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Abstract. In this paper, we present a preimage attack on reduced ver-
sions of Keccak hash functions. We use our recently developed toolkit
CryptLogVer for generating CNF (conjunctive normal form) which is
passed to the SAT solver PrecoSAT [2]. We found preimages for some
reduced versions of the function and showed that full Keccak function
is secure against the presented attack.
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1 Introduction

Keccak is a family of cryptographic hash functions submitted as a SHA-3 can-
didate. The security of a publicly known cryptographic algorithm is accepted if
there is no known successful attack on it. Often some partial trust is addition-
ally based on some good statistical properties and reported failure of breaking
attempts with some known methods, like differential or linear cryptanalysis. The
recent new hash function MD-6 [20] has also been tested, among other methods,
with logical (SAT-based) analysis.

SAT solvers can be used to solve problems typically described in Conjunctive
Normal Form (CNF) into which any decision problem can be translated. Modern
SAT solvers use highly tuned algorithms and data structures to quickly find
a solution to the problem described in this very simple form. To solve your
problem: (1) translate the problem to SAT (in such a way that a satisfying
valuation represents a solution to the problem); (2) run the currently best SAT
solver to find a solution. The propositional encoding formula can be thought of
as a declarative program. One can treat the propositional calculus and the SAT
solvers as a powerful programming environment that makes it possible to create
and to run the propositional declarative programs for solving the encoded tasks.



The hope you can get a solution relatively fast is based on the fact that the SAT
solving algorithm is one of the best optimized.

A SAT testing algorithm decides whether a given propositional (boolean) for-
mula has a satisfying valuation. SAT was the first known NP-complete problem,
as proved by Stephen Cook in 1971. Finding a satisfying valuation is infeasible
in general, but many SAT instances can be solved surprisingly efficiently. There
are many competing algorithms for it and many implementations, most of them
have been developed over the last two decades as highly optimized versions of
the DPLL procedure of [7] and [8].

In this paper, we present a preimage attack on reduced versions of Keccak
hash functions. We use our recently developed toolkit CryptLogVer for generat-
ing CNF (conjunctive normal form) which is passed to the SAT solver PrecoSAT
[2].

The paper is organized as follows. In section 2 we present a short description
of Keccak family functions. Then a CNF generation method is given. In section
3 the detailed attack scenario is described followed by our experimental results.
Comparison to related work is indicated in section 7. The last section consists
of some conclusion and future research.

2 KECCAK — a brief description

In this section we present only a brief description of Keccak which can be
helpful for understanding the attack described in the paper. For a complete
information we refer the interested reader to [15].

Fig. 1. Sponge Construction [22]

Keccak is a family of hash functions which makes the use of the sponge
construction. Figure 1 shows the construction. It has two main parameters r and
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c which are called bitrate and capacity respectively. A sum of those two gives the
state size which Keccak operates on. For a SHA-3 proposals, the state size is
1600 bits. Different values for bitrate and capacity give trade-off between speed
and security. The higher bitrate gives the faster function but less secure. Keccak
proceeds in two phases. In the first phase (absorbing) the r-bit input message
blocks are xored into the first r bits of the state, interleaved with applications
of the function f (called Keccak-f in the specification). This phase is finished
when all message blocks are processed. In the second phase (squeezing) the first
r bits of the state are returned as hash bits, interleaved with applications of the
function f . The phase is finished when the desired length of hash is produced.

The default values for Keccak are r = 1024, c = 576 which gives 1600-bit
state. However, Keccak can also operate on smaller states (25, 50, 100, 200, 400
and 800-bit state). The state size determines the number of rounds in Keccak-f
function. For a default 1600-bit state there are 24 rounds. In the experiments
we often used reduced versions with smaller number of rounds.

3 CNF formula generation

One of the key steps in attacking cryptographic primitves with SAT solvers is
CNF formula generation. Such a formula completely describes the primitive (or
a segment of the primitive) which is the target of the attack. Generating it is a
non-trivial task and usually is very laborious. There are many ways to obtain
the final CNF and the output results differ in the number of clauses, the average
size of clauses and the number of literals. Recently we have developed a new
toolkit called CryptLogVer which greatly simplifies the creation of CNF. Here
we describe only the main concepts. The detailed description of CryptLogVer
will be published in a separate paper [18].

