
Efficient Differential Fault Analysis for AES

Shigeto Gomisawa1, Yang Li1, Junko Takahashi1,2, Toshinori Fukunaga2,
Yu Sasaki2, Kazuo Sakiyama1, Kazuo Ohta1

1 Department of Informatics, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

g-shigeto-lfat@ice.uec.ac.jp
2 NTT Information Sharing Platform Laboratories, NTT Corporation

3-9-1 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan

Abstract. This paper proposes improved post analysis methods for Dif-
ferential Fault Analysis (DFA) against AES. In detail, we propose three
techniques to improve the attack efficiency as 1) combining previous
DFA methods, 2) performing a divide-and-conquer attack by consider-
ing the AES key-schedule structure, and 3) taking the linearity of the
MixColumns operation into account. As a result, the expectation of the
analysis time in the previous work can be reduced to about one sixteenth.
Notice that these improvements are based on the detailed analysis of the
previous DFA methods and the calculation time and memory cost in
practical implementations. Moreover, the proposed techniques can be
widely applied to DFA attacks under different assumptions.

Keywords: Fault Analysis Attack, DFA, AES, Divide-and-Conquer

1 Introduction

Fault Analysis (FA) attacks retrieve secret information by analyzing a faulty
ciphertext that is obtained by inducing errors into a cryptographic device while it
is working. In 1997, Biham and Shamir applied FA to Data Encryption Standard
(DES) [1]. The method is called Differential Fault Analysis (DFA). Since then,
several DFA methods for AES have been proposed in [2–8].

Many of previous methods are based on [5] which uses a 1-byte fault at the
random fault model, where an attacker does not know the position and value of
the fault. The attack procedure of [5] and [7] is summarized in Alg.1.

Algorithm 1. Attack algorithm by [5] and [7]

Step 0. Guess the position of the fault injected byte.
Step 1. Reduce the key-candidate space of the last round key K10 into (28)4 = 232

by using a pair of the correct and faulty ciphertexts.
Step 2. 232 candidates of K10, retrieval the original key K by the brute force attack.

(10 AES-round operations per candidate)

If the correct key is not found, the attack is repeated with changing the guess
at Step 0. We see that the number of repetitions of Step 0 in [5] is 13 at the
worst case. In 2009, Saha, Mukhopadhyay and RoyChowdhury [7] showed an
improvement of [5] so that the number of repetitions could be at most 4 instead
of 13. Tunstall and Mukhopadhyay [8] showed another improvement of [5] so
that the Step 2 can be divided into 232 times with a 2-round AES decryption
and 28 times with a 10-round AES decryption.

In AES, due to the mixture of ShiftRows and MixColumns, the full diffusion
reaches after a 2-round operation. Therefore, Step 2 of [5] and [7], which com-
putes a 10-round decryption, and Step 2 of [8], which first computes a 2-round
decryption, require the knowledge of all bytes of K10. This fact reveals that all
previous DFA methods need a 232 brute force attack which costs the most time.

In this research, we propose several improved DFA methods based on [5].
First, we point out that the techniques of [7] and [8] can be combined in order
to reduce the analysis time. Second, we present a divide-and-conquer attack
at Step 2 with considering the AES key-schedule structure, which significantly
reduce the space of the key candidates. Previous methods retrieve the correct
key by computing the input difference of the 8th-round MixColumns from a pair
of a correct and a faulty ciphertext, which requires the inverse operations of
ShiftRows and MixColumns twice for each. In this case, the diffusion reaches
the full diffusion.

Meanwhile, we retrieve the correct key by pre-computing the possible output
differences (4-byte) of MixColumns in the 8th round and using only 2 bytes
of them in Step 2. Hence, Step 2 can compute the inverse of ShiftRows and
MixColumns twice and once, respectively, and thus the diffusion does not reach
the full diffusion. By taking advantage of this, we could perform Step 2 with the
partial knowledge of K10, and thus a divide-and-conquer attack can be applied
potentially. As a result, the complexity of Step 2 is reduced to 230 1-round
decryptions.

Lastly, we further improve this result by considering the linearity of Mix-
Columns in the 9th round and apply a divide-and-conquer attack. As a result,
the complexity of Step 2 is reduced to 228 1-round decryption, and the number
of repetitions at Step 0 is at most 4.

