
The Effects of the Omission of Last Round’s

MixColumns on AES⋆

Orr Dunkelman and Nathan Keller⋆⋆

Faculty of Mathematics and Computer Science
Weizmann Institute of Science

P.O. Box 26, Rehovot 76100, Israel
{orr.dunkelman,nathan.keller}@weizmann.ac.il

Abstract. The Advanced Encryption Standard (AES) is the most widely
deployed block cipher. It follows the modern iterated block cipher ap-
proach, iterating a simple round function multiple times. The last round
of AES slightly differs from the others, as a linear mixing operation
(called MixColumns) is omitted from it.
Following a statement of the designers, it is widely believed that the
omission of the last round MixColumns has no security implications.
As a result, the majority of attacks on reduced-round variants of AES
assume that the last round of the reduced-round version is free of the
MixColumns operation.
In this note we refute this belief, showing that the omission of Mix-
Columns does affect the security of (reduced-round) AES. First, we con-
sider a simple example of 1-round AES, where we show that the omission
reduces the time complexity of an attack with a single known plaintext
from 248 to 216. Then, we examine several previously known attacks on
7-round AES-192 and show that the omission reduces their time com-
plexities by a factor of 216.

1 Introduction

Since its selection in 2001, the Advanced Encryption Standard [12] has became
the world’s most popular block cipher. The public assessment process that was
held by NIST (which ended in selecting Rijndael as the AES), the security as-
surances, and the performance edge have all contributed to its quick acceptance
and deployment.

AES is an iterated block cipher which supports 128-bit blocks and keys of 128,
192, or 256 bits. For each key length, the round function is iterated a different
number of times (10,12, and 14, respectively). A 128-bit plaintext is treated as
a byte matrix of size 4x4, where each byte represents a value in GF (28). Then,
a round function composed of the following four operations is applied (as many
rounds as needed):

⋆ Some of the research described in this paper was discussed during the Early Sym-
metric Crypto (ESC) seminar, Remich, Luxembourg.

⋆⋆ The second author was partially supported by the Koshland center for basic research.



0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15 3 7 11 15 15 3 7 11

ShiftRows MixColumns

SB SR MC
ARK⊕

ki

SubBytes

Fig. 1. An AES round

– SubBytes (SB) — a nonlinear byte-wise substitution that applies the same
8× 8 S-box to every byte.

– ShiftRows (SR) — a cyclic shift of the i’th row by i bytes to the left.
– MixColumns (MC) — a matrix multiplication over a finite field applied to

each column.
– AddRoundKey (ARK) — an exclusive-or with the round subkey kr.

We outline a full AES round in Figure 1.
To ensure symmetry between encryption and decryption, two changes were

made: Before the first round, an additional AddRoundKey operation is per-
formed, and in the last round, the MixColumns operation is omitted. This omis-
sion was described by the AES designers [3] as follows:

“In order to make the cipher and its inverse more similar in structure,
the linear mixing layer of the last round is different from the mixing
layer in the other rounds. It can be shown that this does not improve
or reduce the security of the cipher in any way. This is similar to the
absence of the swap operation in the last round of the DES.”

Following this statement, it was widely believed that the omission of Mix-
Columns indeed has no effect on the security. As a result, in most of the attacks
on reduced-round variants of AES, the last round is assumed to lack MixColumns
(see, for example, [1, 10, 11]).

The omission was conjectured to offer no security loss, as the AddRoundKey
and the MixColumns operations in the last round can be interchanged, both be-
ing linear transformations over GF (28) (see [4, Chapter 3.7.2]). The only “price”
of this change is altering the subkey which is XORed in the AddRoundKey op-
eration, from kr to MC−1(kr) (which is the application of the inverse MC(·) to
each column of kr independently). After this change, the MixColumns indeed
becomes cryptographically insignificant, as it is an un-keyed operation applied
to the known ciphertext.

However, we show in this letter that the omission of MixColumns is not
innocent, since the altering of the last round key affects the security with respect
to attacks which exploit relations between the subkeys. Indeed, the key schedule
of AES is relatively simple, and the knowledge of two (specific) bytes in a round

2



subkey allows an adversary to deduce the value of another byte in the previous
round subkey. Such deduction is problematic when the last round key kr is
replaced by MC−1(kr), since then the basic relations between the two last round
subkeys involve at least six bytes. As a result, the time complexity of attacks
based on guessing subkey material in the last two rounds may increase when the
last MixColumns exists.

