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Abstract. This paper provides three improvements over previous work on analyzing CubeHash, based
on its classes of symmetric states: (1) We present a detailed analysis of the hierarchy of symmetry classes.
(2) We point out some flaws in previously claimed attacks which tried to exploit the symmetry classes.
(3) We present and analyze new multicollision and preimage attacks. For the default parameter setting
of CubeHash, namely for a message block size of b = 32, the new attacks are slightly faster than 2384

operations. If one increases the size of a message block by a single byte to b = 33, our multicollision and
preimage attacks become much faster – they only require about 2256 operations. This demonstrates how
sensitive the security of CubeHash is, depending on minor changes of the tunable security parameter b.
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1 Introduction

The CubeHash family of hash functions [1] is a round-2 candidate for the SHA-3 algorithm. CubeHashr/b−
h depends on three parameters r, b, and h and produces h-bit hash values using r rounds per message
block; b is the size of a message block (in bytes). Typically h ∈ {224, 256, 384, 512}, b ∈ {1, . . . , 128}, and
r ∈ {1, 2, 3, . . .}. As mentioned by the author of CubeHash [1], and later studied in some detail by other
researchers [2], there exist certain symmetries through the round function. Once the state is in a class of
symmetric states, it suffices to choose the all-zero message block to preserve the symmetry.

Since the original submission with its parameter recommendation has been criticized as being too slow,
its author later tweaked CubeHash, proposing a variant for normal operations for users not concerned with
attacks using 2384 operations. The only difference to the conservative but very slow variant for formal
operations is the choice of the parameter b: the formal case requires b = 1, while the normal choice is b = 32
and “aimed at sensible users” [3].

1.1 Our Contributions

In this paper, we refine the results from [2]. Our main results are the following.

(1) We provide a precise analysis of the complete hierarchy of symmetry classes in CubeHash.
(2) We have a closer look at two attacks from [2] to exploit the symmetry classes. As it turns out, the claimed

attack complexities from [2] are too optimistic.
(3) We describe new attacks and analyze their complexities:

• Multicollision and preimage attacks for the CubeHash with b = 32. The attacks are slightly faster
than the 2384 operations claimed in [3] (the multicollision attack takes time 2381.2, the preimage
attack takes time 2283.7).

• Multicollision and preimage attacks for CubeHash with b = 33, which are a lot faster than the claimed
2384 operations (generating a k-collision takes time ⌈log2(k)⌉ × 2256, finding a preimage takes time
3 × 2256).

The number r of rounds is irrelevant for our attacks. The hierarchy of symmetry classes doesn’t depend
on the output size h. Neither do our multicollision and preimage attacks – though for small h, such as
h ∈ {224, 256}, our attacks are not always an improvement over the generic standard attacks.

⋆ Work supported in part by the National Science Foundation grant CCF 0830576



1.2 CubeHash

All versions of CubeHash have a 128-byte state, represented as 32 32-bit words. These words are denoted
by x00000 to x11111 as the first to last words, respectively. The hash function can be viewed as the following
three steps: initialization, message processing, and finalization. These three steps are based on the following
round function.

Round Function The round function is an ARX (addition, rotation, xor) function, where addition is
performed modulo 232. Each round consists of 10 steps:

1. for each (j, k, l, m), x1jklm = x0jklm ⊞ x1jklm

2. for each (j, k, l, m), x0jklm = x0jklm ≪ 7

3. for each (k, l, m), swap x00klm with x01klm

4. for each (j, k, l, m), x0jklm = x0jklm ⊕ x1jklm

5. for each (j, k, m), swap x1jk0m with x1jk1m

6. for each (j, k, l, m), x1jklm = x1jklm ⊞ x0jklm

7. for each (j, k, l, m), x0jklm = x0jklm ≪ 11

8. for each (j, l, m), swap x0j0lm with x0j1lm

9. for each (j, k, l, m), x0jklm = x0jklm ⊕ x1jklm

10. for each (j, k, l), swap x1jkl0 with x1jkl1

Observe that the round function is a permutation over the set of states, and one can run it backwards as
efficiently as one can run it in forward direction.