1.1 Notations

The following notations are used in this paper. Notations of the intermediate
states of AES are following [9].

2 Previous DFA methods for AES

2.1 Overview

In 2003, Piret and Quisquater proposed a DFA method for 128-bit AES (AES-
128) [5]. They indicated that an attacker retrieves a secret key with a pair of a
correct ciphertext C and a faulty ciphertext C obtained by injecting 1-byte error

C , C : correct and faulty ciphertexts, respectively

K n : nth round key
i, j : row and column positions of the state

SB, SR, MC: SubBytes, ShiftRows, and MixColumns functions

I n : input of the nth round

SBOn , MCI n : output of SB and input of MC in the nth round

MCOn : output of MC in the nth roundX

Ci,j , Ci,j , K
n
i,j , I

n
i,j : (i, j) byte of C, C , K n , and I n

tX : computational time for an operation X

into I8. Because an attacker does not know the error byte position, the attack
needs to be repeated for 13 times at the worst case.

Saha, Mukhopadhyay and RoyChowdhury improved this method by utilizing
the nature of the AES structure that a 1-byte error injected at I8 is diffused to 4
bytes byMC in the 8th round, and to 16 bytes byMC in the 9th round. The error
path varies by positions where the 1-byte error is injected. Figure 1 describes
all of the error paths when a 1-byte error is injected into I8. The numbers “1”
to “4” in Fig. 1 represent the propagation paths of the error. As shown in the
figure, we see that the number of the paths is only 4. Consequently, Saha et
al.’s method indicates that an attacker can recover a secret key by repeating the
attack at most 4 times.

 1 4 3 2 2 1 4 3 3 2 1 4 4 3 2 1

 3 2 1 4 2 1 4 3 1 4 3 2 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 1 byte error injection 1 2 3 4
1 2 3 4 1 2 3 4

Fig. 1. Error propagating paths when 1 byte error is injected at I8

Tunstall and Mukhopadhyay also proposed an efficient DFA method based
on the one proposed by Piret and Quisquater. It assumes that an attacker knows
in which byte an error is injected at I8. Using the inverse key expansion routine,
they divide Step 2 into two phases as shown in Alg. 2.

Algorithm 2. Improved procedure for Step 2 in [8]

Step 2-1. For 232 candidates of K10, compute the 2-round decryption for C and C.
The correct key has a non-zero difference in the guessed byte position
at Step 0 and zero difference for other 3 bytes. This occurs with a
probability of 2−24. Hence only 28 candidates remain after this step.

Step 2-2. Recover a secret key by the brute force attack for remaining 28 candidates,
which are reduced at Step 2-1.

Table 1. Comparison of the analysis time of previous DFA methods

Piret et al. [5] Saha et al. [7] Tunstall et al. [8]

Step 1 3 · 216(2 · t AR+ t CMP 28) · 4
Step 2-1A ————-

Step 2-1B ————- V2 = 232 · (t CMP + 2 · 2 · t AR
+t KR)

Step 2-2 V1 = 232(t CMP + 10 · t AR 28 · (t CMP + 10 · t AR
+10 · t KR) +10 · t KR)

Number best 1
of worst 13 4 16

trials E 3.4 2.5 8.5

Total 3.4 · V1 2.5 · V1 8.5 · V2

Ratio(α = β = 1) 100 74 71

Ratio(α = β = 0) 100 74 100

Memory[Byte] 4 · 212

t AR represents the processing time of computing one round of AES. t KR
represents the processing time of computing one round of key-schedule.

t KR = β · t AR(0 ≤ β ≤ 1), t CMP represents the processing time of comparing
two data. t CMP 2x = x · t CMP , t CMP = α · t AR(0 ≤ α ≤ 1) We measure the

attack efficiency ratio by setting the method by Piret and Quisquater “100”.

Both methods [5, 7] do not have Step 2-1, while the method in [8] does.
Because Step 2-1 performs only a 2-round decryption, it is more efficient than
the original Step 2 which performs a full-round (10-round) AES decryption.
Also since the key space is largely reduced at Step 2-1 before the full-round
decryption, the method by Tunstall and Mukhopadhyay can be more efficient.
However their attack needs to be repeated 16 times at the worst case.