Usually the cryptanalist needs to put a considerable effort into creating the
final CNF. It involves writing a separate program dedicated only to a crypto-
graphic primitive under consideration. To make it efficient, some minimizing al-
gorithms (Karnaugh maps, Quine-McCluskey algorithm or Espresso algorithm)
have to be used. These are implemented in the program, or the intermediate
results are sent to an external tool (e.g., Espresso minimizer) and then the
minimized form is sent back to the main program. Implementing all of these
procedures requires a good deal of programming skills, some knowledge of logic
synthesis algorithms and careful insight into the details of the primitive’s oper-
ation. As a result, obtaining CNF might become the most time-consuming part
of any attack because the process is tedious, laborious and error-prone. It could
be especially discouraging for researchers who start their work from scratch and
do not want to spend too much time on writing hundreds lines of code.

To avoid those disadvantages we have recently proposed a new toolkit con-
sisting basically of two applications. First of them is Quartus II - a software
tool released by Altera for analysis and synthesis of HDL (Hardware Description
Language) designs, which enables the developers to compile their designs and
configure the target devices (usually FPGAs). We use a free-of-charge version
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Quartus II Web Edition which provides all the features that we need. The second
application, written by us, converts boolean equations (generated by Quartus)
to CNF encoded in DIMACS format (standard format for today’s SAT-solvers).
The complete process of CNF generation includes the following steps:

1. Code the target cryptographic primitive in HDL
2. Compile and synthesise the code in Quartus
3. Generate boolean equations using Quartus inbuilt tool
4. Convert generated equations to CNF by a separate application.

Steps 2, 3, 4 are done automatically. The only effort a researcher has to put
is to write a code in HDL. Normally programming and ’thinking’ in HDL is
a bit different from typical high-level languages like Java or C. However it is
not the case here. For our needs, programming in HDL looks exactly the same
as it would be done in high-level languages. There is no need to care about
typical HDL specific issues like proper expressing of concurrency or clocking. It
is because we are not going to implement anything in a FPGA device. All we
need is to obtain a system of boolean equations which completely describes the
primitive we wish to attack.

We are aware that KeccakTools [15] supports the generation of equations,
however not in CNF form. This could replace the use of HDL and Quartus to
generate the boolean equations in our analysis of Keccak. However, the equa-
tions generated by KeccakTools consist of many ’long XOR’ equations which
would produce an exponential number of clauses when converted to CNF. To
avoid that exponential blowup, it is needed to introduce new variables and ’cut’
equations into shorter ones. Thus an additional processing is essential to make
those equations useful for SAT-solvers. Besides, our CryptLogVer’s in-built gen-
eration of equations might turn out useful for a uniform comparison of the kind
of analysis of various hash algorithms.

4 Description of the attack

We have carried out the preimage attack, i.e., for a given hash value h, we tried
to find a message m such that h = f(m). Our attack was applied on reduced
versions of Keccak with smaller state and smaller number of rounds comparing
to Keccak default settings. We experimented with the message lengths between
24 and 40 bits. Hash lengths were set to 1024, 80 or 24 bits. Our attack scheme
can be divided into three steps:

1. Generate CNF by CryptLogVer toolkit
2. Set output bits (hash) and a part of input bits (padding bits)
3. Run PrecoSAT on the created CNF

When a message searched for is supposed to be short (the number of message
bits and required padding bits is less than or equal to bitrate r), it fits into one
block Pi. (See Figure 1.) Consequently, there is only one invocation of Keccak-f
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function and the CNF used in the attacks can encode only Keccak-f. In general
function f is crucial for the security of the sponge construction and its strength
in many cases comes down to CICO problem (defined by Keccak designers,
section 5.2.4 in Keccak main document [15]). The preimage attacks presented
in this paper can be also treated as an attempt of solving CICO problem. It
needs to be stressed that claimed security for CICO problem is higher than for
Keccak function. The point of reference for our experiments is the claimed
security for Keccak function which is 2c/2.

