start new discussion
[ Cryptology ePrint archive ]