2.2 The number of trails in previous DFA methods

We consider the expectation of the number of repetitions of Alg. 1 (Piret et al.’s
method). In this attack, an attacker guesses the position of the injected error
propagation byte, and generates the error propagation path based on the guess.
The attack succeeds if the generated error propagation path is the same as the
actual error propagation path. Hence, the expectation of the number of trials (E)
of the Piret et al.’s method can be calculated by Eqs. (1) and (2). Therefore, E

is 3.4. Note that pn is the probability that the first success of the attack occurs
at the nth trial.

pn =

{
1
4 (n = 1)

4
16−(n−1) ×

∏n−1
k=1(1− pk) (n > 1),

(1)

E =
13∑

n=1

(n · pn). (2)

For the case of Saha et al.’s method, the number of trials is 1 at the best

case, and 4 at the worst case. Consequently, the expectation E is (1+4)
2 or 2.5.

Finally, we consider the case of Tunstall et al.’s method. The number of trials
is 1 at the best case, but 16 at the worst case. Therefore, the expectation is
(1+16)

2 or 8.5. Table 1 compares the computational complexity of previous DFA
methods. The expectation of the number of trials is also compared.

Evaluate the analysis time We evaluate the method by Piret and Quisquater.
Before performing Alg. 1, they pre-compute the difference table of MCO9. The
difference table of MCO9 has 28 entries. Step 1 reduces the space of the key
candidates of the last round key K10 per column of the AES state. Instead of
checking 4 bytes in a column at once, we can perform 2-byte checking for 3 times
for a efficient computation. The details were explained in [5]. Consequently, the
analysis time of Step 1 is considered as 3 ·216(2 ·t AR+t CMP 28) ·4. Hereafter,
we denote the comparison with a table of 2x entries as CMP 2x.

Step 2 is a step where an attacker performs 232 brute force attack. Hence,
the analysis time of Step 2 is V1 = (t CMP + 10 · t AR + 10 · t KR) · 232.
Consequently, the analysis time of Step 1 is negligibly small compared with
Step 2. By considering the expectation of the number of trials, the analysis time
is 3.4 · V1.

Next, we consider the analysis time of the method by Saha, Mukhopadhyay
and RoyChowdhury. Their method is almost the same as the method by Piret
and Quisquater, while the expectation of the number of trials E is only 2.5.
Consequently, the analysis time of their method is derived as 2.5 · V1.

We consider the analysis time of the method by Tunstall and Mukhopadhyay.
The complexity of Step 1 is calculated based on the attack procedure of [5]. Be-
cause Step 1 is not related to our improvement and its computational complexity
is small enough, we will omit the detailed explanation. For Step 2-1, an attacker
performs a 2-round decryption for 232 candidates of K10. Since K9 needs to be
calculated from K10 in a 2-round decryption, we perform one AES key-schedule
operation denoted as KR. Next, we check whether the derived differential values
by the 2-round decryption contains only a 1-byte error. We call this operation
CMP .

Hence, the analysis time of Step 2-1 is V2 = (t CMP+2 ·2 · AR+t KR) ·232.
Note that the number of remaining candidates becomes 28 after Step 2-1. For

Step 2-2, an attacker performs a 10-round decryption for 28 candidates, and
thus the complexity becomes (t CMP +10 · t AR+10 · t KR)) · 28. Because the
analysis times of Steps 1 and 2-2 are negligibly-small compared with Step 2-1,
and as a result, the analysis time of their method is 8.5 · V2.

In order to compare the analysis time of previous methods, we measure the
ratio by setting that the computational complexity of the method by Piret and
Quisquater is 100. We assume that the processing times of CMP and KR are
represented with t AR as follow.

1. An attacker sorts 28 difference table while preparing the table and uses a binary
search when performing CMP , and hence we can assume that t CMP 2x =
x · t CMP

2. We assume t CMP = α · t AR, where 0 ≤ α ≤ 1.
3. We assume t KR = β · t AR, where 0 ≤ β ≤ 1.

In a practical implementation of the DFA method, the above assumptions
are dependent on computing systems. However, we believe that AR is the most
time consuming operation, so we set 0 ≤ α, β ≤ 1.