5 The experimental results

We attacked reduced versions of Keccak with different number of rounds, state
sizes and message lengths. Table 1 summarizes our results. The experiments were
carried out on a 4-core Intel Xeon 2.5 GHz which was a part of Grid’5000 sys-
tem [9]. However only one core was used as PrecoSat is not a parallel solver.
The function name specifies bitrate and capacity parameters. For example Kec-
cak[120,80] means the function with bitrate r = 120 and capacity c = 80.

The exhaustive search was done with C speed-optimized implementation pro-
vided by Keccak designers [10]. The exhaustive search time is the time needed
for checking all the combinations of the unknown message bits. If the claimed
security is smaller than the number of those combinations, then the claimed se-
curity is considered. It was the case only for the smallest version of the function.

Input parameters Attack times [secs]

Function Number of
rounds

Message
size [bits]

Hash size
[bits]

SAT-solver
attack

Exhaustive
search

Keccak[1024,576] 3 24 1024 20 21

Keccak[1024,576] 3 32 1024 23,3 29

Keccak[1024,576] 3 40 1024 210,8 217

Keccak[120,80] 3 24 80 22,5 2−2,9

Keccak[120,80] 3 32 80 25,7 25

Keccak[120,80] 3 40 80 215,7 213

Keccak[24,26] 4 24 24 212,1 2−13,5

Keccak[24,26] 5 24 24 212,8 2−13,1

Table 1. Preimage attacks: SAT–based attacks vs. exhaustive search.

We also experimented with 4-round versions of Keccak[120,80] and Kec-
cak[1024,576], but PrecoSAT was not able to find the solution. The time limit
was 48 hours and it was tested for 32- and 40-bit messages. For versions with
200- and 50-bit state, the exhaustive search turned out to be better.
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6 A note on two other SHA-3 candidates

We have managed to estimate the complexity of a boolean formula in its conjunc-
tive normal form coding the hash function Grøstl. Grøstl uses the AES S-box and
[13] announces that the simplest version of Grøstl (with the 256-bit hash values)
calls AES S-box 1280 times. AES S-box has been coded by our CryptLogVer
toolkit as a formula with around 4800 clauses and 900 variables so a straigth-
forward calculation gives at least 1280 * 4800 = 6 mln 144 thousand clauses
in total. Hence, no SAT-based attack can be feasible (with no extra financial
effort), even for reduced versions. From this perspective Grøstl seems to be very
strong. For comparison, the AES standard calls S-box ”only” 200 times.

We also have looked closer at Bernstein’s CubeHash function [6], encouraged
by its simplicity. We have obtained the following estimate of the CNF formula
size. For the version originally submitted to the SHA-3 contest its CNF would
have around 1 mln 760 thousands clauses and 270 thousand variables.

7 Related work

The designers of Keccak made some experiments to solve the CICO problem.
They used SAGE computer algebra software and were able to solve the problems
with 12 unknown input bits, up to 8 rounds and with Keccak-f state widths
from 40 to 200. As the number of unknown input bits grows, this method quickly
becomes infeasible [15]. Courtois and Bard [4] showed that SAT solvers can be
a better option for solving cryptographic problems (often comprising of large
systems of equations) than computer algebra systems (such as SAGE, MAGMA
or Singular) due to their much lower memory requirements.

In [1] the triangulation algorithm was used to solve the CICO problem. They
reached 3 rounds for Keccak-f[1600]. They fixed only a few bits which was
enough to show non-randomness of the function but did not lead to any real
attack. For smaller state sizes of Keccak-f they did not pass 3 rounds.

The recent hash function MD-6 of Rivest et al. [20] was also tested with
logical (SAT-based) analysis, among other methods. They found collisions only
for much reduced versions of the function with 11 rounds as the best result. They
observed that after 7 rounds the attack running time grows superexponentially
in the number of rounds. Therefore, it makes this method inefficient against the
full MD-6 algorithm.

