
One Round Group Key Exchange with Forward Security in the

Standard Model

M. Choudary Gorantla, Colin Boyd, and Juan Manuel González Nieto

Information Security Institute, Faculty of IT, Queensland University of Technology
GPO Box 2434, Brisbane, QLD 4001, Australia.

Email: mc.gorantla@isi.qut.edu.au, {c.boyd,j.gonzaleznieto}@qut.edu.au

Abstract. Constructing a one round group key exchange (GKE) protocol that provides forward secrecy
is an open problem in the literature. In this paper, we investigate whether or not the security of one
round GKE protocols can be enhanced with any form of forward secrecy without increasing the number
of rounds. We apply the key evolving approach used for forward secure encryption/signature schemes
and then model the notion of forward security for the first time for key exchange protocols. This notion
is slightly weaker than forward secrecy, considered traditionally for key exchange protocols. We then
revise an existing one round GKE protocol to propose a GKE protocol with forward security. In the
security proof of the revised protocol we completely avoid reliance on the random oracle assumption
that was needed for the proof of the base protocol. Our security proof can be directly applied to the
base protocol, making it the most efficient one round GKE protocol secure in the standard model. Our
one round GKE protocol is generically constructed from the primitive of forward secure encryption.
We also propose a concrete forward secure encryption scheme with constant size ciphertext that can be
used to efficiently instantiate our protocol.
Keywords. group key exchange, forward security, key evolving, standard model

1 Introduction

A group key exchange (GKE) protocol allows a set of parties to agree upon a common secret session
key over a public network. The communication efficiency of such a protocol is determined by the
number of rounds it takes to complete the protocol and the size of the messages exchanged. A
round includes all the messages that can be sent simultaneously by the parties during the protocol
execution. This implies that in any given round, the parties do not have to wait for the messages
from the other parties before sending out their messages in that particular round. Hence, in a one
round GKE protocol no party should have to wait before initiating the protocol and sending its
outgoing messages (if any). In these days of ubiquitous connectivity to the Internet, the parties
are often at distant locations with each party connected via different devices over different local
networks. If these parties want to establish a common session key by executing a GKE protocol,
a single party connected to a congested local network is enough to cause considerable delay in
computing the session key as the number of communication rounds increases. Hence, it is highly
desirable to have a protocol with as minimum number of rounds as possible.

Diffie and Hellman [23] first proposed a simple one round two-party key exchange (2PKE)
protocol and later many one round 2PKE protocols have been proposed with improved security
properties. Joux [31] generalized the Diffie-Hellman protocol to the three-party setting using bilinear
pairings over elliptic curves, with only one round of communication. However, all such generalizations
to a group of size more than three have multiple rounds [29, 19, 44]. To the best of our knowledge,
the only GKE protocols with one round of communication are the protocols of Boyd and González
Nieto [14] and Gorantla et al. [28].

Forward Secrecy. A key exchange protocol with forward secrecy ensures that even if the
long-term key of a party is exposed, all the past session keys established using that long-term key
will remain uncompromised. Forward secrecy is one of the most important security attributes for

key exchange protocols since it limits the damage of long-term key exposure. Forward secrecy can
be classified into two types: full (perfect) forward secrecy (FFS) and weak forward secrecy (WFS),
based on the adversarial power. A protocol with FFS allows the adversary to be active during the
protocol execution and still makes sure that the session key will remain uncompromised when the
long-term key is revealed. On the other hand, in a protocol with WFS the adversary is required to
remain passive during the protocol execution. There exist many one-round 2PKE protocols [23, 40,
38, 36, 13] which achieve WFS. The recent one round protocol of Gennaro et al. [26] also achieves
FFS using identity based techniques. The common technique to achieve WFS/FFS in all these
protocols is to ensure that the ephemeral Diffie-Hellman key between the two parties is part of the
shared secret from which the session key is derived.

A similar approach is followed for the case of tripartite setting by ensuring that the ephemeral
bilinear Diffie-Hellman key is embedded within the shared secret [31, 2]. However, it seems no
such ephemeral key can be derived for the group case in a single round unless n-linear pairings are
realized [12]. On the other hand, it is known that the both the existing one round GKE protocols [14,
28], which are not Diffie-Hellman type protocols, do not provide even WFS. Since forward secrecy is
a highly desirable property for key exchange protocols, it is essential that one-round GKE protocols
achieve some level of security when the long-term keys are compromised. A natural question to
ask now is whether it is possible to strengthen the security of one-round GKE protocols or not.
More specifically, can we provide any form of security to the session key established in one round
GKE protocols when the long-term key is revealed? We answer this question in the affirmative by
adopting the notion of forward security for the first time for key exchange protocols.

Forward Security. Back [4] floated the idea of non-interactive forward secrecy (now known
as forward security) for public key cryptosystems and Anderson [3] later extended it to public key
encryption and signature schemes. The notion of forward security defined for public key cryptosys-
tems [3, 7, 20] is similar to the notion of forward secrecy considered for key exchange protocols. The
goal of forward security for public key schemes is to ensure the appropriate notion of security, even
if the long-term private key used in the corresponding scheme is compromised. For example, in the
case of encryption schemes, forward security should assure that all the messages encrypted earlier
will remain confidential in the event of the long-term private key leakage.

Forward security is achieved by employing a key evolving scheme for the long-term private keys
of the parties. In this scheme, a party initially starts with a standard public-private key pair. The
lifetime of the scheme is divided into N time periods with each period being labelled 0, . . . , N − 1.
As the party enters a time period τ , it applies a one-way transformation to the private key SK τ−1

to obtain a private key SK τ for the current time period. SK τ−1 is then erased. The public key
remains the same for all the N time periods. Bellare and Miner [7] and Canetti et al. [20] proposed
key evolving schemes that are more efficient than the initial proposal of Anderson [3] such that the
private key size does not grow linearly with the number of periods. There exist many other public
key cryptographic primitives for which the notion of forward security has been considered [37, 43,
1]. Itkis [30] gave an excellent survey on forward security for public key cryptography.

Forward Security for Key Exchange. The notion of forward security has been not yet
considered for key exchange protocols. The main reason for this seems to be the fact that there exist
both 2PKE and GKE protocols in abundance, which provide forward secrecy. As mentioned above
there exist even one-round 2PKE protocols that achieves both WFS and FFS. However, when it
comes to the case of one-round GKE protocols, we still do not how to construct concrete protocols
with forward secrecy. Hence, all that one round GKE protocols can achieve at this stage seems to be
forward security. A naive approach to attain forward security for GKE protocols may involve having
different certified public keys with short life time and then the parties may execute the known one-
round GKE protocols. However, note that this approach involves significant overhead in terms of the

2

number of interactions with the certifying authority and the related certificate management issues.
On the other hand, the key evolving approach avoids this problem by allowing a user to update
its own private key, while keeping the public key the same for longer periods. The key evolving
approach may also be applied to one-pass key establishment protocols [41] to make them achieve
receiver forward security.

Security Notions for GKE. Adversaries against a GKE protocol can be divided into two
types: outsiders, who are not part of the group and insiders, who are members of the group. A
desired notion of outsider security for GKE protocols, introduced by Bresson et al. [17, 15, 16], is
authenticated key exchange (AKE) security. Informally, AKE-security demands that an outsider
adversary should not learn the session key. The property of forward secrecy can be captured by an
appropriate definition of AKE-security. The notions of mutual authentication and contributiveness
in the presence of insiders have been defined as desired notions of insider security for GKE [33, 9, 18].
GKE protocols with these additional security guarantees often require more than one round [34, 33,
39, 27]. Since our emphasis here is on communication efficiency, we concentrate only on one round
AKE-secure GKE protocols with forward security.

1.1 Contributions

In this paper, we introduce a new notion of AKE-security for GKE protocols with forward security.
We assume that each party in a forward secure GKE protocol has a long-term public-private key
pair. A key evolving scheme is then applied to each long-term private key. Forward security for GKE
protocols guarantees that even if the private key SK τ is exposed, all the session keys established prior
to the time period τ will remain uncompromised. However, note that this does not imply forward
secrecy since the session keys established so far with the private key SK τ will be compromised if
SK τ is leaked. Hence, in forward secure GKE protocols, it is not possible to ensure the secrecy of the
session keys established during period τ or any subsequent periods. However, if the GKE protocol
is executed only once in a time period τ , the level of security offered by forward security would be
identical to the one offered by the traditional forward secrecy considered for GKE protocols.

We can construct one-round GKE protocols with forward security by revising the one round
protocols of Boyd and González Nieto [14] (BG) and Gorantla et al. [28]. However, note that the
BG protocol is role asymmetric compared to the protocol of Gorantla et al. i.e., in the BG protocol
only one party performs public key encryption and signature operations whereas in Gorantla et al.’s
protocol all the parties execute a public key encryption algorithm. Consequently, the BG protocol is
computationally more efficient than the protocol of Gorantla et al. for all except one party. Hence,
we modify the BG protocol by replacing the normal public key encryption scheme in their protocol
with a forward secure encryption scheme.