We first demonstrate this observation by a simple example — an attack
on 1-round AES-128 (i.e., AES with a 128-bit key) with a single known plain-
text/ciphertext pair. Since the adversary has only 128 bits of information, any
attack on this variant must use the relation between the two subkeys used in
the encryption process. If the MixColumns operation exists, then any relation
between these two subkeys requires examination of a full column, and thus it
is unlikely to find an attack on this variant requiring less than 232 operations.
Moreover, the best reported attack on this variant [5] requires 248 1-round en-
cryptions. On the other hand, when MixColumns is omitted, we present an
attack requiring only 216 1-round encryptions.

We then examine several known attacks on 7-round AES-192 (i.e., AES with
a 192-bit key). We show that the omission of MixColumns in the last round
reduces the time complexities of the attacks presented by Zhang et al. [13] and
by Lu et al. [9] by a multiplicative factor of 216.

We conclude this introduction with a brief description of the key schedule of
AES and the notations used in the next sections.

1.1 Key Schedule and Notation

The AES key schedule initializes an array of subkey material of 32-bit words
W [·], whose size is 4(Nr + 1), where Nr is the number of rounds, and Nk is the
number of 32-bit words in the key (e.g., for AES-128, Nr = 10, Nk = 4):

– For i = 0, . . . , Nk: W [i]← K[i], where K[·] is the user supplied key.

– For i = Nk, . . . , 4(Nr + 1):

1. temp←W [i− 1].

2. If i mod Nk ≡ 0: temp← SB(RotWord(temp)) ⊕RCON [i/Nk].

3. If Nk = 8 and i mod 8 ≡ 4: temp← SB(temp).

4. W [i]←W [i−Nk]⊕ temp,

where RCON [·] is an array of constants, and RotWord(·) takes 4 bytes and
rotates them by one byte position to the left.

The round numbering is 0, 1, . . . , and the subkey used in the AddRoundKey
operation in the end of round r is denoted by kr. The initial whitening key is
k−1. Each subkey is represented as a byte matrix of size 4x4 (corresponding to
the state matrix), and the j’th byte in the i’th row of the matrix is denoted by
kr

i,j (for 0 ≤ i, j ≤ 3). The “equivalent” key obtained when the MixColumns and

AddRoundKey operations are interchanged is denoted by wr = MC−1(kr).

3



ARK

k−1

SB SR ARK

k0

123

5

678

9 10

111213

14 15

161718

19 4

20

21 22 23

24 25

262728

29

Plaintext Ciphertext

Fig. 2. The First Step of the Attack

2 A Simple Example — 1-round AES-128

We first explore the very simple case of reduced-round AES-128 with only one
round, where the adversary has access to a single known plaintext/ciphertext
pair. While the best reported attack on this variant including the MixColumns
requires 248 one-round encryptions [5], we present an attack that requires only
216 encryptions, given that MixColumns is absent.

Our attack is composed of four steps, which are outlined in Figures 2–5.
In each figure, the gray color denotes bytes that are already known before the
respective step, and the black color denotes the byte that is guessed in the
beginning of the step. The numbers of the bytes show the order in which the
bytes are derived, and the bytes marked by circle are computed in two different
ways and used for consistency check (i.e., if the computed values do not match,
then the key guess is discarded).

In the first step of the attack, outlined in Figure 2, the adversary starts
with guessing byte k0

0,3, and in total she succeeds to retrieve six bytes of each
of the subkeys k−1 and k0. The bytes denoted by 5, 10, 15, 20, and 25 are de-
rived using the key schedule, and the rest of the bytes are derived using partial
encryption/decryption.

In the second step of the attack, performed for each of the 28 possible values
from the first step, the adversary guesses the value of k0

1,0. The bytes denoted
by 5 and 10 are derived using the key schedule, and the rest of the bytes are
derived using partial encryption/decryption. The only exception is the byte de-
noted by 9 which is derived in two different ways in parallel (both using the key
schedule and using encryption/decryption). Then the computed values are used
as a consistency check: If they disagree (which occurs with probability of about
1 − 2−8) then the whole guess of (k0

0,3, k
0

1,0) can be discarded. As a result, on
average only 28 possible candidates remain after this step. Step 2 is outlined in
Figure 3.