Initialization The initial state is computed by setting x00000 = h
8
, x00001 = b, x00010 = r, and all other

state words are 0. 10r rounds are then applied to reach the initial state. This creates a different initial value
for each parameter selection. For any fixed set of parameters, we write H0 for this initial state.

Message processing The message must be padded to a multiple of b bytes. CubeHash first appends a 1,
and then as many 0’s as necessary to ensure the message length is a multiple of 8b bits. A padded message
M consists of k blocks and is processed one b-byte block at a time. Given the initial state H0 and message
blocks M1, M2, . . . , state Hj is reached by applying r rounds to Hj−1 ⊕ (Mj << (128 − b)). That is, the
message block Mj is exclusive-ored with the first b bytes of state Hj−1, before applying the round function
r times.

Given an initial state H0 and a message (or a message prefix) M , whose length is a multiple of the
message block length, we write

H(H0, M)

for the internal state which we get by mixing in the M . As the round function is invertible, one can just as
well compute H0 from M and H(H0, M).

Finalization The finalization step occurs after all blocks have been through the message processing step.
If M is the padded message of length i− 1 blocks, then the internal state is Hi−1 = H(H0, M). Finalization
begins by exclusive-oring 1 into the last state word of Hi−1 (x11111 = x11111 ⊕ 1) to achieve state Hi. Then
10r round functions are applied to Hi to obtain the Hi+1. Finally, Hi+1 is truncated to the required hash
size. I.e., the hash of M consists of the first h

8
bytes of Hi+1.
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Parameter Recommendations The parameter h is defined by the SHA-3 digest length. For the first
round of the SHA-3 submission, Dan Bernstein, the designer of CubeHash, proposed r = 8 and b = 1. As
it turned out, CubeHash was very slow, compared to most of the other SHA-3 candidates. For the second
round, he fixed r to r = 16 and proposed two variants of CubeHash with different choices for b

– b = 32 for “normal” operations, “aimed at sensible users” [3], and
– b = 1 for “formal” operations, for users “concerned with attacks using 2384 operations” [3].

Note that the “normal” variant is 16 times faster than the original proposal, and its speed appears to be
competitive to the speed of other SHA-3 candidates. On the other hand, the “formal” variant is twice as
slow as the original submission.

1.3 Related Work

Generic attacks, i.e., attacks which model r applications of CubeHash’s round function as an arbitrary
or random permutation over 1024-bit states, have already been considered in an appendix of the original
CubeHash submission and, more diligently, in [2]. The core observation is that by choosing a message block
the attacker can determine 8b bits of the internal state. Thus, if the other 1024 − 8b state bits collide, one
can enforce a collision by appropriately selecting the next message blocks. Accordingly, this attack finds
collisions in the 1024-bit state after trying out about

√
21024−8b = 2512−4b messages. Similarly, one can find

preimages by a meet-in-the-middle attack by the equivalent of trying out 2 × 2512−4b = 2513−4b messages.
The preimage attack can also be applied to find a preimage of the all-zero state. If both the old state and
the current message block are zero, then the new state is zero again, i.e., H(0, 0) = 0. Once we have found
a message M0 with H(H0, M0) = 0, we actually have found an arbitrary-size multicollision, since

0 = H(H0, M0) = H(H0, M0||0) = H(H0, M0||0||0) = . . .

Symmetric properties of the round function have been mentioned in the submission document and were
further studied in [2]. Symmetry occurs when properties of the input to the round function are preserved in
the output. If the property is equalities between state words, there are 15 distinct symmetry classes with 67
subsets [2]. Once a state conforms to a symmetric state, the state cannot get out of the symmetry until a
nonzero block is mixed in.

We stress that for every symmetry class Ci, the round function is a permutation over the set of states in
Ci. Thus, mixing in an all-zero block, including the application of r rounds, doesn’t change the symmetry
class the state is in, i.e., by mixing in an all-zero block, one can neither get into a symmetry class, nor leave
it.

Note that symmetry is not present in the initial state, and symmetry in the message processing is
destroyed in finalization.

For completeness, the symmetry classes are shown in table 1.
Several collisions and preimage attacks have been demonstrated on variants of CubeHash [4] [5] [6] [7]

[8] [9] [10]. A linearization framework[11] and statistical approach[12] have also been applied.