We then show that the revised one round GKE protocol satisfies our new AKE-security. Although
our modifications to the BG protocol are straightforward, our crucial contribution is that we prove
the security of the revised protocol in the standard model. Note that the BG protocol till now is
known to be secure in the random oracle model. The security proof of the BG protocol assumes
that the underlying public key encryption is chosen plaintext secure. However, we prove the security
of the revised protocol assuming that the underlying forward secure encryption scheme is chosen
ciphertext secure. Surprisingly, this minor change in assumptions enable us to carry out the proof
in the standard model. Particularly, it allows us to simulate the session key reveal and test queries
(for which the random oracle assumption was needed in the BG protocol proof) without resorting
to the random oracle assumption. Our proof technique can be directly applied to show that the BG
protocol is secure in the standard model. Consequently, the BG protocol becomes the most efficient
one round GKE protocol secure in the standard model.

3

Our protocol is generic in the sense that any forward secure encryption scheme with chosen
ciphertext security can be used to instantiate it. However, the ciphertext lengths of the known
forward secure encryption schemes of Canetti et al. [20] have logarithmic complexity in the number
of total time periods. Instantiating our protocol with any of these two encryptions schemes will result
in a GKE protocol whose messages will also have the same complexity. Hence, we also construct a
new forward secure encryption scheme with constant size ciphertext from the hierarchical ID-based

encryption scheme of Boneh et al. [11] and show that it achieves chosen ciphertext security in the
standard model. Note that although Boneh et al. observed that a forward secure encryption scheme
could be obtained from their hierarchical ID-based encryption scheme, constructing the forward
secure encryption scheme and proving it chosen ciphertext secure has still not yet been done. We
recommend instantiating our GKE protocol with the new forward secure encryption scheme since
it will result in a protocol that has O(1) message size complexity.

Specific contributions of our paper are:

– Security model for forward secure GKE protocols

– A one-round GKE protocol with forward security

– Proof of security for the proposed protocol in the standard model

– A forward secure encryption scheme with constant size ciphertext

Outline. In the remainder of this section, we briefly review an important GKE protocol pro-
posed recently. In Section 2, we present a forward secure encryption scheme with constant size
ciphertext. Section 3 introduces the model for forward secure GKE protocols. In Section 4, we
present a generic one round GKE protocol. Finally, we conclude the paper in Section 5. Prelimi-
naries and proofs of both the protocol and the forward secure encryption scheme are given in the
appendix.

1.2 Related Work

Wu et al. [45] recently proposed a one round asymmetric GKE protocol. This protocol is different
from the conventional GKE protocols in that the parties agree upon a common public key instead
of a shared symmetric key. Each user computes a private key corresponding to the common public
key. Similar to the Diffie-Hellman protocol [23], their protocol is designed from scratch i.e. without
assuming prior infrastructure. However, it is well known that the security of such protocols depends
on the assumption of an authenticated network. The protocol of Wu et al. can be made secure against
active adversaries by applying Katz and Yung’s [34] adaptation of Bellare et al.’s approach [6] to
the group case, which introduces an extra round and O(n2) messages for a group of size n. On the
other hand, the BG protocol has only one communication round and can be shown secure against
active adversaries. But, it assumes the existence of public key infrastructure. In this paper, we
concentrate on conventional GKE protocols as the main idea behind a key exchange protocol (two-
party or group) is to establish a symmetric key and thereby leverage the efficiency of symmetric
cryptographic primitives for further communication.

2 A Forward Secure Encryption Scheme

The initial key evolving schemes of Back [4] and Anderson [3] result in private keys with linear
size complexity in the total number of time periods. Bellare and Miner [7] proposed a key evolving
scheme using a binary tree technique, which has private keys of logarithmic size complexity. In
their scheme, the time periods are associated to the leaves of a binary tree in an in-order traversal.

4

Canetti et al. [20] further improved the efficiency of this binary tree based key evolving scheme. The
time periods are now associated to all the nodes of the binary tree in a pre-order traversal. This
improves the efficiency of the key generation and key updating phases of the key evolving scheme.

In this section, we present a new forward secure encryption scheme from the hierarchical ID-
based encryption scheme of Boneh et al. [11] using the key evolving approach of Canetti et al. Unlike
Canetti et al., we directly construct the forward secure encryption scheme without proposing an
intermediate binary tree encryption scheme. In the following, we use the terms key evolving public
key encryption and forward secure encryption interchangeably.

2.1 Key Evolving Public Key Encryption

The definition of a key evolving public key encryption (ke-PKE) scheme due to Canetti et al. [20]
is presented below. A ke-PKE scheme has four PPT algorithms:

KeyGen takes as input the security parameter k and the total number of time periods N . The output
is a public key PK and an initial private key SK 0.

KeyUpd takes as input PK , an index τ ∈ [0, N − 1) of the current time period and a corresponding
private key SK τ . The output is SK τ+1, the private key for the following time period.

Encrypt takes as input PK , an index τ ∈ [0, N −1] of a time period, and a plaintext M . The output
is a ciphertext C.

Decrypt takes as input PK , an index τ ∈ [0, N − 1] of the current time period, a corresponding
private key SK τ and a ciphertext C. The output is either a plaintext M or ⊥.

For any ke-PKE to be valid it is required that M = Decrypt(PK , τ,SK τ ,Encrypt(PK , τ,M)), for
any messageM , any key pair output by KeyGen, any time period τ ∈ [0, N−1] and the corresponding
SK τ .

Canetti et al. defined the notions of indistinguishability against chosen-plaintext attacks (fs-IND-
CPA) and indistinguishability against chosen-ciphertext attacks (fs-IND-CCA) for forward secure
encryption schemes. These notions are reviewed in Appendix B

2.2 A Forward Secure Encryption Scheme with Constant Size Ciphertext

Let N be the number of time periods, labelled 0 through N − 1. We use a binary tree of depth
l = ⌈log(N+1)⌉−1 and associate each node in the binary tree with a time period τ , for τ ∈ [0, N−1],
as follows: The root is labelled with the empty string ǫ. If a node has a label the binary string w
then its left child is labelled w0 and its right child w1 i.e., appending w with either 0 or 1. Let wτ

denote the node of the binary tree corresponding to a time period τ . The time periods are associated
to the binary tree nodes in a pre-order traversal as described below:

– w0 = ǫ (i.e. the root the tree)
– If wτ is an internal node then wτ+1 = wτ0.
– If wτ is a leaf node and τ < N − 1 then wτ+1 = w′1, where w′ is the longest string such that

w′0 is a prefix of wτ .

As stated earlier, the public key of the scheme remains the same throughout its lifetime. The
private key SKw corresponding to a node w in the binary tree is derived from the private key of
its parent node. The private key SK τ of the party in the time period τ (τ is associated with wτ)
contains the private key SKwτ of the node wτ and also the private keys of all the right siblings of
the nodes on the path from the root to the node wτ . Note that SK τ is the private key of the party

5

in time period τ , whereas SKwτ is part of SK τ and serves as the decryption key in the time period
τ . The pre-order traversal of the binary tree requires a stack (e.g. an array or a list, from which
elements are removed in the reverse order to the order of their insertion). In any time period, the
private key of the party is a set of all the keys stored in the stack, with the current decryption key
at the top.

A binary tree for N = 7 is shown in Figure 1. The elements of the stack at time period 2 are
also shown in the figure. Note that the current decryption key SK 00 associated with the node 00
is at the top of the stack. The key update algorithm is explained in more detail below. We now
describe the proposed forward secure encryption scheme.

0 1

0 0 0 1 1 0 1 1

t o p

ǫ0

1

2 3

4

5 6

Pre-order traversal: ǫ, 0, 00, 01, 1, 10, 11
Depth: l = 2

SK 00

SK 01

SK 1

Elements of stack
at τ = 2

Fig. 1. A binary tree construction for N = 7

KeyGen(k,N) Let G0 be a bilinear group of prime order p and let e : G0 × G0 → G1 be a bilinear
map as described in Appendix A.1. Note that a node associated to a time period τ is labelled
with a binary string wτ . We use a collision resistant hash function H : {0, 1}∗ → Z

∗
p.

1. Select a random generator g of G0, a random α ∈ Zp and compute g1 = gα.

2. Select g2, g3, h0, h1, . . . , hl
R
← G0.

3. The public key PK is (G0,G1, e, g, g1, g2, g3, h0, h1, . . . , hl, H), where l = ⌈log(N + 1)⌉ − 1.

4. Choose r
R
← Zp and compute I0 = H(ǫ).

5. The initial private key is computed as SK ǫ = (gα2 · ((h0)
I0 · g3)

r, gr, hr1, . . . , h
r
l).

