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Achieving Oblivious Transfer Capacity of
Generalized Erasure Channels in the Malicious

Model
Adriana C. B. Pinto, Rafael Dowsley, Kirill Morozov and Anderson C. A. Nascimento

Abstract—Information-theoretically secure string oblivious
transfer (OT) can be constructed based on discrete memoryless
channel (DMC). The oblivious transfer capacity of a channel
characterizes – similarly to the (standard) information capacity
– how efficiently it can be exploited for secure oblivious transfer
of strings. The OT capacity of a Generalized Erasure Channel
(GEC) – which is a combination of a (general) DMC with the
erasure channel – has been established by Ahlswede and Csizar
at ISIT’07 in the case of passive adversaries. In this paper, we
present the protocol that achieves this capacity against malicious
adversaries for GEC with erasure probability at least 1/2. Our
construction is based on the protocol of Crépeau and Savvides
from Eurocrypt’06 which uses interactive hashing (IH). We solve
an open question posed by the above paper, by basing it upon a
constant round IH scheme (previously proposed by Ding et al at
TCC’04). As a side result, we show that Ding et al IH protocol
can deal with transmission errors.

Index Terms—Information-theoretic security, oblivious trans-
fer, oblivious transfer capacity, generalized erasure channel,
interactive hashing.

I. INTRODUCTION

Oblivious Transfer (OT) is one of the central cryptographic
primitives, since it implies secure two-party (and multi-party)
computation [19], [24], [12]. It was initially proposed in
different flavors by Wiesner [33] and Rabin [29], but both
flavors were later shown to be equivalent by Crépeau [9]. In
this work, we will consider the one-out-of-two string oblivious
transfer, string-OT, in which Alice transmits two input strings
U0, U1 ∈ {0, 1}k and Bob uses a choice bit c to choose the
string Uc that he will receive. This protocol ensures that a
dishonest Alice cannot learn c, while a dishonest Bob cannot
learn both U0 and U1.

The potential of noisy channels for implementing
information-theoretically secure cryptographic protocols was
first noted by the pioneering work of Wyner [34], with respect
to secret key agreement. Crépeau and Kilian proved that noisy
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channels can be used to implement oblivious transfer [11].
This result was later improved in [10], [25], [32], [13], [26].

The question of determining the optimal rate at which
oblivious transfer can be implemented using a noisy channel
(i.e., the oblivious transfer capacity of the channel) was raised
by Nascimento and Winter in [26]. They also characterized
the noise resources that provide strictly positive oblivious
transfer capacity. Imai et al [21] obtained the oblivious transfer
capacity of the Erasure Channels. Ahlswede and Csiszár [1]
proved new bounds on those capacities and also obtained
the oblivious transfer capacity of the Generalized Erasure
Channels (GEC) in the passive adversary model (where the
players always follow the protocol). The related notion of
commitment capacity was proposed by Imai et al in [22].

Our contribution: In this paper, we show that the rates
achieved in [1] against passive players can actually be achieved
even against malicious ones (i.e. those that can arbitrarily
deviate from the protocol). As the upper bounds proved in
[1] for the case of passive players still hold against active
ones, we thus establish the oblivious transfer capacity of the
Generalized Erasure Channels [1] in the malicious adversary
model. Moreover, we prove security of our protocols using
definitions by Crépeau and Wullschleger [15], which are
known to imply sequential composability.

The main tool for obtaining our results is Interactive Hash-
ing (IH), originally introduced by Ostrovsky et al [28]. Our
solution is based on the protocol proposed by Savvides [31]
(building on the results of [14]) for oblivious transfer from era-
sure channels that employs information-theoretic Interactive
Hashing [5] as a sub-protocol. However, instead of directly
adapting Savvides’ solution to our scenario, we show that it is
possible to use the constant round interactive hashing protocol
by Ding et al [17]. Hereby, we obtain the constant round
oblivious transfer protocol, thus answering an open question
posed by [31].

