
A Compact FPGA Implementation of the SHA-3
Candidate ECHO

Jean-Luc Beuchat, Eiji Okamoto, and Teppei Yamazaki

Graduate School of Systems and Information Engineering
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

jeanluc.beuchat@gmail.com, okamoto@risk.tsukuba.ac.jp, yamazaki@cipher.risk.tsukuba.ac.jp

Abstract—We propose a compact architecture of the SHA-3
candidate ECHO for the Virtex-5 FPGA family. Our architecture
is built around a 8-bit datapath. We show that a careful
organization of the chaining variable and the message block in
the register file allows one to design a compact control unit based
on a 4-bit counter, an 8-bit counter, and a simple Finite State
Machine.

A fully autonomous implementation of ECHO on a Xilinx
Virtex-5 FPGA requires 127 slices and a single memory block to
store the internal state, and achieves a throughput of 72Mbps.

I. INTRODUCTION

We describe a compact architecture of the SHA-3 candidate
ECHO, proposed by Benadjila et al. [1], on a Virtex-5 Field-
Programmable Gate Array (FPGA). Such an implementation is
for instance extremely valuable for constrained environments
such as wireless sensor networks or Radio Frequency Identifi-
cation technology, where some security protocols mainly rely
on cryptographic hash functions (see for example [2]).

After a short introduction to the ECHO family of hash
functions (Section II), we describe a compact coprocessor
based on an 8-bit datapath (Section III). We have prototyped
our architecture on a Xilinx Virtex-5 FPGA and discuss our
results in Section IV.

II. ALGORITHM SPECIFICATION

The ECHO family of hash functions [1] is built around
the round function of the Advanced Encryption Standard
(AES) [3]. This design strategy allows one to easily exploit
advances in the implementation of the AES, such as the
new AES instruction set of Intel Westmere processors [4].
ECHO is a family of four hash functions, namely ECHO-224,
ECHO-256, ECHO-384, and ECHO-512 (Table I). The main
differences lie in the length of the chaining variable and in the
number of rounds.

TABLE I
PROPERTIES OF THE ECHO FAMILY OF HASH FUNCTIONS (REPRINTED

FROM [1]). ALL SIZES ARE GIVEN IN BITS.

Algorithm
Chaining Message

Digest Counter Saltvariable block
ECHO-224 512 1536 224 64 or 128 128
ECHO-256 512 1536 256 64 or 128 128
ECHO-384 1024 1024 384 64 or 128 128
ECHO-512 1024 1024 512 64 or 128 128

In this work, we assume that our coprocessor is provided
with padded messages M . We refer the reader to [1, Section
2.2] for a description of the padding step. A hardware wrapper
interface for the SHA-3 candidates comprising communica-
tion and padding is described in [5]. A padded message is
divided into 1536-bit (ECHO-224 and ECHO-256) or 1024-
bit (ECHO-384 and ECHO-512) message blocks M1, M2,
. . . , Mt that are iteratively processed using a compression
function Compress512 (ECHO-224 and ECHO-256) or Com-
press1024 (ECHO-384 and ECHO-512).

8 bits Address

Vi−1 Mi

Vi−1 Mi

ECHO-224/256:

ECHO-384/512:

A0

A7 A11

A10 A14

A15

a
(0)
3,1

a
(0)
0,3a

(0)
0,2

a
(0)
1,2a

(0)
1,1

a
(0)
2,2

a
(0)
1,0

a
(0)
2,0

a
(0)
0,0 a

(0)
0,1

003

014

013

015011007

012008

009005

A6

010

001

A2

002

A13

000

A12

004

A9

a
(0)
2,1

A8

006

a
(0)
3,0

a
(0)
2,3

A5

a
(0)
1,3

A4

a
(0)
3,3

A1

a
(0)
3,2

A3

Fig. 1. Internal state of the ECHO family.

The internal state Si of the ECHO family can be viewed as
a 4× 4 array of 128-bit words (Figure 1), each of them being
considered as an AES state [3] (i.e. a 4× 4 array of bytes).