KeyUpd(PK , τ,SK τ) As described above, the nodes are labelled in such a way that all the nodes
in the path from root to the node wτ have labels which are prefixes of wτ (including ǫ for the
root). The length of the label wτ would be v, where v is the depth of the node labelled wτ . Let
the (v + 1) prefixes of wτ be wτ

0 , . . . , w
τ
v where wτ

0 = ǫ and wτ
v = wτ and let I0, . . . , Iv be the

corresponding hash values.

Recall that the private key in time period τ contains the private key associated to the node wτ

and also the private keys associated to the right siblings of the nodes in the path from root to
wτ . We first pop the current decryption key SKwτ , which is at the top, off the stack. The private
key for time period τ + 1 is derived as follows:

1. If wτ is a leaf node, the next key on the stack (top of the stack) is set as SKwτ+1 .

2. If wτ is an internal node, then the key SKwτ is used to compute the private keys of its two
children as follows:

6

(a) Note that the private key SKwτ is of the form (gα2 · (h
I0
0 · · ·h

Iv
v · g3)

r, gr, hrv+1, . . . , h
r
l) for

v ≤ l. Let this be (a0, a1, bv+1, . . . , bl).

(b) Select t0, t1
R
← Zp

(c) Compute I ′v = H(wτ0) and I ′′v = H(wτ1).

(d) Compute SKwτ0 = (a0 · b
I′v
v+1 · ((h0)

I0 · · ·h
I′v
v+1 · g3)

t0 , a1 · g
t0 , bv+2 · h

t0
v+2, . . . , bl · h

t0
l)

(e) Compute SKwτ1 = (a0 · b
I′′v
v+1 · ((h0)

I0 · · ·h
I′′v
v+1 · g3)

t1 , a1 · g
t1 , bv+2 · h

t1
v+2, . . . , bl · h

t1
l)

(f) Push SKwτ1 and then SKwτ0 into the stack with the decryption key SKwτ0 at the top
of the stack.

3. In either case above, the key SKwτ is erased. The stack of keys is returned as the private
key for the time period τ + 1.

Encrypt(PK , τ,M) To encrypt a message M ∈ G1 under the public key PK and to be decrypted in
time period τ we do the following:

1. Select random s ∈ Zp.

2. Compute ciphertext CT =
(

e(g1, g2)
s ·M, gs, (hI00 · · ·h

Iv
v · g3)

s
)

Decrypt(SK τ , CT) Let the ciphertext be (X,Y, Z) and the private key be (a0, a1, bv+1, . . . , bl) output

X · e(a1, Z)/e(Y, a0) = M

Scheme parameters. The ciphertext size in the above scheme remains constant for all the time
periods i.e., it always contains two elements of G0 and one element of G1. A single decryption key
is of size O(l) and the length of the stack is of size O(l). Hence, the private key in any time period
is of size O(l2). But, as noticed by Boneh et al. [11], the private key size can be reduced to O(l) by
employing O(l2) public storage. The users may also agree that the parameters h0, · · · , hl be made
common throughout the system, making the size of individual public keys constant. In this case, all
the users will have to use the same number of time periods.

Theorem 1. The proposed fs-PKE scheme is secure under the fs-IND-CPA notion assuming the

hardness of decisional (l + 1)-wBDHI∗ problem. The advantage of an fs-IND-CPA adversary A is

upper bounded by N · λ, where λ is the advantage of decisional (l + 1)-wBDHI∗ problem solver B
and N is the number of time periods.

The proof of above theorem is given in Appendix D.
The scheme can be made fs-IND-CCA secure in the standard model using the generic technique

of Canetti et al. [21]. Appendix E gives some more details.

3 Forward Secure Group Key Exchange

We first give a definition of forward secure GKE protocol, which involves three PPT algorithm:

KeyGen takes as input the security parameter k and the total number of time periods N . The output
is a public key PK and an initial private key SK 0.

KeyUpd takes as input PK , an index τ ∈ [0, N − 1) of the current time period, a corresponding
private key SK τ . The output is the private key SK τ+1 for the following time period.

KeyEx is an interactive algorithm that takes as input the public key PK , the private key for the
current period SK τ , the identities and public keys of the peers and the incoming messages. The
final output is either a session key κ or the ⊥ symbol.

We now describe the security model for a forward secure GKE protocol. The adversarial capa-
bilities are similar to those in the earlier models for GKE protocols [17, 34].

7

3.1 Adversarial Model

Let U = {U1, . . . , Un} be a set of n parties and let N be the total number of time periods that
the protocol can support. The protocol may be run among any subset of Ũ ⊆ U containing ñ ≤ n
parties. A GKE protocol π executed among ñ users is modelled as a collection of ñ programs running
at the ñ parties in Ũ . Each instance of π within a party is defined as a session and each party may
have multiple such sessions running concurrently. Each party Ui ∈ U initially generates a pair of
long-term public and private keys, (PK i,SK i

0) using the KeyGen algorithm during an initialization
phase prior to the protocol run. When entering a time period τ , it updates its long-term private
key to SK i

τ using the KeyUpd algorithm.

Let πj,τ
i be the j-th run of the protocol π at party Ui ∈ Ũ during time period τ for τ ∈ [0, N−1].

We assume that the session ID is derived during the run of the protocol and that the session ID is
unique to a protocol run. The session ID of an instance πj,τ

i is denoted by sidj,τi . We assume that

each party knows who the other participants are, for each protocol instance. The partner ID pidj,τi
of an instance πj,τ

i is a set of identities of the parties with whom πj,τ
i wishes to establish a common

group key. Note that pidj,τi includes the identity of Ui itself.

An instance πj,τ
i enters an accepted state when it computes a session key sk

j,τ
i . Note that an

instance may terminate without ever entering into an accepted state. The information of whether
an instance has terminated with acceptance or without acceptance is assumed to be public. Two

instances πj,τ
i and πj′,τ

i′ at two different parties Ui and Ui′ respectively are considered partnered iff

(1) both the instances have accepted, (2) sidj,τi = sidj
′,τ
i′ and (3) pidj,τi = pidj

′,τ
i′ .

The communication network is assumed to be fully controlled by an adversary Aπ, which sched-
ules and mediates the sessions among the parties. Aπ is allowed to insert, delete or modify the
protocol messages. If Aπ honestly forwards the protocol messages among the parties, then all the
instances are partnered and they output identical session keys. Such a protocol is called a cor-
rect GKE protocol. In addition to controlling the message transmission, Aπ is allowed to ask the
following queries.

– Execute(pid,τ) prompts a complete execution of the protocol among the parties in pid during
the time period τ . A unique session ID sid is established during the run of the protocol. Aπ is
given all the protocol messages, modelling passive attacks.

– Send(πj,τ
i ,m) sends a message m to the instance πj,τ

i . If the message is (pid, τ), the instance πj,τ
i

is initiated with partner ID pid. The response of πj,τ
i to any Send query is returned to Aπ.

– RevealKey(πj,τ
i) If πj,τ

i has accepted, Aπ is given the session key skj,τi established at πj,τ
i .

– Corrupt(Ui, τ) The evolved long-term secret key SK i
τ of Ui for the time period τ is returned

to Aπ. Note that the key may have to be computed by repeated application of the KeyUpd
algorithm.

– Test(πj,τ
i) A random bit b is secretly chosen. If b = 1, Aπ is given K1 = skj,τi established at

πj,τ
i . Otherwise, a random value K0 chosen from the session key probability distribution is given.

Note that a Test query is allowed only on an accepted instance.

3.2 AKE Security

We assume that the protocol participants execute the protocol honestly i.e., the adversary is an
outsider. We now define the notion of freshness, which is central to the definition of AKE Security.

Freshness. An instance πj,τ
i is fresh if the following conditions hold:

8

1. neither the instance πj,τ
i nor any of its partners have been asked a RevealKey query after their

acceptance;

2. there has been no Corrupt(Ui′ , d) issued for any Ui′ ∈ pidj,τi (including Ui′ = Ui) and d ≤ τ .

Definition 1 (AKE-Security). An adversary Aπ against the AKE-security notion is allowed to
make Execute, Send, RevealKey and Corrupt queries in Stage 1. Aπ makes a Test query to an instance
πj,τ
i at the end of Stage 1 and is given a challenge key Kb as described earlier. It can continue asking

queries in Stage 2. Finally, Aπ outputs a bit b′ and wins the AKE security game if (1) b′ = b and
(2) the instance πj,τ

i that was asked Test query remained fresh till the end of Aπ’s execution. Let
SuccAπ be the success probability of Aπ in winning the AKE security game. The advantage of Aπ

in winning this game is AdvAπ = |2 · Pr[SuccAπ] − 1|. A protocol is called AKE-secure if AdvAπ is
negligible in the security parameter k for any polynomial time Aπ.