2 Symmetry Hierarchy

The 15 symmetry classes presented in [2] are very useful in analyzing CubeHash. We add further structure
to these symmetry classes by placing them into a hierarchy that describes how classes relate to each other.
In particular, we provide further structure to describe the intersection of symmetry classes.

Let S be the state as an array of 32-bit words. Let V = {0, 1}4, the space of all 4-bit vectors, and D
be a linear subspace of V . Then there is a symmetry in CubeHash where a state that has ∀d ∈ D and
∀i ∈ (0, .., 15), S[i] = S[i ⊕ d] and S[16 + i] = S[16 + (i ⊕ d)].

For D = V , this yields a symmetry that has 2 free words, A and B, and 30 words fixed by the values of
A and B. The corresponding symmetry class can only take on 22×32 = 264 different values. Following the
notation of [2], that symmetry class has the form shown in table 2.
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C1 AABBCCDD EEFFGGHH IIJJKKLL MMNNOOPP

C2 ABABCDCD EFEFGHGH IJIJKLKL MNMNOPOP

C3 ABBACDDC EFFEGHHG IJJIKLLK MNNMOPPO

C4 ABCDABCD EFGHEFGH IJKLIJKL MNOPMNOP

C5 ABCDBADC EFGHFEHG IJKLJILK MNOPNMPO

C6 ABCDCDAB EFGHGHEF IJKLKLIJ MNOPOPMN

C7 ABCDDCBA EFGHHGFE IJKLLKJI MNOPPONM

C8 ABCDEFGH ABCDEFGH IJKLMNOP IJKLMNOP

C9 ABCDEFGH BADCFEHG IJKLMNOP JILKNMPO

C10 ABCDEFGH CDABGHEF IJKLMNOP KLIJOPMN

C11 ABCDEFGH DCBAHGFE IJKLMNOP LKJIPONM

C12 ABCDEFGH EFGHABCD IJKLMNOP MNOPIJKL

C13 ABCDEFGH FEHGBADC IJKLMNOP NMPOJILK

C14 ABCDEFGH GHEFCDAB IJKLMNOP OPMNKLIJ

C15 ABCDEFGH HGFEDCBA IJKLMNOP PONMLKJI

Table 1. Symmetry classes [2]

4d1 AAAAAAAA AAAAAAAA BBBBBBBB BBBBBBBB

Table 2. 4-Dimensional symmetry class

Let D be a 3-dimensional linear subspace of V . There are 15 such subspaces, each representing a symmetry
that has 4 free words, and the other 28 are defined by equality relations. The corresponding symmetry classes
each contain 24×32 = 2128 distinct values. The 15 symmetry classes, which we will call 3-d symmetry classes,
that result from these subspaces are listed in table 3.

3d1: AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD

3d2: AAAABBBB AAAABBBB CCCCDDDD CCCCDDDD

3d3: AAAABBBB BBBBAAAA CCCCDDDD DDDDCCCC

3d4: AABBBBAA AABBBBAA CCDDDDCC CCDDDDCC

3d5: AABBBBAA BBAAAABB CCDDDDCC DDCCCCDD

3d6: ABBAABBA ABBAABBA CDDCCDDC CDDCCDDC

3d7: ABBAABBA BAABBAAB CDDCCDDC DCCDDCCD

3d8: ABBABAAB ABBABAAB CDDCDCCD CDDCDCCD

3d9: ABBABAAB BAABABBA CDDCDCCD DCCDCDDC

3d10: AABBAABB AABBAABB CCDDCCDD CCDDCCDD

3d11: AABBAABB BBAABBAA CCDDCCDD DDCCDDCC

3d12: ABABABAB ABABABAB CDCDCDCD CDCDCDCD

3d13: ABABABAB BABABABA CDCDCDCD DCDCDCDC

3d14: ABABBABA ABABBABA CDCDDCDC CDCDDCDC

3d15: ABABBABA BABAABAB CDCDDCDC DCDCCDCD

Table 3. 3-dimensional symmetry classes

Let D be a 2-dimensional linear subspace of V. There are 35 distinct 2-dimensional subspaces, yielding
symmetries with 8 free words and 24 words defined by relations. The complete list of 2-dimentsional symmetry
classes appears in table 4. These classes each have 28×32 = 2256 possible values.