We also carried out our SAT–based preimage attack on reduced versions of
SHA-1. For full SHA-1, the CNF formula encoding the function has 181 thousand
clauses and 31 thousand variables, while full Keccak-f[1600] has 775 thousand
clauses and 181 thousand variables. It could be already the sign that Keccak
is much stronger function, as the CNF formula is over 4 times bigger. We found
a short preimage for 27-round SHA-1 (out of its full 80 rounds), but only for 3
rounds out of 24 for Keccak-f[1600].

The first connection between SAT and crypto dates back to [11], where a
suggestion appeared to use cryptoformulae as hard benchmarks for propositional
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satisfiability checkers. The first application of SAT-solvers in cryptanalysis was
due to Massacci et al. [16]. They ran a SAT solver on DES key search, and then
also for faking an RSA signature for a given message by finding the e-th roots of
a (digitalized) message m modulo n, in [12]. They called it logical cryptanalysis.
Courtois and Pieprzyk [5] presented an approach to code in SAT their alge-
braic cryptanalysis with some gigantic systems of low degree equations designed
as potential procedures for breaking some ciphers. [21] proposed enhancing a
SAT-solver with some special-purpose algebraic procedures, such as Gaussian
elimination.

8 Conclusion

We have carried out the SAT–based preimage attack on reduced Keccak hash
functions. The results suggest the strength of the function against this kind of
attack — we have found preimages only for much reduced versions of Keccak.
We have found a preimage for the 3-round Keccak-f[1600] with 40 unknown
message bits. For future research it might be interesting to try extrapolating
our results for the full Keccak function. Such a technique was used in [21]. Also
Grøstl and CubeHash seem to be very strong against SAT-based cryptanalysis.
SAT-based analysis of the other SHA-3 candidates might be interesting.
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Appendix

For the reader’s convenience, we provide Verilog code used in the experiments
with our toolkit CryptLogVer. In most cases such a code strongly resembles a
pseudocode defining a given cryptographic function.

module keccak(MESSAGE, HASH);

parameter laneSize = 64;

parameter numberOfRounds = 24;

parameter stateSize = 5*5*laneSize;

parameter hashSize = 1024;
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input [stateSize-1:0] MESSAGE; // input message

output [hashSize-1:0] HASH; // hash value

reg [hashSize-1:0] HASH;

reg [laneSize-1:0] A [0:4][0:4];

reg [stateSize-1:0] AVector;

reg [63:0] RoundConstants [0:23];

integer i,j,k,r;

function [stateSize-1:0] Round;

input [63:0] RC;

input [stateSize-1:0] AVector;

reg [laneSize-1:0] A [0:4][0:4];

reg [laneSize-1:0] B [0:4][0:4];

reg [laneSize-1:0] C [0:4];

reg [laneSize-1:0] D [0:4];

reg [laneSize-1:0] temp [0:4];

reg [laneSize-1:0] tempLane;

reg [laneSize-1:0] tempLaneRotated;

integer i,j,k,r,offset;

integer RotationOffsets [0:4][0:4];

begin

RotationOffsets[0][0]=0;

RotationOffsets[0][1]=36;

RotationOffsets[0][2]=3;

RotationOffsets[0][3]=41;

RotationOffsets[0][4]=18;

RotationOffsets[1][0]=1;

RotationOffsets[1][1]=44;

RotationOffsets[1][2]=10;

RotationOffsets[1][3]=45;

RotationOffsets[1][4]=2;

RotationOffsets[2][0]=62;

RotationOffsets[2][1]=6;

RotationOffsets[2][2]=43;

RotationOffsets[2][3]=15;

RotationOffsets[2][4]=61;

RotationOffsets[3][0]=28;

RotationOffsets[3][1]=55;

RotationOffsets[3][2]=25;

RotationOffsets[3][3]=21;

RotationOffsets[3][4]=56;

RotationOffsets[4][0]=27;

RotationOffsets[4][1]=20;

RotationOffsets[4][2]=39;

RotationOffsets[4][3]=8;