• ECHO-224/256. The 512-bit chaining variable Vi−1 and
the 1536-bit message block Mi, 1 ≤ i ≤ t, are split into
4 and 12 128-bit words, respectively. Vi−1 is stored in the



V1 TV0 VtBIG.MixColumns

Mt

BIG.ShiftRows

Ct SaltM1 C1 Salt

BIG.MixColumns

BIG.SubWords
BIG.ShiftRows

Compress1024

BIG.SubWords

Compress512 or

Fig. 2. Chained iteration of the compression function. T denotes the optional
truncation described in [1, Section 3.5] and [1, Section 4.1].

first column of the internal state, and Mi in the remaining
columns.

• ECHO-384/512. Both Vi−1 and Mi are 1024-bit values
that can be split into 8 128-bit words. Vi−1 occupies the
first half of the internal state and Mi the second one.

The initial chaining variable V0 encodes the intended hash
output size [1, Section 2.1].

ECHO applies iteratively a compression function to update
the chaining variable Vi, 0 ≤ i ≤ t (Figure 2). Com-
press512 and Compress1024 perform eight and ten iterations
of BIG.Round, respectively. BIG.Round is the sequential
composition of:

1) BIG.SubWords. This transformation applies two AES
rounds to each 128-bit word Aj , 0 ≤ j ≤ 15, of the
internal state defined on Figure 1:

Ãj ← AESENC(AESENC(Aj , k1), k2),

where AESENC denotes one round of the AES en-
cryption flow. The key schedule for the derivation of
the two 128-bit subkeys k1 and k2 is much simpler
than the one of the AES. k1 is related to the number
of unpadded message bits Ci hashed at the end of
the current iteration. An internal 64-bit counter κ is
initialized with the value of Ci, and k1 is defined as
follows:

k1 = κ ‖ 0 . . . 0︸ ︷︷ ︸
64×

.

κ is incremented at the end of each AES round involving
k1. If the size of the message exceeds 264 − 1, one has
the flexibility to use a 128-bit counter Ci. k2 is equal
to the 128-bit salt value that enables ECHO to support
randomized hashing.

2) BIG.ShiftRows. This operation is the analogue of the
ShiftRows step of the AES. The first line of the internal
state is left unchanged. Each 128-bit word of the second,
third, and fourth lines is left-rotated by one, two, and
three positions, respectively.

3) BIG.MixColumns. The four 128-bit columns of the
internal state can also be seen as 64 8-bit columns. The
MixColumns operation of the AES is applied to each
of them.

In this work, BIG.ShiftRows is implemented by accordingly
addressing the register file, and this operation is therefore
virtually for free. In the following, we will always combine

the BIG.ShiftRows and BIG.MixColumns steps. The internal
state is then updated as follows:(

ã
(k)
i,j , ã

(k+1)
i,j , ã

(k+2)
i,j , ã

(k+3)
i,j

)
← MixColumns

(
a
(k)
i,j , a

((k+5) mod 16)
i,j ,

a
((k+10) mod 16)
i,j , a

((k+15) mod 16)
i,j

)
,

where 0 ≤ i, j ≤ 3 and k ∈ {0, 4, 8, 12}. Since we focus on a
compact coprocessor for ECHO, we will implement a single
MixColumns unit and perform the BIG.MixColumns step
sequentially. 16 calls to MixColumns

(
a
(0)
i,j , a

(5)
i,j , a

(10)
i,j , a

(15)
i,j

)
,

0 ≤ i, j ≤ 3, will update the first column of the state
matrix. However, A1, A2, and A3 are still involved in the
forthcoming calls to MixColumns and we have to be careful
not to overwrite their current values. A solution consists in
having two blocks of 256 bytes in the memory: the operands
are read from the first one and the results written in the
second one. The role of both blocks is interchanged at the
end of the BIG.MixColumns step (note that we apply the
same strategy when performing the calls to AESENC during
the BIG.SubWords steps).