The 15 classes of [2] (shown in table 1) correspond to the nontrivial 1-dimensional subspaces. Only 16
words are free and the other 16 are completely determined by relations with the free words. This leads to
216×32 = 2512 states belonging to each of these classes.
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2d1: AAAABBBB CCCCDDDD EEEEFFFF GGGGHHHH

2d2: AABBAABB CCDDCCDD EEFFEEFF GGHHGGHH

2d3: AABBBBAA CCDDDDCC EEFFFFEE GGHHHHGG

2d4: ABBAABBA CDDCCDDC EFFEEFFE GHHGGHHG

2d5: ABBABAAB CDDCDCCD EFFEFEEF GHHGHGGH

2d6: ABABABAB CDCDCDCD EFEFEFEF GHGHGHGH

2d7: ABABBABA CDCDDCDC EFEFFEFE GHGHHGHG

2d8: AABBCCDD AABBCCDD EEFFGGHH EEFFGGHH

2d9: AABBCCDD BBAADDCC EEFFGGHH FFEEHHGG

2d10: AABBCCDD CCDDAABB EEFFGGHH GGHHEEFF

2d11: AABBCCDD DDCCBBAA EEFFGGHH HHGGFFEE

2d12: ABABCDCD ABABCDCD EFEFGHGH EFEFGHGH

2d13: ABABCDCD BABADCDC EFEFGHGH FEFEHGHG

2d14: ABABCDCD CDCDABAB EFEFGHGH GHGHEFEF

2d15: ABABCDCD DCDCBABA EFEFGHGH HGHGFEFE

2d16: ABBACDDC ABBACDDC EFFEGHHG EFFEGHHG

2d17: ABBACDDC BAABDCCD EFFEGHHG FEEFHGGH

2d18: ABBACDDC CDDCABBA EFFEGHHG GHHGEFFE

2d19: ABBACDDC DCCDBAAB EFFEGHHG HGGHFEEF

2d20: ABCDABCD ABCDABCD EFGHEFGH EFGHEFGH

2d21: ABCDABCD BADCBADC EFGHEFGH FEHGFEHG

2d22: ABCDABCD CDABCDAB EFGHEFGH GHEFGHEF

2d23: ABCDABCD DCBADCBA EFGHEFGH HGFEHGFE

2d24: ABCDBADC ABCDBADC EFGHFEHG EFGHFEHG

2d25: ABCDBADC BADCABCD EFGHFEHG FEHGEFGH

2d26: ABCDBADC CDABDCBA EFGHFEHG GHEFHGFE

2d27: ABCDBADC DCBACDAB EFGHFEHG HGFEGHEF

2d28: ABCDCDAB ABCDCDAB EFGHGHEF EFGHGHEF

2d29: ABCDCDAB BADCDCBA EFGHGHEF FEHGHGFE

2d30: ABCDCDAB CDABABCD EFGHGHEF GHEFEFGH

2d31: ABCDCDAB DCBABADC EFGHGHEF HGFEFEHG

2d32: ABCDDCBA ABCDDCBA EFGHHGFE EFGHHGFE

2d33: ABCDDCBA BADCCDAB EFGHHGFE FEHGGHEF

2d34: ABCDDCBA CDABBADC EFGHHGFE GHEFFEHG

2d35: ABCDDCBA DCBAABCD EFGHHGFE HGFEEFGH

Table 4. 2-dimensional symmetry classes

5



Finally, there is a symmetry class where all words are the same. In total, this yields 67 distinct symmetry
classes, corresponding to the 67 subsets calculated in [2]. The intersection between two symmetry classes can
be represented as the linear span of the union of their subspaces.

Figure 1 depicts the symmetry hierarchy. Let us start by considering it from the subspace perspective.
Each 1-dimensional symmetry is part of 7 2-dimensional symmetries, and each 2-dimensional symmetry con-
tains 3 1-dimensional symmetries. Each 2-dimensional symmetry is also part of 3 3-dimensional symmetries
and each 3-dimensional symmetry contains 7 2-dimensional symmetries. All 15 3-dimensional symmetries are
part of the single 4-dimensional symmetry. To view the hierarchy from the state perspective, simply switch
the relations (i.e. a 1-d symmetry class contains 3 2-d symmetry classes).