3.3 Discussion

A forward secure GKE protocol should ensure that the session key established in a session during
a given time period τ is independent of the other session keys established during τ and as well
as session keys established during time periods before or after τ . This is modelled by allowing the
adversary to reveal any session key except the one in the Test session. The protocol should also
ensure that revealing a long-term key in time period τ should not compromise the session keys
established in time periods prior to τ . This is modelled by allowing Aπ to corrupt long-term keys
in time periods d > τ .

Note that if the adversary corrupts the long-term private key in time period τ , then all the
session keys established during τ will be compromised. Hence, a GKE protocol secure under our
model offers a somewhat weaker security guarantee than the protocols secure under the WFS notion.
However, if we use a long-term key SK τ for only one execution of the GKE protocol i.e., with the key
evolving for each protocol run, then the security offered by a protocol secure in the above definition
is identical to the conventional forward secrecy considered for GKE protocols with fixed long-term
private keys.

In the above model, we have assumed that the number of time periods is the same for all the
parties and that all the parties begin/end a time period simultaneously. We can easily extend the
model to the case where the number and length of the time periods may differ from one party to
the other. This allows a party in time period τ to establish a session key with parties in time period
z. In practice, this makes sense only if τ and z have some overlapped window. In this case, we will
have to assume that each party knows the time intervals of all other parties in the protocol.

4 One Round GKE Protocol with Forward Security

In this section, we first give a sketch of a one round GKE protocol with forward security that can
be constructed from existing GKE protocols [19, 35, 9]. However, in this construction the size of
the system parameters increase linearly with the number of time periods. We then use the BG
protocol [14] and replace a normal public key encryption scheme in their protocol with a forward
secure encryption scheme. We show that this construction achieves our notion of AKE-security.
Note that this is a generic protocol and works with any instantiation of a forward secure encryption
scheme. To compare our construction with existing GKE protocols, we consider the forward secure
encryption scheme in Section 2.2 for efficiency reasons.

9

4.1 A Protocol with Linear Complexity

A simple one round GKE protocol with forward security can be constructed by combining the earlier
key evolving approach [4, 3] with existing GKE protocols [19, 35, 9]. We first briefly review the key
evolving approach and the protocol of Burmester and Desmedt [19] and then describe how these
two can be combined to derive a one-round GKE protocol with forward security.

Let N be the number of time periods. Any party using the key evolving scheme initially
generates N pairs of keys (sk0, pk0), . . . , (skN−1, pkN−1). The public key of the system is PK =
{pk0, . . . , pkN−1}. The private key at time period τ is SK τ = SK τ−1 \ {skτ−1} for τ ∈ [1, N − 1],
where SK 0 = {sk0, . . . , skN−1}. The key sk τ−1 is erased after computing SK τ .

Note that in the Burmester and Desmedt [19] protocol, the parties are organized in a logical
ring with assumption that each party knows who its neighbours are. The protocol takes two rounds
to establish a session key among the parties. In the first round each party chooses an ephemeral
public-private key pair and broadcasts the ephemeral public key to other parties. In the second
round each party computes a pair-wise ephemeral Diffie-Hellman key with its two neighbours and
broadcasts their ratio to all other parties. The session key is then computed by each party using
its own ephemeral private key, the ephemeral Diffie-Hellman keys and the messages sent in second
round.

To construct a one-round forward secure GKE protocol from Burmester and Desmedt protocol,
we simply eliminate the first round. Note that each party is assumed to know the fixed public key of
all the other parties. We use the public key component pkτ of a time period τ as the ephemeral public
key during that time period. Each party establishes a pair-wise non-interactive key for the time
period τ with its neighbours. The protocol continues normally in the second round using the non-
interactive keys as the ephemeral Diffie-Hellman keys. This protocol may also be seen as a generic
construction of a one-round forward secure GKE protocol from a forward secure non-interactive two-
party key exchange. A similar approach can also be applied to the recent protocols [35, 9], which
are based on Burmester and Desmedt’s protocol. However, a major disadvantage of this approach
is that the size of the public and private keys increases linearly with the number of time periods.

4.2 A One-round Forward Secure GKE Protocol

Boyd and González Nieto (BG) [14] proposed a one-round GKE protocol by employing public key
encryption. Choo et al. [22] later showed that their protocol was not secure against unknown key
share attacks. They also suggested an improvement to this protocol but did not provide a proof of
security. We use the improved BG protocol and then replace the public key encryption primitive with
forward secure encryption. When we instantiate this generic protocol with the proposed forward
secure encryption scheme, it results in a concrete one-round forward secure GKE protocol with
private keys of O(log(N)) size and constant size protocol messages.

Let U = {U1, U2, . . . , Uñ} be the set of users who want establish a session key among themselves.
We assume that the users agree upon a distinguished user for each execution of the protocol. Note
that this user does not have to be fixed. Without loss of generality let U1 be the distinguished user.
The protocol uses a forward secure encryption scheme FSE = (Kg, Ku, E ,D), where Kg, Ku, E and D
are the KeyGen, KeyUpd, Encrypt and Decrypt algorithms respectively. It also uses a signature scheme
Σ = (Ks,S,V), where Ks, S and V are the key generation, signature and verification algorithms
respectively. Each user initially generates a key pair for each of the schemes. For the forward secure
encryption the parties update their long-term private key using the Ku algorithm, while we assume
Σ to be a standard public key signature scheme.

In the protocol, the distinguished user U1 chooses a nonce N1
R
← {0, 1}k and encrypts it along

with its identity for all the other parties using their respective public keys and the current time

10

period τ . U1 signs all these ciphertexts together with the set of identities of all the users U . The set
U , the signature generated and the ciphertexts are then broadcast. All the other parties Ui ∈ U for

1 < i ≤ ñ broadcast their nonces Ni
R
← {0, 1}k along with their identities. Each party computes the

session ID as the concatenation of all the outgoing and incoming protocol messages. Each Ui first
verifies the signature of U1 on the incoming message and then decrypts the corresponding ciphertext
using its long-term private key for the time period τ to obtain N1. A pseudo random function f is
used to derive the session key with the nonce N1 as the random seed and the session ID as input. As
there is no restriction on who should send a protocol message first, the protocol can be completed
in one round. Figure 2 presents the protocol message transmission and session key computation.

Round 1

U1 → ∗ : U = {U1, U2, . . . , Uñ},Ssks1
(U , E(PK 2, τ, (N1, U1)), . . . , E(PK

ñ, τ, (N1, U1)))

U1 → ∗ : E(PK i, τ, (N1, U1)) for 1 < i ≤ ñ

Ui → ∗ : Ui, Ni for 1 < i ≤ ñ

Key Computation

sid = U‖Ssks1
(U , E(PK 2, τ, (N1, U1)), . . . , E(PK

ñ, τ, (N1, U1)))‖E(PK
i, τ, (N1, U1))‖Ui‖Ni

The session key is κ = fN1
(sid)

Fig. 2. A one round GKE protocol with forward security

Theorem 2. The proposed protocol is secure under the AKE security notion in Definition 1 in the

standard model assuming the underlying fs-PKE is fs-IND-CCA secure and the signature scheme is

existentially unforgeable. The advantage of a polynomial adversary Aπ against the AKE-security of

the protocol is upper bounded by

ñ ·AdvACMA +
ñ · q2s
2k

+N · qs(ñ · (ñ− 1) ·AdvACCA +AdvAPRF)

where k is the security parameter, ñ is the number of protocol participants, N is the number of

time periods, qs is the number of sessions Aπ is allowed to activate, AdvACMA is the advantage of

a polynomial adversary against the existential unforgeability of the signature scheme, AdvACCA is

the advantage of a polynomial adversary against the fs-IND-CCA security of the encryption scheme

and AdvAPRF is the advantage of a polynomial adversary against the pseudo random function.

The proof of the above theorem is in Appendix C.

5 Conclusion

Table 1 gives a comparison among existing GKE protocols. All the terms in the table are self-
explanatory except the ones with “*” and “#”.

The BG protocol has only one round but it does not provide forward secrecy. Moreover, till
now the protocol is known to be secure only in the random oracle model. Our modification to their
protocol enables it to achieve forward security. More importantly, the proof is given in the standard
model. The entry “Std.∗” indicates that from the proof of Theorem 2, it now implies that the BG
protocol is secure in the standard model, assuming that the underlying encryption scheme is chosen
ciphertext secure. The entry “Yes∗” in the table indicates that our protocol has forward security.
But, as discussed earlier, it can also achieve a level of security that is identical to forward secrecy.