After eight (Compress512) or ten (Compress1024) rounds,
the BIG.Final step generates the new value of the chaining
variable Vi from Vi−1, Mi, and the internal state. It is therefore
necessary to keep a copy of Vi−1 and Mi in the register file
of the coprocessor. We give here the BIG.Final step of the
compression function Compress512 and refer the reader to [1,
Section 4] for Compress1024:

V
(0)
i = V

(0)
i−1 ⊕M

(0)
i ⊕M (4)

i ⊕M (8)
i ⊕

A0 ⊕A4 ⊕A8 ⊕A12,
V

(1)
i = V

(1)
i−1 ⊕M

(1)
i ⊕M (5)

i ⊕M (9)
i ⊕

A1 ⊕A5 ⊕A9 ⊕A13,
V

(2)
i = V

(2)
i−1 ⊕M

(2)
i ⊕M (6)

i ⊕M (10)
i ⊕

A2 ⊕A6 ⊕A10 ⊕A14,
V

(3)
i = V

(3)
i−1 ⊕M

(3)
i ⊕M (7)

i ⊕M (11)
i ⊕

A3 ⊕A7 ⊕A11 ⊕A15,

where Vi = V
(0)
i ‖ V (1)

i ‖ V (2)
i ‖ V (3)

i and Mi = M
(0)
i ‖

. . . ‖M (11)
i .

Once one has a coprocessor for ECHO-256, writing a
VHDL description of another member of the ECHO family
is straightforward: it suffices to slightly modify the control
unit in order to select the proper number of rounds and the
BIG.Final operation. Therefore, we will only focus on ECHO-
256 in the following.

III. A COMPACT COPROCESSOR FOR THE ECHO FAMILY
OF HASH FUNCTIONS

Figure 3 describes our compact coprocessor based on an
8-bit datapath. To our best knowledge, the first 8-bit Ap-
plication Specific Instruction Processor (ASIP) for the AES
was proposed by Good and Benaissa [6]. They defined a
minimal set of instructions to perform the operations required



by the AES and the control unit mainly consists of a program
ROM, an instruction decoder, and a program counter. In this
work, we show that a careful organization of the chaining
variable Vi and the message block Mi in the register file
allows one to design a control unit based on a 4-bit counter,
an 8-bit counter, and a simple Finite State Machine (FSM).
ShiftRows and BIG.ShiftRows operations are implemented
by accordingly addressing the register file and do not require
dedicated hardware. We slightly modified an AES encryption
round in order to support the BIG.MixColumns and BIG.Final
steps.

A. The SubBytes Step

The SubBytes step is the only non-linear transformation
of the AES. Each byte ai,j of the state is considered as a
polynomial belonging to F28 . An S-Box computes the modular
inverse of a−1

i,j (the value 00 is mapped onto itself) and then ap-
plies an affine transformation [3]. This step is often considered
as the most critical part of the AES and several architectures
for the S-Box have already been described in the literature
(see for instance [7] for a comprehensive bibliography). On
Xilinx Virtex-5 FPGAs, the best design strategy consists in
implementing the S-Box as a large multiplexer controlled by
ai,j [8]. An S-Box fits in only 32 6-input LUTs.

B. The MixColumns and BIG.MixColumns steps

Since the BIG.MixColumns step involves only Mix-
Columns operations, a multiplexer allows us to bypass the
S-Box. Recall that the MixColumns step is a permutation
operating on the AES state column by column: each column
is considered as a polynomial over F28 and multiplied modulo
x4+1 by c(x) = 03·x3+01·x2+01·x+02 [3]. This operation
is performed by multiplying each column of the AES state by
the following circulant matrix (all operations are performed in
F28
∼= F2[y]/(y

8 + y4 + y3 + y + 1)):
r0
r1
r2
r3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·

a0
a1
a2
a3

 .

Since we emphasize reducing the usage of FPGA resources,
we designed a Multiply-Accumulate unit and compute the
above equation in four clock cycles (Figure 4). Therefore, we
need 16 clock cycles to update the four columns of an AES
state. A single control bit allows one to enable or disable the
feedback loop.