For the purpose of evaluating the impact of the computational complexity
on different platforms (e.g. PC with AES-NI and dedicated hardware implemen-
tations)

When α = β = 1, we obtain V1 = (10 + 10 + 1) · t AR · 232 = 20 · 232 · t AR
and V2 = (1+4+1) ·232 = 6 ·232 · t AR. In this condition, the methods of [7] and
[8] achieve 74 and 71, respectively in terms of Ratio in Table 1. On the contrary,
for the case of α = β = 0, we obtain V1 = 10 · t AR · 232 = 10 · 232 · t AR and
V2 = (0 + 4 + 0) · 232 = 4 · 232 · t AR. In this condition, the methods of [7] and
[8] achieve 74 and 100, respectively in terms of Ratio.

Note that all of the three methods use at most 4 · 212-byte memory during
performing the DFA attacks.

3 Our proposed DFA methods

3.1 Combining previous DFA methods

Basic idea for the combined method Saha et al. reduce the expectation of
the number of trials, while Tunstall et al. reduce the analysis time of Step 2.
These two improvements use different properties of the attack, and therefore it
is natural to combine them for achieving an efficient DFA.

In the combined method, an attacker guesses the error-propagation path.
Therefore, when Step 2-1 is computed, an attacker checks whether the difference
of MCI8 contains non-zero in any 1 byte and zeros for other 15 bytes. This
occurs with a probability of 4 × 2−24 = 2−22, and hence 232 × 2−22 = 210 key
candidates remain. Finally, we perform a brute force attack with 210 candidates
in Step 2-2. Consequently, we can see that the analysis time is reduced to 2.5 ·V2

where V2 will be explained in Sect. 3.1.2. The details of the DFA efficiency will be
discussed in the next sub-section. Note that this combining idea is also applicable
for the attacks in the following sections.

Computational complexity of the combined method Step 1 of this method
is the same as one in the methods by [7], [8], which cannot be a critical operation
since its computational complexity is at most 120 · 216 or about 223 considering
the case of α = 1. Instead, Step 2-1B is the most time-consuming operation as is
the case for the method in [8]. As the number of trials is the same as that of the
method in [7], the expectation of the total computational complexity is 2.5 · V2

where V2 is the computational complexity in Step 2-1B. As a result, we see that
the reduction of 2.5

8.5 or 29% is possible compared to the method in [8] as shown
in Tables 1 and 2.

3.2 Divide-and-Conquer by considering the key schedule

In this section, we apply two kinds of DFA improvements. First, we reduce the
computation in Step 2-1 of Alg. 1 by introducing a look-up table that keeps
the values for I10 when performing Step 1. Then, we show a divide-and-conquer
attack by considering the structure of the AES key schedule.

Improving Step 2-1 of Alg. 2 Before introducing how to reduce a half of
the calculation time for the Step 2-1 of Alg. 2, we review some details of Step 1.
Note that the position of the fault-injected byte is fixed in Step 1. The attacker
first computes the output difference of SB in the 10th round (∆SBO10) from C
and C. Then, based on the guesses of the differential value for fault-injected byte

Table 2. Comparison of the analysis time of our improved DFA methods

Ours (Section 3.1) Ours(Section 3.2) Ours (Section 3.3)

Step 1 3 · 216(2 · t AR+ t CMP 28) · 4
Step 2-1A ————- V3 = 230(2 · t AR V4 = 228(2 · t AR

+t KR+ t CMP 210) +t KR+ t CMP 220)

Step 2-1B V2 = 232(t CMP V5 = 226(t CMP + 2 · 2 · t AR+ t KR)
+2 · 2 · t AR+ t KR)

Step 2-2 210(t CMP + 10 · t AR+ 10 · t KR)

Number best 1
of worst 4

trials E 2.5

Total 2.5 · V2 2.5 · V3 2.5 · (V4 + V5)

Ratio(α = β = 1) 21 11 5.4

Ratio(α = β = 0) 29 3.7 1.4

Memory[Byte] 4 · 212 4 · 2 · 212 220

RotWordSubWordRcon

， ，，

Fig. 2. The last two rounds of the key schedule and the last round of the encryption
in AES-128

in MCI9, the corresponding 4-byte difference of I10 can be computed. Based
on the value of ∆SBO10,I10 and the differential table of AES S-box, 28 key
candidates for each column are left after Step 1.