Our protocol has private key of size O(log(N)), where N is the number of time periods, whereas
all other protocols have constant size private keys. To compare more concretely, let us assume that

11

Rounds Forward Secrecy? Private key Size Model Message Size Insider Security

BG Protocol [14] 1 No O(1) Std.∗ O(1) No

Katz and Yung [34] 3 Yes O(1) Std. O(1) No

Bohli et al. [9] 2 Yes O(1) ROM O(1) Yes

Bresson and Manulis [18] 3 Yes O(1) Std. O(1) Yes

Furukawa et al. [24] 2 Yes O(1) Std. O(1) Yes#

Gorantla et al. [28] 1 No O(1) Std. O(1) No

Our Protocol 1 Yes∗ O(log(N)) Std. O(1) No
Table 1. Security and efficiency comparison among existing GKE protocols

we need a GKE protocol that provides 128-bit security level. As most of the existing GKE protocols
use signature-based authenticators, we compare the size of the signature key with the size of the
private keys used in our protocol. Note that we need a private key each for the underlying forward
secure encryption scheme and the signature scheme. If RSA is employed for signatures, for 128-bit
level security, we typically need 3072-bit RSA key. Let us assume that the certificate corresponding
to this signing key is revoked every 5 years. In our scheme, we can divide the total period of 5 years
into (roughly) 5*365 = 1825 individual time periods with the private key evolving at the start of
each day i.e., N = 1825. In the forward secure encryption scheme in Section 2.2, the size of the
private key contains at most ⌈log(N + 1) + 2⌉ elements of the group G0. For 128-bit level security
we need the elements of G0 to be of size at least 256 bits [25]. Hence, the size of the private key of
the forward secure encryption scheme is ⌈log(N +1)+2⌉ * 256 = ⌈log(1826)+2⌉ * 256 = 3328. The
combined size of the private keys of forward secure encryption scheme and the signature scheme is
6400 , which compares well with the private key size of a signature-based GKE protocol. Hence,
our protocol remains practical for a reasonable number of time periods.

Our protocol is not secure under the insider security notions of mutual authentication and
contributiveness. However, it can be made insider secure at additional computational and commu-
nication costs. The protocol may be modified such that instead of a single party encrypting its
nonce, all the parties encrypt their nonces to other parties and the Katz and Shin [33] compiler
is then be applied on top it. We speculate that the resulting two-round protocol will have mutual
authentication and contributiveness in the presence of insiders. The entry “Yes#” in the table indi-
cates that the protocol of Furukawa et al. was not shown secure under the notion of contributiveness.
Moreover, this protocol was proven insider secure in the universal composability framework.

As shown in the table, our protocol achieves an enhanced security property in the form of
forward security, compared to previously known one round GKE protocols without introducing any
additional rounds. Apart from being a one round protocol, note that our protocol has constant size
protocol messages like other GKE protocols. This is possible only if our protocol is instantiated with
the forward secure encryption scheme presented in this paper, which has constant size ciphertext.

References

1. Abdalla, M., Miner, S.K., Namprempre, C.: Forward-Secure Threshold Signature Schemes. In Naccache, D., ed.:
Topics in Cryptology–CT-RSA 2001. Volume 2020 of LNCS., Springer (2001) 441–456

2. Al-Riyami, S.S., Paterson, K.G.: Tripartite Authenticated Key Agreement Protocols from Pairings. In: Cryptog-
raphy and Coding, 9th IMA International Conference. Volume 2898 of LNCS., Springer (2003) 332–359

3. Anderson, R.: Two Remarks on Public Key Cryptology. Technical Report 549, Computer Laboratory, University
of Cambridge (2002) Available at http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-549.pdf.

4. Back, A.: Non-interactive forward secrecy (1996) posting to cypherpunks mailing list (6 Sep 1996),http://www.
cypherspace.org/adam/nifs/. Last Accessed on 17 Jan 2010.

12

5. Bellare, M., Boldyreva, A., Micali, S.: Public-Key Encryption in a Multi-user Setting: Security Proofs and
Improvements. In Preneel, B., ed.: Advances in Cryptology–EUROCRYPT’00. Volume 1807 of LNCS., Springer
(2000) 259–274

6. Bellare, M., Canetti, R., Krawczyk, H.: A Modular Approach to the Design and Analysis of Authentication and
Key Exchange Protocols (Extended Abstract). In: STOC. (1998) 419–428

7. Bellare, M., Miner, S.K.: A Forward-Secure Digital Signature Scheme. In: Advances in Cryptology–CRYPTO
’99. Volume 1666 of LNCS., Springer (1999) 431–448

8. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party case. In: Proc. of the 27th
Annual ACM Symposium on Theory of Computing–STOC’95, ACM (1995) 57–66

9. Bohli, J.M., Gonzalez Vasco, M.I., Steinwandt, R.: Secure group key establishment revisited. Int. J. Inf. Sec. 6(4)
(2007) 243–254

10. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In:
Advances in Cryptology–EUROCRYPT 2004. Volume 3027 of LNCS., Springer (2004) 223–238

11. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In:
Advances in Cryptology–EUROCRYPT 2005. Volume 3494 of LNCS., Springer (2005) 440–456

12. Boneh, D., Silverberg, A.: Applications of Multilinear Forms to Cryptography. In: Conferences in memory of
Ruth Michler. Volume 324 of Contemporary Mathematics., American Mathematical Society (2003) 71–90

13. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient One-Round Key Exchange in the Standard
Model. In: Information Security and Privacy–ACISP’08. Volume 5107 of LNCS., Springer (2008) 69–83

14. Boyd, C., González Nieto, J.M.: Round-Optimal Contributory Conference Key Agreement. In: Public Key
Cryptography–PKC’03. Volume 2567 of LNCS., Springer (2003) 161–174

15. Bresson, E., Chevassut, O., Pointcheval, D.: Provably Authenticated Group Diffie-Hellman Key Exchange - The
Dynamic Case. In: Advances in Cryptology–ASIACRYPT’01. Volume 2248 of LNCS., Springer (2001) 290–309

16. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key Exchange under Standard
Assumptions. In: Advances in Cryptology–EUROCRYPT’02. Volume 2332 of LNCS., Springer (2002) 321–336

17. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authenticated group Diffie-Hellman key
exchange. In: CCS’01: Proceedings of the 8th ACM conference on Computer and Communications Security, ACM
(2001) 255–264

18. Bresson, E., Manulis, M.: Securing Group Key Exchange against Strong Corruptions. In: Proceedings of ACM
Symposium on Information, Computer and Communications Security (ASIACCS’08), ACM Press (2008) 249–260

19. Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution System (Extended Abstract).
In: Advances in Cryptology–EUROCRYPT’94. (1994) 275–286

20. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme. In Biham, E., ed.: Advances
in Cryptology–EUROCRYPT 2003. Volume 2656 of LNCS., Springer (2003) 255–271

21. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Advances in
Cryptology–EUROCRYPT 2004. Volume 3027 of LNCS., Springer (2004) 207–222

22. Choo, K.K.R., Boyd, C., Hitchcock, Y.: Errors in computational complexity proofs for protocols. In: Advances
in Cryptology–ASIACRYPT 2005. Volume 3788 of LNCS., Springer (2005) 624–643

23. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on Information Theory IT-22(6)
(1976) 644–654

24. Furukawa, J., Armknecht, F., Kurosawa, K.: A Universally Composable Group Key Exchange Protocol with
Minimum Communication Effort. In: Security and Cryptography for Networks–SCN’08. Volume 5229 of LNCS.,
Springer (2008) 392–408

25. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16) (2008)
3113–3121

26. Gennaro, R., Krawczyk, H., Rabin, T.: Okamoto-Tanaka Revisited: Fully Authenticated Diffie-Hellman with
Minimal Overhead. Cryptology ePrint Archive, Report 2010/068 (2010) http://eprint.iacr.org/.

27. Gorantla, M.C., Boyd, C., González Nieto, J.M.: Modeling Key Compromise Impersonation Attacks on Group
Key Exchange Protocols. In: Public Key Cryptography–PKC’09. Volume 5443 of LNCS., Springer (2009) 105–123

28. Gorantla, M.C., Boyd, C., González Nieto, J.M., Manulis, M.: Generic One Round Group Key Exchange in the
Standard Model. In: 12th International Conference on Information Security and Cryptology–ICISC 2009, Springer
(2009) Available at http://eprint.iacr.org/2009/514.

29. Ingemarsson, I., Tang, D.T., Wong, C.K.: A conference key distribution system. IEEE Transactions on Information
Theory 28(5) (1982) 714–719

30. Itkis, G.: Forward security (adaptive cryptography: time evolution). Handbook of Information Security (2006)
Available at http://www.cs.bu.edu/~itkis/pap/forward-secure-survey.pdf.

31. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Algorithmic Number Theory, 4th International
Symposium. Volume 1838 of LNCS., Springer (2000) 385–394

32. Katz, J.: Binary Tree Encryption: Constructions and Applications. In: Information Security and Cryptology–
ICISC 2003. Volume 2971 of LNCS., Springer (2003) 1–11

13

33. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In: Proceedings of the 12th ACM
Conference on Computer and Communications Security–CCS’05, ACM (2005) 180–189

34. Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Advances in Cryptology–
CRYPTO’03. Volume 2729 of LNCS., Springer (2003) 110–125

35. Kim, H.J., Lee, S.M., Lee, D.H.: Constant-Round Authenticated Group Key Exchange for Dynamic Groups. In:
Advances in Cryptology–ASIACRYPT’04. Volume 3329 of LNCS., Springer (2004) 245–259

36. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In: Advances in Cryptology–
CRYPTO’05. Volume 3621 of LNCS., Springer (2005) 546–566

37. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In: ACM Conference on Computer
and Communications Security. (2000) 108–115

38. Law, L., Menezes, A., Qu, M., Solinas, J.A., Vanstone, S.A.: An Efficient Protocol for Authenticated Key
Agreement. Des. Codes Cryptography 28(2) (2003) 119–134

39. Manulis, M.: Provably Secure Group Key Exchange. Volume 5 of IT Security. Europäischer Universitätsverlag,
Berlin, Bochum, Dülmen, London, Paris (August 2007)

40. Matsumoto, T., Takashima, Y., Imai, H.: On seeking smart public-key distribution systems. Trans. IECE of
Japan E69 (1986) 99–106

41. Okamoto, T., Tso, R., Okamoto, E.: One-Way and Two-Party Authenticated ID-Based Key Agreement Protocols
Using Pairing. In: Modeling Decisions for Artificial Intelligence, 2nd International Conference–MDAI’05. Volume
3558 of LNCS., Springer (2005) 122–133

42. Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext Security. In: FOCS.
(1999) 543–553

43. Song, D.X.: Practical forward secure group signature schemes. In: ACM Conference on Computer and Commu-
nications Security. (2001) 225–234

44. Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman Key Distribution Extended to Group Communication. In:
ACM Conference on Computer and Communications Security. (1996) 31–37

45. Wu, Q., Mu, Y., Susilo, W., Qin, B., Domingo-Ferrer, J.: Asymmetric Group Key Agreement. In: Advances in
Cryptology–EUROCRYPT 2009. Volume 5479 of LNCS., Springer (2009) 153–170

A Preliminaries

We briefly review bilinear pairings and some computational problems on which the security of our
ke-PKE scheme is based.

A.1 Bilinear Pairing

Let G0 and G1 be two multiplicative groups of prime order p. Let g be the generator of G0. The
pairing e : G0 ×G0 → G1 is called an admissible bilinear map if it has the following properties:

Bilinearity: ∀u, v ∈ G0 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab

Non-degeneracy: e(g, g) 6= 1
Computable: There exists an efficient algorithm to compute e(g, g)

A.2 Weak BDHI Assumption

Boneh et al. [11] introduced a weaker variation of the l-th bilinear Diffie-Hellman inversion problem
(l-BDHI) [10], called weak bilinear Diffie-Hellman inversion problem and denoted by l-wBDHI. It
is as follows:

Let g and h be two random generators of G0. Let α be a random number in Zp
∗. The l-wBDHI

problem is defined as:

l-wBDHI: given g, h, gα, g(α
2), . . . , g(α

l) compute e(g, h)1/α

Boneh et al. also defined another problem l-wBDHI∗ which is equivalent to l-wBDHI in linear
time reduction.

l-wBDHI∗: given g, h, gα, g(α
2), . . . , g(α

l) compute e(g, h)(α
l+1)

14

Decisional l-wBDHI∗ problem The decisional variant of l-wBDHI∗ problem is defined as follows:
Consider the following distributions

PwBDHI
∗ = {(g, h, gα, g(α

2), . . . , g(α
l), e(g, h)(α

l+1)) for g, h ∈ G
∗
0, α ∈ Z

∗
p}

RwBDHI
∗ = {(g, h, gα, g(α

2), . . . , g(α
l), T) for g, h ∈ G

∗
0, α ∈ Z

∗
p T ∈ G

∗
1}

An algorithm B that outputs b ∈ {0, 1} has advantage ω in solving Decision l-wBDHI∗ if

Pr
[

B(1k, ρ) = 1|ρ
R
← PwBDHI

∗

]

− Pr
[

B(1k, ρ) = 1|ρ
R
← RwBDHI

∗

]

≥ ω

We say that l-wBDHI∗ holds in G0 if ω is negligible in k.

B Definitions of Security for ke-PKE

Canetti et al. [20] defined the notions of indistinguishability against chosen-plaintext attacks (fs-
IND-CPA) and indistinguishability against chosen-ciphertext attacks (fs-IND-CCA) for forward
secure encryption schemes. We now review these notions.

Definition 2. A ke-PKE is forward-secure against chosen-plaintext attacks (fs-IND-CPA) if the
advantage of any PPT adversary in the following game is negligible in the security parameter k for
all time periods N polynomial in k.

Setup The challenger runs the KeyGen algorithm and obtains a key pair (PK ,SK 0). PK is given
to the adversary.

Attack The adversary is allowed to issue one breakin query and one challenge query as described
below.

breakin The adversary asks this query with an index τ ∈ [0, N) of a time period as input.
The challenger (repeatedly) runs the KeyUpd algorithm and returns the output SK τ to the
adversary.

challenge This query is asked with input (z,M0,M1) where z ∈ [0, N) and M0 and M1 are
two arbitrary messages chosen by the adversary. The challenger selects a random bit b and
returns C∗ = Encrypt(PK , z,Mb) to the adversary.

The breakin and challenge queries may be asked in either order with the obvious restriction that
z < τ .

Guess The adversary outputs a guess bit b′ and it succeeds if b′ = b. The advantage of the adversary
is given as AdvACPA = |2 · Pr[b′ = b]− 1|.

An analogous definition for fs-IND-CCA notion is given below:

Definition 3. A ke-PKE is forward-secure against chosen-ciphertext attacks (fs-IND-CCA) if the
advantage of any PPT adversary in the following game is negligible in the security parameter k for
all time periods N polynomial in k.

Setup The challenger runs the KeyGen algorithm and obtains a key pair (PK ,SK 0). PK is given
to the adversary.

Attack The adversary is allowed to issue one breakin, one challenge and multiple decryption (dec)
queries as described below.

– The breakin and challenge queries are answered as in Definition 2.

15

– On a query dec(d, C) for d ∈ [0, N), the appropriate key SK d is first derived via (repeatedly)
running the KeyUpd algorithm. The adversary is then given the output of Decrypt(PK , d,SK d, C).
If the adversary has already received a response C∗ from query challenge(z,M0,M1), then
the query dec(z, C∗) is disallowed. But queries of type dec(d, C∗) with d 6= z and dec(z, C)
with C 6= C∗ are allowed. As in the above definition the breakin and challenge queries may
be asked in either order with the obvious restriction z < τ .

Guess The adversary outputs a guess bit b′ and it succeeds if b′ = b. The advantage of the adversary
is given as AdvACCA = |2 · Pr[b′ = b]− 1|.

C Security Proof of the Protocol

Note that in our protocol the distinguished party encrypts the same message (N1, U1) for the rest
of the parties. Hence, the adversary can obtain encryptions of the same plaintext under multiple
independent public keys. Bellare and Rogaway [8] called such an adversary as amultiple eavesdropper

and remarked that the advantage of a multiple adversary is negligible against any secure encryption
scheme [8, Lemma 8]. Later, Bellare et al. [5] formalised the security of public key encryption
schemes against multiple eavesdroppers. They showed that security in the single user setting (where
the adversary gets the encryption of a message under a single public key) implies security in the
multi-user setting (where a multiple eavesdropper can obtain the encryption of a message under
multiple public keys) as long as the former is secure under IND-CPA or IND-CCA security notions.
In our proof, we consider a special case, where the adversary can obtain the encryption of only one
message for each public key. The security reduction of Bellare et al. for this special case is stated
as below.

Lemma 1 ([5]). Suppose that Suppose that an adversary has advantage at most AdvACCA for an

encryption scheme. Then a multiple eavesdropper against the encryption scheme has advantage not

more than r · AdvACCA, where r is the number of public keys under which the message has been

encrypted.