C. The AddRoundKey and BIG.Final steps

Our MixColumns unit outputs four bytes that we store in
a shift register. This approach allows us to write the result
in the register file byte by byte. Since we focus on Virtex-5
FPGAs, we can take advantage of the 6-input LUT associated
with each flip-flop and perform an optional AddRoundKey
step without increasing the slice count (Figure 5). When the
control bit ctrl5 is set to 1, a subkey is combined with the AES
state by means of a bitwise exclusive OR operation. Eight

additional 6-input LUTs derive the new output value of the
chaining variable. During the BIG.Final step, two bytes are
read from the register file, added and accumulated thanks to
the feedback mechanism enabled by the control bit ctrl3.

Shift register LUTs with a clock enable (SRL16E primitive)
store the subkeys while minimizing the number of slices of our
coprocessor (Figure 6). The choice of a 32-bit datapath enables
to provide the AddRoundKey with four 8-bit sukbeys ski,
0 ≤ i ≤ 3 at each clock cycle, and to increment the internal
counter κ in two clock cycles, thus keeping the critical path
as short as possible.

10

1 bit
32 bits

ctrl9:8

1

0

01

00

ctrl7

ctrl6

Sh
if

tr
eg

is
te

rw
ith

ctrl10

cl
oc

k
en

ab
le

0 1

SR
L

16
E

Fig. 6. Implementation of the key schedule. Control bits ctrl7 and ctrl10
denote clock enable signals.

D. Register File

Recall that we need to store three blocks of 256 bytes in the
memory of the coprocessor. The first one stores the chaining
variable Vi−1 and the message block Mi needed to perform the
BIG.Final step. Two further blocks are allocated to the internal
state: during MixColumns operations, data are read from one
of them and results are written into the other one. The total
amount of memory is therefore 768 bytes, and a single block
of dual-ported memory allows us to implement our register file
on a Virtex-5 FPGA (RAMB18 primitive). The initial chaining
variable V0 and the message blocks Mi, 1 ≤ i ≤ t, are written
on port A. In order to avoid multiplexers (and to keep the size
of the circuit as small as possible), the data computed during
the BIG.SubWords, BIG.MixColumns, and BIG.Final steps
are written on port B. Since our MixColumns unit processes a
single input byte at each clock cycle, we need a single port to
read data during the BIG.SubWords and BIG.MixColumns
operations. However, in order to speed up the BIG.Final step,
we read data from ports A and B.

Our control unit generates 10-bit addresses: the byte a(k)i,j ,
where 0 ≤ k ≤ 15 and 0 ≤ i, j ≤ 3, is stored at position 16k+



1

0

we0

MixColumns
Data

addr0

addr1

we1

Port B
ct

rl
0

addr1 (10 bits)

ct
rl

1

ct
rl

5:
2

Control signals
32 bits
8 bits

Control unit User interface

Control word:

Data

ctrl10:6

(dual-ported memory block)
Register file

S-box

Round subkeys

Key schedule

Po
rt

B

sk
1

sk
2

sk
3

sk
0

Po
rt

A

AddRoundKey
and BIG.Final

ctrl10:0we0

Port A

addr0 (10 bits)

we1

Fig. 3. General architecture of a 8-bit ECHO coprocessor.

ctrl1
×02

1 bit
8 bits

×03

Ti
m

e

r1

2a0 ⊕ 3a1 ⊕ a2 a0 ⊕ 2a1 ⊕ 3a2 a0 ⊕ a1 ⊕ 2a2

r2

2a0 ⊕ 3a1 ⊕ a2 ⊕ a3

r3

a0 ⊕ 2a1 ⊕ 3a2 ⊕ a3

2a0

a0 ⊕ a1 ⊕ 2a2 ⊕ 3a3

Input of MixColumns: a0

3a0 ⊕ a1 ⊕ a2 ⊕ 2a3

Input of MixColumns: a1

Input of MixColumns: a2

Input of MixColumns: a3

3a0a0

a0 ⊕ 2a1a0 ⊕ a1 2a0 ⊕ 3a13a0 ⊕ a1

r0 r1 r2 r3

a0

r0

3a0 ⊕ a1 ⊕ a2

Fig. 4. Implementation of MixColumns.

4j + i in the the block specified by the two most significant
bits of the address (Figure 1).