By considering these details, the 2-round decryption in Step 2-1 of Alg. 2
can be reduced to a 1-round decryption. We notice that both the candidates of
K10 and corresponding I10 can be stored in Step 1, while previous methods only
store the candidates of K10. With the stored I10, we do not need to perform
the 10th round decryption again in Step 2-1, so that we can reduce a half of
calculation time. However, as a penalty, a double size of memory are required to
store the results of Step 1.

Divide-and-Conquer attack for Step 2-1 In this attack, we first pre-compute
all possible differences of I9. Then, Step 2-1 of Alg. 2 can be divided into two
phases, 230 1-round decryptions (Step 2-1A) and 226 1-round decryptions (Step
2-1B).

In Step 0 of Alg. 1, we guess the error propagation path. In the pre-computation
phase, for each byte-position which results in the guessed error propagation path,
we consider all 28 differences and compute corresponding differences of I9. Store
the resultant 28 · 4 or 210 differences in the list G called valid list.

In Step 2-1A, we compute a 1-round decryption for I10 and I10 (=SB−1 ◦
SR−1(K10 ⊕ C)) to obtain the differences of 2 bytes in I9. Without losing the
generality, we discuss the case where guessed error propagation path is “1” in
Fig. 1 and thus 210 (∆I90,0, ∆I90,1, ∆I90,2, ∆I90,3) are stored in G. Moreover, we
focus on ∆I90,1 and ∆I90,2 in Step 2-1A. In general, ∆I9 is calculated as

∆I9 = SB−1 ◦ SR−1 ◦MC−1(K9 ⊕ I10)

⊕ SB−1 ◦ SR−1 ◦MC−1(K9 ⊕ I10).
(3)

In order to calculate ∆I91,0 and ∆I92,0, we need K9
2,j , K

9
3,j , I

10
2,j , I

10
3,j , I

10
2,j and

I103,j for j = 0, 1, 2, 3. From Fig. 2, an attacker can calculate K9
2,j and K9

3,j by
Eq. (4).

K9
2,j = K10

2,j ⊕K10
1.j , K9

3,j = K10
3,j ⊕K10

2.j . (4)

Moreover, I102,j , I
10
3,j can be calculated by Eq. (5).

I102,j = SB−1 ◦ SR−1(K10
(3·j+2)mod4,j ⊕ C(3·j+2)mod4,j),

I103,j = SB−1 ◦ SR−1(K10
3−j,j ⊕ C3−j,j).

(5)

Similarly, I102,j and I103,j can be calculated with C. According to Eqs. (4)

and (5), 14 bytes of K10 except K10
0,0 and K10

0,1 are necessary to calculate ∆I91,0
and ∆I92,0 at Step 2-1A.

For each valid ∆SBO10, two candidates for each byte are considered. How-
ever, in this attack, we do not have to consider K10

0,1 and K10
0,2 of the key can-

didates. Hence, the number of candidates of 14 bytes of K10 is 230 at Step 1.
Consequently, the analysis time of calculating ∆I91,0 and ∆I92,0 is 230.

We explain the number of K10 candidates after Step 2-1A. When we perform
a 1-round decryption with wrong keys, ∆I90,1 and ∆I90,2 can have all 216 values.
Hence, the probability that these match one of the 210 entries in G is 210 ·2−16 =
2−6. Finally, 230 ·2−6 = 224 candidates of 14 bytes ofK10 will remain. As a result,
we have 224 · 22 = 226 candidates of 16-bytes of K10 after Step 2-1A. Next, we
perform Step 2-1B. In this step, an attacker performs Step 2-1 of Alg. 2 for 226

candidates of K10 with an improvement shown in Sect. 3.2.

Computational complexity of the method in Sect. 3.2 As can be seen
from Table 2, Steps 1, 2-1B and 2-2B of the method proposed in Sect 3.2 cannot
be critical operations since all of them are at least two orders of magnitude less
than Step 2-1A in computational complexity. Therefore, we focus on Step 2-1A
that consists of the following computations. First, we need to pre-compute the
differential values for MCO8, which takes 210 · t MC where t MC stands for the
operation time of MixColumns. Second, we perform a 1-round decryption with
both C and C all of the 230 key candidates and check whether the differential is in
the pre-computed MCO8 table, which costs (2 ·t AR+t KR+t CMP 210) ·230.
Here, we perform KR once for a 1-round decryption (AR) of C and C.