If one selects one symmetry from each level in the graph such that the higher-dimensional symmetries
always contain the lower dimensional one, then one can find a total of 15 × 7 × 3 = 315 different symmetry
hierarchies.

2.1 Traversing the Hierarchy

Now consider the symmetry class resulting from each symmetry, where a x-dimensional symmetry class
corresponds to an x-dimensional symmetry. Let an x-dimensional state refer to a state that has the same
number of free words, but is not necessarily symmetric. It is easy to see that the intersection of 1-dimensional
symmetric states leads to 2-dimensional symmetric states, but since there is no way to leave a symmetric
state, it seems difficult to traverse the hierarchy from higher dimensions to lower ones in such a way that
the higher dimension state is not part of a symmetry class in the higher dimension. For example, it is not
clear how to go from a 2-dimensional state to a 1-dimensional state such that the 1-dimensional state is
symmetric, but the 2-dimensional state is not in a 2-dimensional symmetry class. We show that there is a
way using portions of the state. In particular, if the state is divided into halves or quarters, where each half
or quarter belongs to a higher dimension symmetry class, a lower dimension symmetry may be achieved if
the combination of higher-level symmetry class patterns allows it. Thus, the hierarchy can be traversed from
1 dimension to 4 dimensions through intersection, and from 3 dimensions to 1 dimension in this manner.

A 2-dimensional symmetric state can be reached from 3-dimensional halves that combined do not belong
to a 3-dimensional symmetry class in the following way:

1. Set the left half of the state such that it conforms to the left half of a 3-dimensional symmetry class, 3di,
i ∈ 1 . . . 15.

2. Set the right half of the state such that it conforms to the right half of a 3-dimensional symmetry class,
3dj , j ∈ 1 . . . 15, i 6= j.

All 35 2-dimensional symmetry classes can be reached in this manner. If a particular 2-dimensional state
is needed, there are further restrictions on the classes the halves belong to. In order to reach a class 2di, the
3-dimensional halves must belong to 3dj and 3dk such that 2di contains 3dj and 3dk.

1-dimensional symmetric states can be generated in a similar way using 2-dimensional symmetric class
halves. However, not all combinations yield a symmetric state. The left and right halves of the state should
both belong to classes that a 1-dimensional class is a part of in the hierarchy. For example, C1 contains
2d1, 2d2, 2d3, 2d8, 2d9, 2d10, and 2d11. If each half is set to a pattern found in these symmetric classes, the
state will belong to C1.

It is convenient to divide the state into left and right halves, but not necessary. It may also be divided
into 32-byte quarters, where each quarter is from a symmetric state. We call these quarter-symmetries. There
are many duplicate state forms when only quarters are considered. For example, 3d2 and 3d3 both have the
same pattern when only 8 words are viewed. Then we say 3d2 to mean either class, since they are equivalent
in this context. Thus we only consider one class for these duplicates, as a representative.

Tables 5 and 6 show the quarter-symmetry transitions to lower-dimension symmetry classes. When
traversing the hierarchy from 3-dimensional quarter-symmetries to 1-dimensional symmetry classes, the
2-dimensional quarter-symmetries must contain the 3-dimensional quarter-symmetries and be part of the
1-dimensional symmetry class. Note that only states where each quarter is self-contained can be reached via
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Fig. 1. Dimensional Hierarchy
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quarter-symmetries. That is, states that have equalities that cross the quarter boundary cannot be reached
this way – that traversal must occur with half-symmetries.

3 Claimed Attacks, based on Symmetry Classes

The authors of [2] claim two attacks which take advantage of symmetry in the compression function. We
argue that for both of these attacks, the analysis is much to optimistic.

3.1 A Claimed Preimage Attack

The first is a preimage attack that arrives in a symmetric state, S ∈ Ci, by going forward with 2500 message
blocks. It arrives at another symmetric state, T ∈ Cj , by computing backwards from finalization.

The authors of [2] claim that if Ci and Cj are different symmetry classes one just needs to bridge these
by mixing in null messages to eventually fall into the intersection symmetry class Ci ∩Cj . This reasoning is
flawed, however: Mixing in a null message is a permutation over any symmetry classes. Thus, if one is in a
state Ci and mixes in the null message, one can be sure to stay in Ci. But if one is not in Cj (i.e., not in
Ci ∩Cj), one can never get into Cj (or Ci ∩Cj) that way. Similarly for going backward from Cj to Ci ∩Cj .
Thus, the preimage attack can only work if Ci = Cj , I.e., if S and T are in the same symmetry class.

