Cryptology ePrint Archive: Report 2010/429
A Family of Implementation-Friendly BN Elliptic Curves
Geovandro C. C. F. Pereira and Marcos A. Simplício Jr and Michael Naehrig and Paulo S. L. M. Barreto
Abstract: For the last decade, elliptic curve cryptography has gained increasing interest in industry and in the academic community. This is especially due to the high level of security it provides with relatively small keys and to its ability to create very efficient and multifunctional cryptographic schemes by means of bilinear pairings. Pairings require pairing-friendly elliptic curves and among the possible choices, Barreto-Naehrig (BN) curves arguably constitute one of the most versatile families.
In this paper, we further expand the potential of the BN curve family. We describe BN curves that are not only computationally very simple to generate, but also specially suitable for efficient implementation on a very broad range of scenarios. We also present implementation results of the optimal ate pairing using such a curve defined over a 254-bit prime field.
Category / Keywords: pairing-based cryptosystems, elliptic curve cryptosystems, pairing-friendly curves, pairing implementation
Publication Info: To appear (full version) in The Journal of Systems and Software 84(8), 1319--1326, Elsevier, 2011, doi:10.1016/j.jss.2011.03.083
Date: received 3 Aug 2010, last revised 3 Jun 2011
Contact author: geovandro at larc com br
Available formats: Postscript (PS) | Compressed Postscript (PS.GZ) | PDF | BibTeX Citation
Version: 20110604:003336 (All versions of this report)
Discussion forum: Show discussion | Start new discussion
[ Cryptology ePrint archive ]