In the third step of the attack, outlined in Figure 4, for each of the 28 possible
candidates, the adversary guesses the value of k0

2,0. The bytes denoted by 5, 6,
and 11 are derived using the key schedule, and the byte denoted by circle is
derived both using the key schedule and using partial encryption/decryption,

4



ARK

k−1

SB SR ARK

k0

123

4 5

678

9

10

11 12 13

14

Plaintext Ciphertext

Fig. 3. The Second Step of the Attack

ARK

k−1

SB SR ARK

k0123

4 5 6

7 78 89 9

1010

11

12 13 14

15

Plaintext Ciphertext

Fig. 4. The Third Step of the Attack

and used for consistency check. The rest of the bytes are derived using partial
encryption/decryption. Due to the consistency check, about 28 candidates are
expected to remain after this step.

Finally, in the fourth step of the attack, for each of the 28 remaining candi-
dates, the adversary guesses byte k0

3,3. The byte denoted by 1 is derived using
the key schedule. The byte denoted by 6 is derived in two independent ways,
both using the key schedule, and used for consistency check. The other byte
denoted by circle is obtained using the key schedule and compared with its pre-
viously known value as a consistency check. The rest of the bytes are derived
using partial encryption/decryption. Since two consistency checks are performed
in this step, it is expected that only one key suggestion remains. We note that
it is possible that more than one candidate remains, and then the adversary will
not be able to decide which candidate is the correct key. Indeed, it is possible
that the encryption of a single plaintext under two different keys yields the same
ciphertext, and in this case, the information available to the adversary is not
sufficient to retrieve the key uniquely.

5



ARK

k−1

SB SR ARK

k0

1

2 23344

55 6

789

10

Plaintext Ciphertext

Fig. 5. The Fourth Step of the Attack

The time complexity of the above attack procedure is about 216 trial encryp-
tions (the analysis steps themselves are very lightweight and take less the a full
round encryption).

3 Impossible Differential Attacks on 7-round AES-192

The basic impossible differential attack on 7-round AES-192 presented by Phan [11],
was later improved in [9, 13] using several techniques and observations. The main
improvement was a reduction of the time complexity by a factor of 224 using
subkey relations. The observation behind this improvement is the following: In
Phan’s attack, the adversary has to guess eight bytes of the subkey k6 and eight
bytes of the subkey k5 in order to check whether the impossible differential holds
(see in Figure 6). However, it appears that it is sufficient to guess 13 out of these
16 bytes, and the other three bytes can be deduced using the key schedule.
Specifically, we have the following relations:

1. k6
2,3 = k6

2,2 ⊕ k5
1,2,

2. k6

2,2 = k5

0,2 ⊕ SB(k6

1,3)⊕RCON [5],
3. k6

2,3 = k5

0,3 ⊕ SB(k6

1,0)⊕RCON [5].

These relations, observed independently in [13] and in [9], reduce the time
complexity of Phan’s attack by a factor of 224. However, this reduction holds
only under the assumption that the MixColumns operation in the last round is
omitted. If the MixColumns exists, then instead of the subkey bytes in k6, the
adversary must guess the eight corresponding bytes of the equivalent subkey w6

(otherwise, she has to guess the entire k6 due to the MixColumns operation).
Since passing from w6 to k6 requires the knowledge of a complete column, neither
of the relations above can be used.

This problem can be partially solved by replacing the second-to-last subkey
k5 by the equivalent subkey w5. We observe that since the MixColumns operation
is linear, relation (1) above is equivalent to:

w6

2,3 = w6

2,2 ⊕ w5

1,2. (1)

6



k5

W [24, . . . , 29]

k6

k6

W [30, . . . , 35]

Fig. 6. The Subkey Bytes Guessed in Phan’s Attack

Since the adversary guesses two full columns in k5, she can retrieve the two
corresponding columns in w5, and then the above relation can be used.

However, this still does not help with relations (2) and (3). Due to the non-
linearity of the SubBytes operation, the terms SB(k6

1,3) and SB(k6

1,0) cannot be
replaced by terms depending on w6, and thus these two relations cannot be used.
Therefore, the omission of the last round MixColumns reduces the complexity
of the attacks in [9, 13] by a factor of 216.

4 Discussion

It seems that unlike the examples presented above, there are some classes of
attacks that are not affected by the omission of MixColumns. Obviously, attacks
which do not exploit relations between the last round subkey and other subkeys,
such as the attack on 6-round AES presented in [7] and the recent related-key
attack on the full AES-192 and AES-256 presented in [2], are immune to this
issue.