E. Control Unit

Our control unit generates the eleven control bits ctrl10:0 of
the processing units, and addresses addr0 and addr1. It mainly
consists of a simple FSM (13 states), a 3-bit round counter,
and two specific counters that output the eight least significant
bits of the read and write addresses (i.e. the position of the
byte a

(k)
i,j in a block of 256 bytes; the two most significant

bits defining in which block we read/write the data are easily
computed by the FSM). We will focus here on the address
generation process, which was the most challenging task in the
design of our compact architecture: the addressing schemes of

the BIG.SubWords, BIG.MixColumns, and BIG.Final steps
seem very different at first. However, we found a way to
generate all read and write addresses with only one counter
by 5 modulo 16 and one modulo-256 counter.

Since we combine ShiftRows and MixColumns operations
during the BIG.SubWords step, we compute:(

ã
(k)
0,j , ã

(k+1)
1,j , ã

(k+2)
2,j , ã

(k+3)
3,j

)
← MixColumns

(
a
(k)
0,j , a

(k)
1,(j+1) mod 4,

a
(k)
2,(j+2) mod 4, a

(k)
3,(j+3) mod 4

)
,

where 0 ≤ j ≤ 3 and 0 ≤ k ≤ 15. Let us consider the
four least significant bits of the address of a(k)0,j (they give the



From

ctrl5

ctrl2
ctrl3

ctrl4

1 bit
8 bits6-

in
pu

t
L

U
T

s
5-

in
pu

t
L

U
T

s

5-input
LUTs

3-input
LUTs

sk1 sk2 sk3

1 0

1 0 1 0 1 0

register file

To register file

MixColumns

sk0

Fig. 5. Implementation of AddRoundKey and BIG.Final.

position of a a(k)0,j in the AES state Ak). We check that we have
to increment this address by 5 modulo 16 in order to obtain
the four least significant bits of the read addresses of a(k)1,j ,
a
(k)
2,j , and a

(k)
3,j (Figure 7a). Since a MixColumns operation

takes 16 clock cycles, we have to increment the four most
significant bits of the read address every 16 clock cycles. It
suffices to consider the four most significant bits of a modulo-
256 counter to achieve this task. Recalll that MixColumns
steps update each AES state Ai, 0 ≤ i ≤ 15, column by
column. Thus, thanks to our organization of the bytes a(k)i,j

in the memory, the same modulo-256 counter allows us to
generate write addresses.

During the BIG.MixColumns step, we have to increment
the read addresses by 80 modulo 256 (Figure 7b). Since 80 =
5·16, we can re-use our counter by 5 modulo 16 to compute the
four most significant bits of the read address. The write address
is incrementd by 16 modulo 256 at each clock cycles. The
four least significant bit of the modulo 256 counter allow us
to perform this operation. After 16 clock cycles, these counters
go back to their initial value and we have to increment the read
and write addresses by one. Thus, the four most significant
bits of the modulo-256 counter provide us with the four least
significant bits of these addresses.

Recall that we read two bytes at each clock cycle during
the BIG.Final step. Let us denote by B(k), 0 ≤ k ≤ 15, the
128-bit words of the 4× 4 array storing the chaining variable
Vi−1 and the message block Mi. In order to update a byte
of the chaining variable, we compute the bitwise exclusive
OR of a(k)i,j , a(k+4)

i,j , a(k+8)
i,j , a(k+12)

i,j , b(k)i,j , b(k+4)
i,j , b(k+8)

i,j , and
b
(k+12)
i,j , where 0 ≤ k ≤ 3. Starting from the address of a(k)i,j

(or b(k)i,j since we only consider the address of a byte in an
array of 256 bytes), we have to increment it by 64 at each
clock cycles. The least significant bit is incremented by one
every four clock cycles in order to process the next byte of
the internal state. Since we overwrite Vi−1, the generation of
write addresses is straightforward during the BIG.Final step.

These observations allow for the design of a compact
address generator for our coprocessor (Figure 8). It mainly
consists of a counter by 5 modulo 16 and a modulo-256
counter. Two multiplexers select read and write addresses
according to two control bits specifying the current operation
(BIG.ShiftRows, BIG.MixColumns, or BIG.Final). Recall
that our coprocessor embeds several pipeline stages (Figure 3):

• The read address is stored in an internal register of the
dual-ported memory block.