Even if Ci = Cj , the claimed complexity of 2 × 2256 steps for finding a way from S to T by mixing in
zero-messages is much too optimistic, since mixing in zero-messages is a permutation. Define the “successor”
of a state X ∈ Ci as the new state Y which one gets by mixing in a zero message block. If we view the
elements of Ci as the vertices in a directed graph, we draw an edge from X to Y . Since mixing in a zero
message is a permutation, this graph will consist of some disjoint cycles. Going from S ∈ Ci to T ∈ Ci by
mixing in zero-messages is possible if and only if X and Y are on the same cycle. If S and T are not on the
same cycle in Ci, the attack will fail. If they are on the same cycle, the attack will succeed eventually. Thus,
this part of the attack will take close to 2512 steps, instead of the claimed 2 × 2256. Thus, even if the attack
doesn’t fail, the message length will be close to b × 2512 bytes.

3.2 A Claimed Collision Attack

The second attack is a collision attack on a weakened version of CubeHash, where the initial state is sym-
metric. (Note that the CubeHash specification doesn’t allow a symmetric initial state.) In that initial state,
all words in x0jklm are equal and all words in x1jklm are equal, yielding a state of the form:

AAAAAAAA AAAAAAAA BBBBBBBB BBBBBBBB

Null messages can be used to cycle through all such symmetric states. With a b233-byte zero message, the
authors of [2] expect a collision with probability 0.63. This seems to assume that the round function behaves
like a random function over the set of states in the symmetry class. The assumption is false, and the claimed
complexity is too optimistic, again, since the round function (and mixing in zero-messages) is a permutation.
We expect that one would need a message close to b × 264 zero-bytes.

4 Exploiting the Degrees of Freedom Available

The core problem for the above attacks from [2] is that the attacker is only allowed to apply a single fixed
permutation to a message state X ∈ Ci, which is defined by mixing in an all-zero message block. Note that
[2] was written before CubeHash was tweaked for improved performance. At that point in time, the default
was b = 1, and in this case, the only message block one could mix in while maintaining a given symmetry
class was the zero-byte.

Below, we will consider the cases b = 32 (now the default for CubeHash) and b = 33 and exploit the
additional degrees of freedom. This allows us to choose different nonzero message blocks, which can be mixed
in while still maintaining a given symmetry class:
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– For b = 32, the defined default setting of CubeHash “normal” operations, we restrict ourselves to the
symmetry classes C1, . . . , C7.

– If we consider a slightly weaker variant of CubeHash, where the adversary can control one additional
byte, i.e., b = 33, then our approach works for all symmetry classes C1, . . . , C15.

Note that the first eight words (i.e., the first 32 bytes) of a state in C1, . . . , C7 are independent from any
of the remaining 24 words. Also note that the state defines a certain pattern (e.g., “ABBACDDC” for Ci),
but apart from that pattern, there are no restrictions on the state. If we are in such a state and mix in any
8-word message block which just follows that pattern, we will remain in that state. Of course, the all-zero
message block follows such a pattern, but there are 2128 − 1 nonzero message blocks which also follow the
required pattern.

In the case of symmetry classes C8, . . . , C15, the first eight state words are identical to the next eight
state words. Thus, we need to control more than the first eight state words. But if b = 33, we can arbitrarily
choose one byte in the ninth state word. Thus, apart from the all-zero message block, there are 28 − 1 = 255
nonzero message blocks (with 31 zero-bytes and two identical nonzero bytes), to choose from.

5 Our attacks

In this section, we describe our attacks, which are mainly based on the above observations. A vital part
for the attack is, however, to get into a symmetric state. Since the internal state H0 of CubeHash is not
symmetric, any attack based on exploiting these symmetries must first find a message M such that H(H0, M)
is symmetric:

→ Generate random message blocks as message M1x of length kb bytes (for some integer k) until one can
find a b-byte message M1y such that

H(H0, (M1x||M1y)) = H1

is symmetric.