From this observation, we find that the pre-computation time can be ignored
and V3 in Table 2 decides the total operation time in Step 2-1A. As a result,
the total time necessary for this method is found to be 2.5 · V3 and significant
improvements are obtained as shown in Table 2.

3.3 Further improvement of the method in Sect. 3.2 using the
linearity of MC

This section improves the attack method in Sect. 3.2. We focus on the property
that K10

0,2 and K10
0,3 are not related to the last two columns of K9. Hence, we can

independently simulate the impact of these two bytes and update them to the
valid list G. This enables us to divide Step 2-1A into two phases as described in
Alg. 3.

Algorithm 3. Our improved procedure for Step 2

Step 2-1Aa. For 22 candidates of K10
0,2 and K10

0,3, update the valid list G.
Step 2-1Ab. For 228 candidates of 12-bytes of K10 (K10

1,j ,K
10
2,j ,K

10
3,j , for j=0 to 3)

apply the divide-and-conquer attack explained in Sect. 3.2. 226

candidates of K10 will remain after this step.
Step 2-1B. For 226 candidates, apply the improved procedure of Step 2-1 explained

in Sect. 3.2. 210 candidates will remain after this step.
Step 2-2. Recover a secret key by the brute force attack for 210 candidates.

In Sect. 3.2, we pre-computed G containing 210 entries of (∆I90,1, ∆I90,2).
In this attack, we further perform the pre-computation by considering all 216

values of (I90,1, I
9
0,2) for each stored (∆I90,1,∆I90,2). We then obtain 226 items of

(∆MCI92,2,∆MCI93,1,MCI92,2,MCI93,1) and store them in G. Notice that for all
216 (∆MCI92,2,∆MCI93,1), we will obtain 210 items of (MCI92,2,MCI93,1). Also
note that we need a memory with 226 entries in the pre-computation phase.
However, candidates of (∆MCI92,2, ∆MCI93,1) are reduced to 28 in Step 1 of
Alg. 1. Hence, in on-line, only 218 entries in G are needed.

In this attack, the validity of the candidates of K10 is checked by computing
(∆MCI92,2,∆MCI93,1,MCI92,2,MCI93,1) using Eq. (6) for i = 2, 3 and matching
them with entries in G.

MC−1(K9
i,0 ⊕ I10i,0,K

9
i,1 ⊕ I10i,1,K

9
i,2 ⊕ I10i,2,K

9
i,3 ⊕ I10i,3)

T . (6)

By considering the details and linearity of MC, the match of MCI92,2 using
Eq. (6) can be written as follows (We denote the N -th byte of a column A by
A[N]).

MCI92,2
?
=MC−1(K9

2,0,K
9
2,1,K

9
2,2,K

9
2,3)

T [2]

⊕ (13 · I102,0)⊕ (9 · I102,1)⊕ (14 · I102,2)⊕ (11 · I102,3).

Because I102,2 is not related to the value of K9
2,0,K

9
2,1,K

9
2,2,K

9
2,3, we consider the

following form (do the same for MCI93,1).

MCI92,2 ⊕ 14 · I102,2
?
=MC−1(K9

2,0,K
9
2,1,K

9
2,2,K

9
2,3)

T [2]

⊕ 13 · I102,0 ⊕ 9 · I102,1 ⊕ 11 · I102,3,

MCI103,1 ⊕ 14 · I103,3
?
=MC−1(K9

3,0,K
9
3,1,K

9
3,2,K

9
3,3)

T [3]

⊕ 11 · I103,0 ⊕ 13 · I103,1 ⊕ 9 · I103,2.

(7)

With Eq. (7), we can compute the impact of I102,2 and I103,3 independently of other
12-byte values. The attack procedure is as follows.

For all 28 candidates of (∆MCI92,2,∆MCI93,1), do as follows:

- For 2 candidates of I102,2, compute 14 · I102,2. Denote these values by u0 and
u1.

- For 2 candidates of I103,3, compute 14 · I103,3. Denote these values by v0 and
v1.

- For all 210 entries in the list G for the same (∆MCI92,2,∆MCI93,1), compute
(MCI92,2⊕ui,MCI93,1⊕vj) for 0 ≤ i, j ≤ 1. Update G with these 212 entries.