The above lemma can be extended to forward secure encryption schemes that are fs-IND-CPA
and fs-IND-CCA secure in a straightforward way. For the case of fs-IND-CPA/fs-IND-CCA secure
schemes, the multiple eavesdropper can obtain the encryptions of a message in a time period τ
under multiple public keys. For the purpose of our proof, consider the special case, wherein the
adversary obtains the encryptions of a single message under multiple public keys to be decrypted in
a single time period. Thus the advantage of a multiple eavesdropper against fs-IND-CPA/fs-IND-
CCA in such case will be upper bounded by the same advantage stated in Lemma 1. However, note
that if the multiple eavesdropper obtains encryptions of multiple messages with each message to
be decrypted in different time periods under different public keys, then its advantage will be upper
bounded by qe ·N · r ·AdvACCA , where qe is the number of messages, N is the total number of time
periods and r is the number of public keys.

We now give the proof for Theorem 2.

Proof. The proof is given below in a sequence of games. Let σi be the event that A
π wins in Gamei.

Game 0. This is the original AKE security game. All the queries of Aπ are answered as defined in
Section 3.2. In particular, when answering the Corrupt query Aπ is given the long-term private
key SK τ of time period τ in which the session is being executed and also the long-term key used
for the signature scheme. By definition, we have

AdvAπ = |2 · Pr[σ0]− 1| (1)

16

Game 1. This game is the same as the previous one, except that the simulation fails if Aπ outputs
a valid forgery of a signature of the distinguished party in any session. Let Forge be such an
event. We have

|Pr[σ1]− Pr[σ0]| ≤ Pr[Forge] (2)

Note that for Forge to have occurred the adversary cannot have corrupted the distinguished
party in any time period. If Forge occurs, we can use Aπ to forge a signature for a given public
key under a chosen message attack as follows: The given public key is assigned to one of the
ñ parties. All other parties are initialized according to the protocol. All queries to the parties
can be easily answered by following the protocol specification since all secret keys are known,
except the signing key corresponding to the given public key. In the latter case the signing
oracle that is available as part of the chosen message attack can be used to simulate answers
to Aπ. The probability of Aπ choosing this user as the distinguished user is at least 1

ñ . Hence,

SuccACMA ≥
Pr[Forge]

ñ . We have

Pr[Forge] ≤ n · SuccACMA (3)

Game 2. This game is the same as the previous one except that the simulation fails if an instance
at a party Ui chooses the same nonce that was chosen by another instance at Ui. Since there can
be at most qs sessions and each nonce is of k-bit length, the probability of this event happening

at one party is q2s
2k
. Since there are ñ parties in the protocol, we have

|Pr[σ2]− Pr[σ1]| ≤
ñ · q2s
2k

(4)

Note that this game excludes replay attacks and accidental collisions that may happen when
the parties choose the same nonces that were used in the earlier sessions. Aπ may still modify
the protocol messages in any session, which may result in the parties in that session not being
partners (if any party completes the session).

Game 3. This game is identical to the previous game except that it chooses an index z ∈ [0, N−1]
and proceeds as follows. The game aborts and outputs a random bit if the Test query does not
occur during this time period. Let E3 be the event that this guess is correct.

Pr[σ3] = Pr[σ3|E3] Pr[E3] + Pr[σ3|¬E3] Pr[¬E3] = Pr[σ2]
1

N
+

1

2

(

1−
1

N

)

(5)

Game 4. This game is identical to the previous game except that it chooses t ∈ [1, qs] and proceeds
as follows. The game aborts and outputs a random bit if the Test query does not occur in the
t-th session. Let E4 be the event that this guess is correct.

Pr[σ4] = Pr[σ4|E4] Pr[E4] + Pr[σ4|¬E4] Pr[¬E4] = Pr[σ3]
1

qs
+

1

2

(

1−
1

qs

)

(6)

Game 5. This is the same as the previous game except that the pseudo-random function used to
derive the session key replaced by a truly random function. We have

|Pr[σ5]− Pr[σ4]| ≤ AdvAPRF (7)

Game 6. This game is the same as the previous game except that the queries asked by Aπ are
now simulated by an adversary ACCA against the fs-IND-CCA security of the forward secure
encryption scheme.

17

ACCA starts by randomly selecting a user from the set of ñ users. Without loss of generality let
this user be U1. It guesses that this party will play the distinguished user in the Test session.
ACCA generates a key pair for U1. It obtains the public keys of all the users Ũ \ {U1} from its
challenger. Note that ACCA is allowed to ask breakin, challenge and dec queries in the fs-IND-

CCA game. ACCA randomly chooses two nonces N0, N1
R
← {0, 1}k and sets M0 = (N∗

0 ‖U1) and
M1 = (N∗

1 ‖U1). It now issues challenge(z,M0,M1) to its challenger with respect to the public
keys of all users in Ũ \ {U1}. A

CCA in return obtains α2 = E
PK

2(Mb), · · · , αñ = E
PK

ñ(Mb),
where Mb = (N∗

b ‖U1) for a b ∈ {0, 1} chosen randomly by the challenger. It also generates key
pairs for the signature scheme by running the Ks algorithm. The goal of ACCA, as described
in Definition 3 is to guess the bit b. We describe only the interesting cases below, all the other
cases can be answered trivially.
Informally, the proof works as below: To gain any advantage from Aπ, ACCA has to inject
the multiples ciphertexts α2, · · · , αñ into the test session. Note this can be done only when an
Execute or a Send query is issued to the test session at U1. Hence, the adversary simulates these
queries on behalf of U1. If A

π gets any advantage at all in winning this game, as explained at
the end of simulation ACCA can turn that into its own advantage. The answers to Aπ’s queries
are simulated as follows:

Execute(pid,z): If this is t-th activation, to simulate the messages on behalf of U1, A
CCA injects

α2, · · · , αn as the ciphertexts encrypting its nonce and constructs the protocol message by
signing the ciphertexts along with the pid using the signature key corresponding to U1. Note
that the signing key pair of U1 has been generated by ACCA itself. It simply follows the
protocol specification for all other users. The protocol messages are returned to Aπ.

Send(πt,z
i ,m): If Ui = U1 and m = (pid, z), ACCA injects α2, · · · , αn as described above. Oth-

erwise, ACCA simply follows the protocol.
In all sessions other than the test session, if the incoming message m in Send(πj,τ

i ,m) query
contains a ciphertext and if Ui 6= U1, A

CCA queries the decryption oracle dec corresponding
to Ui with the input (τ, C), where C is the ciphertext encrypted with the public key of Ui. If
dec returns a valid plaintext, ACCA accepts the session, otherwise the session is terminated.
In all cases above, ACCA records the incoming and/or outgoing messages. In particular,
ACCA stores the nonce that it has either selected or extracted from the incoming ciphertext.
The decision of whether the session has been accepted or not is also recorded.

RevealKey(πj,τ
i): If πj,τ

i has not been accepted as per the recorded entries,ACCA returns nothing.
Otherwise, ACCA continues the simulation as follows:
1. If Ui is not the distinguished user in the session,

(a) If Ui 6= U1, let C be the ciphertext encrypted using the public key of Ui and stored
in the recorded entry corresponding to πj,τ

i . As πj,τ
i has already been accepted, there

must be a entry for the nonce, which was returned as an answer to the dec(τ, C)
corresponding to Ui. A

CCA uses this nonce and all other nonces sent in plain to
compute the session key and returns it to Aπ.

(b) If Ui = U1, A
CCA can easily answer this query as it knows the private key of Ui.

2. If Ui is the distinguished user in the session, this query can be trivially answered as ACCA

will have known all the nonces.
Corrupt(Ui, τ): If Ui /∈ U , ACCA could trivially answer this query. If Ui 6= U1 and τ ≤ z,
ACCA outputs fail and terminates. Otherwise, ACCA issues a breakin(τ) to the challenger
with respect to Ui and obtains the private key for the period τ . The key is returned to Aπ.

Test(πt,z
1): ACCA randomly selects a bit θ and uses the nonce N∗

θ (selected from {N∗
0 , N

∗
1 })

along with the other nonces sent in plain during the test session to compute a session key
Kθ. It returns Kθ to Aπ.

18

As the simulation by ACCA is perfect, Game 5 and Game 4 are indistinguishable.

Pr[σ6] = Pr[σ5] (8)

Now, we claim that

|2 · Pr[σ6]− 1| ≤ ñ · (ñ− 1) ·AdvACCA (9)

Aπ eventually outputs a bit θ′. If θ′ = 1 (Aπ’s guess for real key), then ACCA returns θ to
its challenger. Otherwise, ACCA returns 1 − θ. Hence, the advantage of ACCA winning the fs-
IND-CCA security game with respect all the (ñ− 1) public keys is at least the same as that of
Aπ.

This is true only ifACCA’s guess is correct in that the distinguished party in the test session is U1.
This happens with at least a probability of 1

ñ . Hence, from Lemma 1 we have, (ñ−1)·AdvACCA ≥
|2·Pr[σ6]−1|

ñ .

By combining Equations 1 to 9, we have the claimed advantage for Aπ.