Other attacks, such as the 7-round attack presented in [7] and the 8-round
attack presented in [6], are not affected since the adversary guesses the full
last round subkey. This guess allows him to pass freely between kr and wr =
MC−1(kr), and thus interchanging the order of the MixColumns and AddRound-
Key operations does not change the situation.

There are also attacks that seem to be affected, but can be “rescued” by
interchanging the order of the MixColumns and AddRoundKey operations in
the second to last round. For example, in the improved attack on 7-round AES-
128 presented in [9], the adversary can replace the second-to-last subkey k5

with the equivalent subkey w5 (which is possible since the adversary guesses
two full columns of k5). Then the adversary can use modified key relations like
Equation (1) instead of the original relations.

7



However, as shown in the previous sections, there are classes of attacks for
which the modified relations cannot be applied, and it seems that the removal
of the last round MixColumns indeed reduces their complexity.

5 Summary and Conclusions

Our results show that the omission of MixColumns in the last round of AES
reduces the security of reduced-round variants of AES with respect to various
attacks. The security of the full AES may also be affected, if an attack on the
full AES would use relations between the last round subkey and other subkeys.

We believe that our results raise the question whether the common practice
of omitting the last round MixColumns in attacks on reduced-round AES is
legitimate.

References

1. Behnam Bahrak, Mohammad Reza Aref, A Novel Impossible Differential Crypt-
analysis of AES, proceedings of the Western European Workshop on Research in
Cryptology 2007, Bochum, Germany, 2007.

2. Alex Biryukov and Dmitry Khovratovich, Related-Key Cryptanalysis of the Full
AES-192 and AES-256, Advances in Cryptography, proceedings of ASIACRYPT
2009, Lecture Notes in Computer Science 5912, pp. 1–18, Springer, 2009.

3. Joan Daemen, Vincent Rijmen, AES Proposal: Rijndael, NIST AES proposal, 1998.
4. Joan Daemen, Vincent Rijmen The design of Rijndael: AES — the Advanced En-

cryption Standard, Springer-Verlag, 2002.
5. Orr Dunkelman and Nathan Keller, Low Data Complexity Attacks on AES, Early

Symmetric Crypto (ESC) seminar, Remich, Luxembourg, January 2010. Available
online at https://cryptolux.org/mediawiki.esc/images/9/9b/LDC-AES.pdf.

6. Hüseyin Demirci, Ali Aydin Selçuk, A Meet-in-the-Middle Attack on 8-Round
AES, proceedings of Fast Software Encryption 15, Lecture Notes in Computer
Science 5086, pp. 116–126, Springer-Verlag, 2008.

7. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Mike Stay, David Wag-
ner, Doug Whiting, Improved Cryptanalysis of Rijndael, proceedings of Fast Soft-
ware Encryption 2000, Lecture Notes in Computer Science 1978, pp. 213–230,
Springer-Verlag, 2001.

8. Henri Gilbert, Marine Minier, A collision attack on 7 rounds of Rijndael, proceed-
ings of the Third AES Candidate Conference (AES3), pp. 230–241, New York,
USA, 2000.

9. Jiqiang Lu, Orr Dunkelman, Nathan Keller, Jongsung Kim, New Impossible Dif-
ferential Attacks on AES, proceedings of INDOCRYPT 2008, Lecture Notes in
Computer Science 5365, pp. 279–293, Sprigner-Verlag, 2008.

10. Stefan Lucks, Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys,
proceedings of the Third AES Candidate Conference (AES3), pp. 215–229, New
York, USA, 2000.

11. Raphael Chung-Wei Phan, Impossible Differential Cryptanalysis of 7-round Ad-
vanced Encryption Standard (AES), Information Processing Letters, Vol. 91, Num-
ber 1, pp. 33-38, Elsevier, 2004.

8



12. US National Institute of Standards and Technology, Advanced Encryption Stan-
dard, Federal Information Processing Standards Publications No. 197, 2001.

13. Wentao Zhang, Wenling Wu, Dengguo Feng, New Results on Impossible Differen-
tial Cryptanalysis of Reduced AES, proceedings of ICISC 2007, Lecture Notes in
Computer Science 4817, pp. 239–250, Springer-Verlag, 2007.

9