• The data at the specified address is stored in the output
register on port A.

• The MixColumns operations is performed in an iterative
fashion and requires four clock cycles.

• Our AddRoundKey unit stores its outcome in a shift-
register before sending it to the register file.

Consequently, the write operation occurs seven clock cycles
after the corresponding read operation. It is therefore necessary
to delay write addresses by seven clock cycles. Figure 9
describes our address generation scheme. For each operation,
we have to generate 256 read and write addresses (except in the
BIG.final step where only 64 bytes are written in the register
file). Since our two counters are incremented modulo 16 and
256, respectively, they automatically return to their initial state
at the end of the process, and we can start a new operation
without introducing pipeline bubbles (one easily checks that



A1 A5

A8

a
(0)
3,3a

(0)
3,2a

(0)
3,1

a
(0)
0,3

A9

A12

A13

a
(0)
0,2

a
(0)
1,2

A2 A6

A3 A7 A11

A10 A14

A15

005

010

001

002

000 004

006

003

Ã0

Ã1

Ã4

Ã5

Ã8

Ã9

Ã12

Ã13

Ã2 Ã6

Ã3 Ã7 Ã11

Ã10 Ã14

Ã15

014

013

ã
(0)
3,0

015

ã
(0)
2,3

011

ã
(0)
1,3

007

012

a
(0)
1,1

ã
(0)
3,3

a
(0)
2,2

008

005

010

001

ã
(0)
3,2

002

ã
(0)
3,1

ã
(5)
0,3

ã
(6)
0,3

ã
(7)
0,3

000

ã
(0)
0,3

004

ã
(0)
0,2

006

003

a
(0)
3,0

014

ã
(0)
1,2

013

a
(0)
1,0 ã

(0)
1,1

a
(0)
2,0

015

a
(0)
0,0

ã
(0)
2,2

ã
(0)
1,0

a
(0)
0,1

a
(0)
2,3a

(0)
2,1

011

009

ã
(0)
2,0

007

ã
(0)
0,0

012

ã
(0)
0,1

156076

060

236

076

092

108

124

a
(9)
0,3a

(4)
0,3

a
(3)
0,3

a
(14)
0,3

ã
(4)
0,3

008

ã
(0)
2,1

a
(0)
1,3

(a) ShiftRows and MixColumns

009

(b) BIG.ShiftRows and BIG.MixColumns

A0 A4

Fig. 7. Address generation during BIG.SubWords and BIG.MixColumns.

our address generation scheme avoids memory collisions).
Each round involves two MixColumns steps (BIG.SubWords)
and a BIG.MixColumns step. Therefore, the total number of
clock cycles for eight rounds is equal to 8 · 3 · 256 = 6144.

3:
0

Modulo-256 counter Modulo-16 counter

1:
0

7:
2

0110 00

7:
4

7:
4

0110 00

00: BIG.SubWords
01: BIG.MixColumns
10: BIG.Final

Write address

Read address

SR
L

16

7-
st

ag
e

sh
if

tr
eg

is
te

r

8 bits

1

4 bits

5

7:
2

7:
4

Fig. 8. Address generator based on a modulo-16 counter and a modulo-256
counter.

The BIG.Final step requires careful attention: in order to
speed up this operation, we read a byte of Vi−1 or Mi on

port A, and a byte of the internal state (i.e. the output of
the eighth round) on port B at each clock cycle. Due to the
internal pipeline stages of our architecture, the computation
of a byte of Vi also requires seven clock cycles. However, we
have to wait for the end of the write cycle before processing
the next byte and the total number of clock cycles is given by
64 · 7+ 1 = 449 (one additional cycle is required to complete
the last write cycle and reset the FSM before processing the
next compression function).

IV. RESULTS, COMPARISONS, AND FUTURE WORK

We captured our architectures in the VHDL language and
prototyped our coprocessors on a Virtex-5 FPGA with average
speedgrade. Table II summarizes our place-and-route results.
A bunch of articles about ASIC and FPGA implementations
of ECHO are available in the SHA-3 Zoo [9]. However, most
of them focus on high-speed parallel implementations [10]–
[13], and it is difficult to compare our work against such
designs. To the best of our knowledge, the only compact
coprocessor reported in the literature is the one by Lu et
al. [12]. Unfortunately for our comparison, they only describe
an ASIC implementation.