D Proof of Theorem 1

Proof. Our proof follows the proof of the hierarchical identity based encryption scheme by Boneh et
al. [11]. Let the advantage of A against the fs-PKE scheme be ǫ. We then construct a (l+1)-wBDHI∗

solver B running A as a subroutine, where l = ⌈log(N + 1)⌉ − 1 is the depth the binary tree.

For a generator g ∈ G0 and α ∈ Z
∗
p, let yx = g(α

x) ∈ G0 for 1 ≤ x ≤ (l + 1). B is given as
input a random tuple (g, h, yx, . . . , y(l+1), T) that is sampled from either PwBDHI

∗ (in which case

T = e(g, h)(α
l+2)) or RwBDHI

∗ (in which case T
R
← G

∗
1) as described in Section A.2. The goal of

B is to output 1 when the given input is sampled from PwBDHI
∗ and 0 otherwise. B runs A as a

subroutine and answers its queries as follows:

1. B starts by selecting a time period τ∗. Let w∗ be the node that is associated with τ∗. Let the
length of w∗ be v, where v is the depth of the node represented by w∗.

2. The v+1 prefixes of w∗ are (w∗
0, w

∗
1, . . . , , w

∗
v), where w

∗
0 = ǫ and w∗

v = w∗. Let I∗ = (I∗0 , I
∗
1 , . . . , I

∗
v)

be the corresponding hashes. If v < l, then B adds l − v zeros to I∗ on the right to make it a
vector of length l + 1.

3. B sets up the public key as follows

(a) Selects γ
R
← Zp and sets g1 = y1 = gα, g2 = yl+1 · g

γ = gγ+(αl+1).

(b) Picks γ0, . . . , γl
R
← Zp and sets hx = gγx/yl−x+1 for 0 ≤ x ≤ l.

(c) Picks δ
R
← Zp and sets g3 = gδ ·

∏l
x=0 y

Ix
l−x+1

(d) The public key (G0,G1, e, g, g1, g2, g3, h0, h1, . . . , hl, H) is given to A.

4. Note that the component gα2 = gα(α
l+1+γ) = yl+2 · y

γ
1 is not known to B as B does not have yl+2.

5. When A asks a breakin(τ) query, if τ ≤ τ∗ then B outputs a random bit and halts. Otherwise B
computes appropriate secret keys as described below and gives them to A.

(a) Let wτ be the node that is associated with the time period τ . Note that the secret key SK τ

is a set containing the secret keys corresponding to the node wτ and also the siblings of the
nodes on the path from root to wτ i.e., SK τ is a stack of keys with SKwτ at the top.

19

(b) Let the depth of the node wτ be u. The u + 1 prefixes of w are (wτ
0 , w

τ
1 , . . . , w

τ
u) and let

(I0, I1, . . . , Iu) be the corresponding hashes. We set m such that it is the smallest integer
that satisfies the condition Im 6= I∗m. As τ > τ∗, wτ is not a prefix of w∗. Hence, there exists
such an m, for 0 ≤ m ≤ u.

(c) Note that the secret key SKwm corresponding to the node wm, which is at depth m, is of
the form:

(gα2 · (h
I0
0 · · ·h

Im
m · g3)

r, gr, hrm+1, . . . , h
r
l) (10)

(d) To generate SKw, B selects r̃
R
← Zp. We assume r = αm+1

Im−I∗m
+ r̃ ∈ Zp.

(e) Note that

(hI00 · · ·h
Im
m · g3)

r =

gδ+
∑

m

x=0 Ixγx ·
m−1∏

x=0

y
I∗x−Ix
l−x+1

︸ ︷︷ ︸

=1

·y
(I∗m−Im)
l−m+1 ·

l∏

x=m+1

y
I∗x
l−x+1

r

(11)

=

(

gδ+
∑

m

x=0 Ixγx · y
(I∗m−Im)
l−m+1 ·

l∏

x=m+1

y
I∗x
l−x+1

)r

(12)

=

(

gδ+
∑

m

x=0 Ixγx ·
l∏

x=m+1

y
I∗x
l−x+1

)r

︸ ︷︷ ︸

=Z

·y
r(I∗m−Im)
l−m+1 (13)

Note that the second term in Equation (2) equals 1 as Ix = I∗x for all x < m. B can compute
the term Z in Equation (4) using the yx’s (for 1 ≤ x ≤ l + 1) from its input. Note that

y
r(I∗m−Im)
l−m+1 = y

α
m+1

Im−I∗m
(I∗m−Im)

l−m+1 · y
r̃(I∗m−Im)
l−m+1 = y

r̃(I∗m−Im)
l−m+1 /yl+2

The first component of the private key in Equation (1) is

gα2 (h
I0
0 · · ·h

Im
m · g3)

r = (yl+1y
γ
1) · Z · (y

r̃(I∗m−Im)
l−m+1 /yl+1) = yγ1 · Z · (y

r̃(I∗m−Im)
l−m+1

which can be computed by B easily as the term yl+1 cancels out. The second component is

gr = g
α
m+1

Im−I∗m
+r̃

= y
1

Im−I∗m

m+1 · gr̃

which can be computed by B with its knowledge of ym+1 as m ≤ l. Similarly, B can also
compute the remaining components hrm+1, . . . , h

r
l of the private key SKwm .

(f) B can now compute SKw using SKwm .

(g) Similarly, all the right siblings of the nodes on the path from root to w can be computed.

(h) B returns these keys as the private key for the time period τ .

6. When A asks a challenge(z,M0,M1), if z 6= τ∗ then B outputs a random bit as answer to the
(l + 1)-wBDHI∗ challenger and halts. Otherwise, B computes the challenge ciphertext

CT =
(

Mb · T · e(y1, h
γ), h, hδ+

∑
l

x=0 I
∗
xγx
)

where h and T are from the input given to B by the decision w-BDHI∗ challenger.

20

(a) Let h = gc for some unknown c ∈ Zp. Note that if T = e(g, h)(α
l+2) then the challenger

ciphertext is

CT =
(

Mb · T · e(y1, h
γ), h, hδ+

∑
l

x=0 I
∗
xγx
)

(14)

=
(

Mb · e(g, h)
(αl+2) · e(y1, h

γ), h, hδ+
∑

l

x=0 I
∗
xγx
)

(15)

=

(

Mb · e(g, g)
c·(αl+1)·α · e(y1, g

γ)c, gc,

(
l∏

x=0

(gγx/yl−x+1)
I∗x · (gδ

l∏

x=0

yI∗l−x+1)
c

))

(16)

=
(

Mb · e(g
α, g(α

l+1))c · e(y1, g
γ)c, gc, (h

I∗0
0 , · · · , h

I∗
l

l)c
)

(17)

=
(

Mb · e(g1, g
(αl+1)gγ)c, gc, (h

I∗0
0 , · · · , hI

∗
v
v , · · · , h

I∗
l

l)c
)

(18)

=
(

Mb · e(g1, g2)
c, gc, (h

I∗0
0 , · · · , hI

∗
v
v)c

)

(19)

(20)

which is a valid encryption under the given public key for the time period τ∗, associated
with the node w∗.

(b) If T is from G1
∗, the ciphertext CT is independent of b in A’s view.

7. When A outputs its bit b′, then B forwards this bit to the (l + 1)-wBDHI∗ challenger as the
solution.

Probability Analysis. As described above, B simulates a perfect execution environment for A. It
does not get any advantage only if its guess for the challenge time period τ∗ is incorrect. In case the

guess is correct it gets the same advantage as A. Hence, the advantage of B is given as λ ≥
Adv

ACPA

N .
Rewriting the equation we have

AdvACPA ≤ N · λ

E Achieving fs-IND-CCA security.

Canetti et al. [20] used the simulation-sound NIZK proofs [42] to obtain chosen ciphertext security
for forward secure encryption schemes in the standard model. However this approach results in very
inefficient scheme and serves only as a proof of feasibility [20]. The same authors later proposed
an efficient and generic technique to achieve chosen ciphertext security for public key encryption
scheme using any chosen plaintext secure identity based encryption (IBE) scheme and strong one-
time signatures [21]. They later extended this technique to achieve chosen ciphertext security for
binary tree encryption (BTE) schemes [32]. The same technique can be directly used to achieve fs-
IND-CCA security for forward secure encryption schemes. This is possible since as any BTE scheme
can be turned into a forward secure encryption scheme [20]. Using this technique, an fs-IND-CPA
secure scheme that uses a binary tree of depth l (supporting 2l+1 − 1 time periods) can be turned
in to an fs-IND-CCA secure scheme which uses another binary tree of depth l−ls−1

2 , where ls is the
length of the public key of the one-time signature used. In other words, the resulting fs-IND-CCA

secure scheme supports 2
l−ls+1

2 − 1 time periods.

21