First, consider b = 33. If we don’t care about which symmetry class we are in, then we statistically expect
to succeed after trying out about 2256/8 = 2253 different M1x. Our chances to reach either of the states C1,
C2, . . . , C7 with that amount of work is negligible; we rather expect to reach any of the states in classes Ci

for i ∈ {8, . . . , 15}. If we want to get into a fixed class Ci ∈ {C8, . . . , C15}, we need about 2256 attempts.
Now consider the case b = 32. If we are trying to reach a fixed state Ci in C1, . . . , C7, then we expect

to succeed after 2384 attempts. If we don’t care which state in C1, . . . , C7 we will get, we need about
2384/7 ≈ 2381.2 attempts.

Of course, a smaller b makes it even harder to reach a symmetric state. [2] did consider the extreme
case b = 1, which has been the recommended value at the time [2] has been written. In that case, all
symmetry classes are equally hard to get into, and if we don’t care which class we will get into, we have to
try 2504/15 ≈ 2500.1 message blocks M1,x.

Note that the same approach works backward: Instead of starting with an arbitrary initial H0 and
searching a message M1x||M1y, such that the state H1 = H(H0, M1x||M1y) is symmetric, we can start with
a final state H3 and search for some message M such that the state H2 with H3 = H(H2, M) is symmetric.
The amount of work depends on the symmetry class we are targeting in the exactly same way as it does for
the forward direction.

5.1 Multi-Collisions on CubeHash

Note that any of the symmetry classes C1, . . . , C15 contains 2512 states. Thus, once our state is symmetric,
we now can find different messages with colliding internal states by trying out about

√
2512 = 2256 messages.

(Of course, all message blocks of all the messages we consider must follow the pattern determined by the
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symmetry class, such as “ABBACDDC” in the case of C3.) This allows us to mount a Joux-style multicollision
attack [13]: finding a k-collision takes the time sequentially computing ⌈log2(k)⌉ collisions, each in time 2256.

For b = 32, the complexity to find a k-collision, including the time for initially getting into a symmetric
state is

2381.2 + ⌈log2(k)⌉ × 2256,

which is dominated by 2381.2, i.e., by the time for getting into a symmetric state, for any imaginable k.
For b = 33, finding k-collisions is much faster. It can be done in time

2253 + ⌈log2(k)⌉ × 2256 ≈ ⌈log2(k)⌉ × 2256.

Thus, in this case the complexity is dominated by the Joux-multicollision part.

5.2 Preimages for CubeHash

Consider a hash value Z of size h (e.g., h = 512). Write H0 for the initial state. The attacker’s goal is to find
a message M , such that CubeHash(M)=Z. The basic structure for the attack is the following:

1. Extend Z by (1024− h) bit to a full 1024-bit state and run the finalization backwards to get a state H4.
2. Search for a message prefix M1 and a H1 = H(H0, M1) in a symmetry class Ci.
3. Search for a postfix M4 and H3 in the same Ci with H(H3, M4) = H4.
4. Apply a meet-in-the-middle approach to search two nonzero message parts M2 and M3 and a state

H2 ∈ Ci with H(H1, M2) = H2 and H(H2, M3) = H3.

Jointly, the message parts M1, . . . , M4 form a message M = (M1 ||M2 ||M3 ||M4) with H(H0, M) = H4

and thus CubeHash(M)=Z. (Of course, the length of each of M1, M2, M3, and M4 must be a multiple of
the block length.)

The first three steps in the attack are resemble the attack from [2], except that our attacker is allowed to
mix in nonzero message blocks, and H3 must be in the same symmetry class as H1. Accordingly, H2 must
be in the very same symmetry class, rather than in the intersection of two different symmetry classes.

The first step of this attack is trivial. Since the size of any symmetry class is 2256, we expect the fourth
step to work if we try out 2256 candidates for M2 and the same number of candidates for M3. Thus, the
fourth step requires 2 × 2256 steps.