A few researchers proposed compact implementations of
other SHA-3 candidates on Virtex-5 FPGAs (see for in-
stance [9]). In terms of slice count, ECHO is one of the best
candidates: only BLAKE-32 allows for the design of a more



208 32 112

128 144 160

15 95 175 255 79 159 239 63

127111957963473115

143 223 47 127

143 159 175 191

207 31 111 191

207 223 239 2550 16 32 48

0 80 160 240

Ã0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 25525425325225125024924824724624524424324224124015

0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 1111

A15 A15 A15 A15 Ã15Ã15Ã15Ã15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 25525425325225125024924824724624524424324224124015

11 240 245 250 255 244 249 254 254 248 253 242 247 252 241 246 2510 5 10 15 4 9 14 3 8 13 2 7 12 1 6

176192 16 96

176 192 208 224 240

64 144 224 48

64 80 96 112

128

1 1 1 2 2 2 2 3 3 3 3

0 64 128 192 1 65 129 193 2 66 130 194 3 67 131 195

0 0 0 0 60 60 60 60 61 61 61 61 62 62 62 62 63 63 63 63

60 124 188 252 61 125 189 253 62 126 190 254 63 127 191 255

BIG.Final

Write addresses:

Read addresses:

1

Modulo-256 counter:

Modulo-16 counter:

BIG.SubWords

Write addresses:

Read addresses:

A0 A0 A0 A0 Ã0Ã0Ã0

BIG.MixColumns

Write addresses:

Read addresses:

Fig. 9. Address generation during BIG.SubWords, BIG.MixColumns, and BIG.Final steps.



TABLE II
COMPACT IMPLEMENTATIONS OF SHA-3 CANDIDATES ON VIRTEX-5 FPGAS.

Algorithm FPGA
Area Memory Frequency Throughput

[slices] blocks [MHz] [Mbps]
This work ECHO-224/256 xc5vlx50-2 127 1 352 72

Beuchat et al. [14] BLAKE-32 xc5vlx50-2 56 2 372 225
Aumasson et al. [15] BLAKE-32 xc5vlx110 390 – 91 575
Beuchat et al. [14] BLAKE-64 xc5vlx50-2 108 3 358 314
Aumasson et al. [15] BLAKE-64 xc5vlx110 939 – 59 533

Bertoni et al. [16] Keccak xc5vlx50-3 448 – 265 52

Baldwin et al. [17] Shabal xc5vlx220-2 2307 – 222.22 1330
Feron and Francq [18] Shabal not specified 596 – 109 1142
Detrey et al. [19] Shabal xc5vlx30-2 153 – 256 2051

compact coprocessor (at the price of an extra memory block).
In spite of a high clock frequency, the throughput is however
quite disappointing when compared to other candidates.

The main advantage of ECHO is that it is based on the
round function of the AES. We plan to modify our architecture
to support AES encryption, AES decryption, and ECHO.
Figure 10 describes the general architecture of our processing
unit. On Virtex-5 devices, the MixColumns and InvMix-
Columns units require the same number of slices. Thus, there
is no need to exploit the relation between the MixColumns
polynomial c(x) and the InvMixColumns polynomial d(x) [3,
p. 55]. A few control bits allow one to configure the datapath
of the coprocessor in order to perform the desired operation.
We will design a control unit for this architecture in future
work.

0

InvMixColumns

1

0

Control signals
8 bits

BIG.Final

1

0

1

0

1

0

Subkey

register file
From

To
re

gi
st

er
fil

e

MixColumns

1

0

SubBytes

InvSubBytes

1

Fig. 10. A coprocessor for AES encryption, AES decryption, and ECHO.

REFERENCES

[1] R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Rob-
shaw, and Y. Seurin, “SHA-3 proposal: ECHO,” 2009, available online
at http://crypto.rd.francetelecom.com/echo.