RotationOffsets[4][4]=14;
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//change AVector to two-dimensional array

for (i=0; i<=4; i=i+1)

begin

for (j=0; j<=4; j=j+1)

begin

for (k=0; k<laneSize; k=k+1)

begin

A[i][j][k] = AVector[5*i*laneSize+j*laneSize+k];

end

end

end

// main part of Round function

for (i=0; i<=4; i=i+1)

begin

C[i] = A[i][0] ^ A[i][1] ^ A[i][2] ^ A[i][3] ^ A[i][4];

end

for (i=0; i<=4; i=i+1)

begin

temp[i] = {C[(i+1)%5][laneSize-2:0], C[(i+1)%5][laneSize-1]}; // C cyclic leftrotate 1

D[i] = C[(i-1+5)%5] ^ temp[i];

end

for (i=0; i<=4; i=i+1)

begin

for (j=0; j<=4; j=j+1)

begin

A[i][j] = A[i][j] ^ D[i];

end

end

for (i=0; i<=4; i=i+1)

begin

for (j=0; j<=4; j=j+1)

begin

offset = RotationOffsets[i][j]%laneSize;

tempLane = A[i][j];

for (k=0; k<laneSize; k=k+1)

begin

tempLaneRotated[k]=tempLane[(k-offset+laneSize)%laneSize]; // cyclic left shift

end

B[j][(2*i+3*j)%5] = tempLaneRotated;

end

end

for (i=0; i<=4; i=i+1)

begin
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for (j=0; j<=4; j=j+1)

begin

A[i][j] = B[i][j] ^ (~(B[(i+1)%5][j]) & B[(i+2)%5][j]);

end

end

A[0][0] = A[0][0] ^ RC;

// make A array back to vector format (because function can not return arrrays)

for (i=0; i<=4; i=i+1)

begin

for (j=0; j<=4; j=j+1)

begin

for (k=0; k<laneSize; k=k+1)

begin

Round[5*i*laneSize+j*laneSize+k] = A[i][j][k];

end

end

end

end

endfunction

always @ (MESSAGE, HASH, A)

begin

RoundConstants[0]=64’h0000000000000001;

RoundConstants[1]=64’h0000000000008082;

RoundConstants[2]=64’h800000000000808A;

RoundConstants[3]=64’h8000000080008000;

RoundConstants[4]=64’h000000000000808B;

RoundConstants[5]=64’h0000000080000001;

RoundConstants[6]=64’h8000000080008081;

RoundConstants[7]=64’h8000000000008009;

RoundConstants[8]=64’h000000000000008A;

RoundConstants[9]=64’h0000000000000088;

RoundConstants[10]=64’h0000000080008009;

RoundConstants[11]=64’h000000008000000A;

RoundConstants[12]=64’h000000008000808B;

RoundConstants[13]=64’h800000000000008B;

RoundConstants[14]=64’h8000000000008089;

RoundConstants[15]=64’h8000000000008003;

RoundConstants[16]=64’h8000000000008002;

RoundConstants[17]=64’h8000000000000080;

RoundConstants[18]=64’h000000000000800A;

RoundConstants[19]=64’h800000008000000A;

RoundConstants[20]=64’h8000000080008081;

RoundConstants[21]=64’h8000000000008080;
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RoundConstants[22]=64’h0000000080000001;

RoundConstants[23]=64’h8000000080008008;

// main function Keccak-F

AVector = MESSAGE;

for (r=0; r<numberOfRounds; r=r+1)

begin

AVector = Round(RoundConstants[r],AVector);

end

// change AVector format to array

for (i=0; i<=4; i=i+1)

begin

for (j=0; j<=4; j=j+1)

begin

for (k=0; k<laneSize; k=k+1)

begin

A[i][j][k] = AVector[5*i*laneSize+j*laneSize+k] ;

end

end

end

// now produce bits of HASH

for (j=0; j<=4; j=j+1)

begin

for (i=0; i<=4; i=i+1)

begin

for (k=0; k<laneSize; k=k+1)

begin

if (i*laneSize+k+j*laneSize*5 < hashSize) HASH[i*laneSize+k+j*laneSize*5]=A[i][j][k];

end

end

end

end

endmodule
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