Finally, we can compute the right side of Eq. (7) with only considering 12
bytes of K10. The attack complexity is 220 for updating G and 228 for checking
the match for all 12-byte candidates of K10. Hence, the total complexity is
220+228 ≈ 228. After the match, 226 key candidates will be left and the remaining
attack procedure is the same as Section 3.2. Note that a memory with 220 entries
is used at on-line phase.

Computational complexity of the method in Sect. 3.3 Only the difference
between the methods in Sects. 3.2 and 3.3 is in Step 2-1A. As can be seen from
Table 2, the computational complexities of Steps 2-1A and 2-1B in this method
are getting close. Therefore, we need to consider both Steps 2-1A and Steps 2-1B.

As for Step 2-1A, we pre-compute the list G containing 220 entries. The pre-
computed table is calculated based on 216 values of (I90,1, I

9
0,2), which results

in the computational complexity of much less than the complexity of the main
calculation of Step 2-1A. The main calculation performs two AR and one KR
to derive the corresponding value to be checked with ones in list G for all 228

candidates. Consequently, the computational step in Step 2-1A becomes V4 = (2·
t AR+t KR+t CMP 220)·228. Step 2-1B is the same as the method in Sect. 3.2,
where we perform further reduction of the remaining 226 key candidates by
utilizing the AES key schedule. More precisely, this step computes the differential
of MCI8 for C and C and checks whether if the differential has only 1-byte error,
which results in the computational cost of V5 = (t CMP + 2 · t AR + t KR) ·
226. As a result, the total time of this method is 2.5 · (V4 + V5) and further
improvements are obtained as shown in Table 2.

4 Conclusion and Future Work

Based on the detailed analyses of the previous DFA methods and the considera-
tion of practical implementations, this paper proposed improved analysis meth-
ods for Differential Fault Analysis (DFA) against AES. The expectation of our
fastest algorithm only costs about one sixteenth of that of the fastest previous
analysis methods. The improvements come from three new techniques as the
combination of previous DFA methods, the divide-and-conquer attack by con-
sidering the AES key-schedule, and taking the linearity of MixColumns operation
into consideration. This paper applied our proposed techniques to the case where
1-byte error is injected at the beginning of 8th round. In the future, we will apply
these techniques to the cases where multiple-byte errors are injected into AES.

References

1. E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,”
in Advances in Cryptology – CRYPTO ’97, vol. 1294 of LNCS, pp. 513–525, Springer,
1997.

2. J. Blömer and J.-P. Seifert, “Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES),” in Financial Cryptography FC 2003, vol. 2742 of LNCS, pp. 162–
181, Springer Berlin, 2003.

3. P. Dusart, G. Letourneux, and O. Vivolo, “Differential Fault Analysis on A.E.S,” in
Applied Cryptography and Network Security, First International Conference, ACNS
2003. Kunming, China, October 16-19, 2003, LNCS, pp. 293–306, Springer, 2003.

4. C. Giraud, “DFA on AES,” in Advanced Encryption Standard - AES, 4th Interna-
tional Conference, AES 2004, Bonn, Germany, May 10-12, 2004, Revised Selected
and Invited Papers, vol. 3373 of LNCS, pp. 27–41, Springer, 2005.

5. G. Piret and J.-J. Quisquater, “A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and Khazad,” in Cryptographic Hardware
and Embedded Systems – CHES 2003, vol. 2779 of LNCS, pp. 77–88, Springer, 2003.

6. D. Mukhopadhyay, “An Improved Fault Based Attack of the Advanced Encryption
Standard,” in AFRICACRYPT 2009, vol. 5580 of LNCS, pp. 421–434, Springer,
2009.

7. D. Saha, D. Mukhopadhyay, and D. RoyChowdhury, “A Diagonal Fault Attack
on the Advanced Encryption Standard,” 2009. Cryptology ePrint Archive, Re-
port2009/581.

8. M. Tunstall and D. Mukhopadhyay, “Differential Fault Analysis of the Advanced
Encryption Standard using a Single Fault,” 2009. Cryptology ePrint Archive, Re-
port2009/575.

9. National Institute of Standards and Technology, “Advanced Encryption Standard.”
NIST FIPS PUB 197, 2001.