[2] J. Zhai, C. Park, and G.-N. Wang, “Hash-based RFID security protocol
using randomly key-changed identification procedure,” in Computational
Science and Its Applications–ICCSA 2006, ser. Lecture Notes in Com-
puter Science, M. Gavrilova, O. Gervasi, V. Kumar, C. K. Tan, D. Taniar,
A. Laganà, Y. Mun, and H. Choo, Eds., no. 3983. Springer, 2006, pp.
296–305.

[3] J. Daemen and V. Rijmen, The Design of Rijndael. Springer, 2002.
[4] R. Benadjila, O. Billet, S. Gueron, and M. Robshaw, “The Intel AES

instructions set and the SHA-3 candidates,” in Advances in Cryptology–
ASIACRYPT 2009, ser. Lecture Notes in Computer Science, M. Matsui,
Ed., no. 5912. Springer, 2009, pp. 162–178.

[5] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and
W. Marnane, “A hardware wrapper for the SHA-3 hash algorithms,”
2010, cryptology ePrint Archive, Report 2010/124.

[6] T. Good and M. Benaissa, “AES on FPGA from the fastest to the
smallest,” in Cryptographic Hardware and Embedded Systems–CHES
2005, ser. Lecture Notes in Computer Science, J. R. Rao and B. Sunar,
Eds., no. 3659. Springer, 2005, pp. 427–440.

[7] K. Gaj and P. Chodowiec, “PGA and ASIC implementations of the
AES,” in Cryptographic Engineering, Ç.K. Koç, Ed. Springer, 2009,
pp. 235–294.

[8] P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvroy,
“Implementation of the AES-128 on Virtex-5 FPGAs,” in Progress
in Cryptology–AFRICACRYPT 2008, ser. Lecture Notes in Computer
Science, S. Vaudenay, Ed., no. 5023. Springer, 2008, pp. 16–26.

[9] “The SHA-3 zoo,” http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo.
[10] M. Kinsy and R. Uhler, “SHA-3: FPGA implementation of ESSENCE

and ECHO hash algorithm candidates using Bluespec,” available at http:
//csg.csail.mit.edu/6.375/6 375 2009 www/projects/group1 report.pdf.

[11] K. Kobayashi, J. Ikegami, S. Matsuo, K. Sakiyama, and K. Ohta,
“Evaluation of hardware performance for the SHA-3 candidates using
SASEBO-GII,” 2010, cryptology ePrint Archive, Report 2010/010.

[12] L. Lu, M. O’Neill, and E. Swartzlander, “Hardware evaluation
of SHA-3 hash function candidate ECHO,” available at
http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/
TheClaudeShannonWorkshoponCodingCryptography2009/
DocumentFile,75649,en.pdf.

[13] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt, and
A. Szekely, “High-speed hardware implementations of BLAKE, Blue
Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak,
Luffa, Shabal, SHAvite-3, SIMD, and Skein,” 2009, cryptology ePrint
Archive, Report 2009/510.

[14] J.-L. Beuchat, E. Okamoto, and T. Yamazaki, “Compact implementations
of BLAKE-32 and BLAKE-64 on FPGA,” 2010, cryptology ePrint
Archive, Report 2010/173.

[15] J.-P. Aumasson, L. Henzen, W. Meier, and R.-W. Phan, “SHA-3 proposal
BLAKE (version 1.3),” 2009, available online at http://www.131002.net/
blake.

[16] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Keccak sponge
function family main document (version 2.0),” 2009, available online at
http://keccak.noekeon.org.

[17] B. Baldwin, A. Byrne, M. Hamilton, N. Hanley, R. McEvoy, W. Pan, and
W. Marnane, “FPGA implementations of SHA-3 candidates: CubeHash,
Grøstl, LANE, Shabal and Spectral Hash,” 2009, cryptology ePrint
Archive, Report 2009/342.

[18] R. Feron and J. Francq, “FPGA implementation of Shabal: Our first
results,” 2010, available online at http://www.shabal.com.

[19] J. Detrey, P. Gaudry, and K. Khalfallah, “A low-area yet performant
FPGA implementation of Shabal,” 2010, cryptology ePrint Archive,
Report 2010/292.