For the analysis of the second and the third step, we distinguish between b = 32 and b = 33.
First, consider b = 32. In this case, we are restricted to Ci ∈ {C1, . . . , C7}. In the second step, we don’t

care which of the seven possible sets Ci we get into. Thus this part of the attack requires 2381.2 units of time.
But then, the second step requires 2384 units of time, since Ci is fixed. There is a little trick to improve this:

– Repeat the second step twice, to get into two states H1 ∈ Ci and H ′

1 ∈ C′

1 6= Ci. This takes time
2384/7 + 2384/6 < 2384/3 ≈ 2382.4.

– In the third step, we succeed if H3 ∈ Ci ∪ C′

i. Thus, the third step only takes time 2383.

The second and the third step together need time ≈ 2382.4 + 2383 ≈ 2383.7. This dominates the attack
complexity for b = 32.

Now consider b = 33. In the second step, we don’t care which of the 15 Ci we get into, and we need to try
out 2256/8 = 2253 messages. In this case, the third step takes time 2256, thus, the overall attack complexity is
3× 2256 + 2253 ≈ 3× 2256. The little trick from above can reduce this a bit, but since the meet-in-the-middle
part in the fourth step needs 2 × 2256 steps alone, we will not get much better than 3 × 2256 for b = 33 and
the complete preimage attack.

Note that this preimage attack and the resulting complexities are similar to those presented in [2]. The
authors described an attack for all possible values of b that appeared to target a particular class. Our analysis
differs in that it provides a little more flexibility by targeting a range of classes, and provides the trick shown
for the third step. Both of these lead to a small improvement over the second preimage attack presented in
[2].
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6 Final Remarks

Note that b = 32 is sufficient for our approach, but not necessary. If b ≤ 4, there seems to be no way to
choose nonzero message blocks while maintaining a given state. But b = 5 would suffice for our attacks. The
symmetry class C1 defines a pattern “AAB. . . ”, without any further occurrence of “A”. Thus, we can freely
choose one byte in the second message word, and then ensure that the first message word is identical to
the second message word. Adapting our attacks to the b = 5 case would slow the attacks down a lot, since
getting into a state in C1 from a non-symmetric initial state would take time 2472.

Summary and Conclusion In the current paper, we have provided a detailed analysis of the hierarchy
of symmetry classes of CubeHash. We demonstrated that certain attacks presented previously are more
complex than claimed by their authors. Finally, we presented and analyzed some attacks on CubeHash on
our own:

– For CubeHash with b = 32 (the default for normal operations), we presented multicollision and preimage
attacks with a complexity of slightly less than 2384 hash operations, and

– for CubeHash with b = 33 (slightly weaker than the default), we presented multicollision and preimage
attacks with a complexity of slightly more than 2256 operations.

Since the author of CubeHash explicitly disregards attacks beyond 2384 operations for the default b = 32
(he recommends an extremely slow “formal” mode with b = 1 to ensure resistance against such extreme
attacks), our attacks on CubeHash are small improvements over the best attacks known to the designer of
CubeHash. What we consider remarkable is the deep drop of security if one increases the tunable security
parameter just by one, from b = 32 to b = 33. We would expect a “conservative proposal with a comfortable
security margin” (as written in the revised CubeHash specification), to be less sensitive to minor changes of
the tunable security parameters.
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Symmetry class 2d quarter-symmetry classes

C1 1, 2, 3, 8(to 11)

C2 1, 6, 7, 12(to 15)

C3 1, 4, 5, 16(to 19)

C4 2, 4, 6, 20(to 23)

C5 2, 5, 7, 24(to 27)

C6 3, 5, 6, 28(to 31)

C7 3, 4, 7, 32(to 35)

Table 5. 2d quarter-symmetries to symmetry classes (equivalent quarters in parentheses)

Symmetry class 3d quarter-symmetry classes

C1 1, 2(3), 4(5), 10(11)

C2 1, 2(3), 12(13), 14(15)

C3 1, 2(3), 6(7), 8(9)

C4 1, 6(7), 10(11), 12(13)

C5 1, 8(9), 10(11), 14(15)

C6 1, 4(5), 8(9), 12(13)

C7 1, 4(5), 6(7), 14(15)

2d1 1, 2(3)

2d2 1, 10(11)

2d3 1, 4(5)

2d4 1, 6(7)

2d5 1, 8(9)

2d6 1, 12(13)

2d7 1, 14(15)

Table 6. 3d quarter-symmetries to symmetry classes (equivalent quarters in parentheses)
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