Outline of the Paper: The paper is organized as follows:
In Section II, we establish our notation, provide some facts that
we use in the remaining part of this paper and introduce the
constant round interactive hashing protocol that we used. In
Section III, we present definitions of the Generalized Erasure
Channel and oblivious transfer security. We also state our main
result about the oblivious transfer capacity of those channels.
Finally, in Section IV, we present our protocol, its security
proof and show that it achieves the oblivious transfer capacity.
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II. PRELIMINARIES

A. Notation

We will denote by calligraphic letters the domains of
random variables and other sets, by |X | the cardinality of
a set X , by upper case letters the random variables and by
lower case letters one realization of the random variable.
For a random variable X over X , we denote its probability
distribution by PX : X → [0, 1] with

∑
x∈X PX(x) = 1.

For a joint probability distribution PXY : X × Y → [0, 1],
let PX(x) :=

∑
y∈Y PXY (x, y) denote the marginal proba-

bility distribution and let PX|Y (x|y) := PXY (x,y)
PY (y) denote the

conditional probability distribution if PY (y) 6= 0. We write
X ∈R X for a random variable uniformly distributed over X .

If a and b are two bit strings of the same dimension, we
denote by a⊕b their bitwise XOR. The logarithms used in this
paper are in base 2. The entropy of X is denoted by H(X)
and the mutual information between X and Y by I(X;Y ).
We write [n] for {1, ..., n} and

(
[n]
l

)
for the set of all subsets

K ⊆ [n], where |K| = l. For Xn = (X1, X2, . . . , Xn) and
S ⊂ [n], we write XS for the restriction of Xn to the positions
in the subset S. Similarly for a set R, RS is the subset of R
consisting of the elements determined by S.

B. Strong Extractors and Leftover-Hash Lemma

The statistical distance between two probability distributions
PX and PY over the same domain V is

SD(PX , PY ) :=
1

2

∑
v∈V
|PX(v)− PY (v)|.

For a finite alphabet X , the min-entropy of a random
variable X ∈ X is defined as

H∞(X) = min
x

log(1/PX(x)).

Its conditional version, defined over Y with finite alphabet
is

H∞(X|Y ) = min
y
H∞(X|Y = y).

We define now the notion of strong randomness extrac-
tors [27], [18]. Let Ur denote a vector uniformly chosen from
{0, 1}r.

Definition 1 (Strong Randomness Extractors). Let Ext :
{0, 1}n × {0, 1}r → {0, 1}l be a probabilistic polynomial
time function which uses r bits of randomness. We say that
Ext is an efficient (n,m, l, ε)−strong extractor if for all
probability distributions PW with W = {0, 1}n and such that
H∞(W ) ≥ m, we have that SD(PExt(W ;Ur),Ur

, PUl,Ur
) ≤ ε.

Strong extractors can extract at most l = m− 2 log(ε−1) +
O(1) bits of nearly random bits [30] and this optimal bound is
achieved by Universal Hash Function [6] that we define below.

Definition 2 (Universal Hash Function). A class G of functions
A → B is 2-universal if, for any distinct x1, x2 ∈ A, the
probability that g(x1) = g(x2) is at most |B|−1 when g is
chosen uniformly at random from G.

The Leftover-Hash Lemma (similarly the Privacy-
Amplification Lemma) [23], [20], [4], [3], [18] guarantees

that the Universal Hash Functions allow us to extract
l = m− 2 log(ε−1) + 2 bits.

Lemma 1 (Leftover-Hash Lemma). Assume that a class G of
functions G : {0, 1}n → {0, 1}l is 2-universal. Then for G
selected uniformly at random from G we have that

SD(PG(W ),G, PUl,G) ≤ 1

2

√
2−H∞(W )2l.

In particular, Universal Hash Functions are
(n,m, l, ε)−strong extractor when l ≤ m− 2 log(ε−1) + 2.

C. Encoding Scheme of Subsets

Cover showed [8] that there is an efficiently computable
one to one mapping F :

(
[n]
l

)
→ [

(
n
l

)
] for every integer

l ≤ n. Hence, we can encode the set
(

[n]
l

)
in bit strings of

length m = dlog
(
n
l

)
e (see [5, Section 3.1] for more details).

Nevertheless, the strings that represent valid encodings may
constitute only slightly more than a half of all strings. We use
here the modified encoding of [31, Section 4.2.1] in which
each string w ∈ {0, 1}m encodes the same subset as w
mod

(
n
l

)
, which is always a valid encoding in the original

scheme [5].
Consider a subset of

(
[n]
l

)
encoded by strings in {0, 1}m,

according to the above scheme. Since each subset correspond
to either 1 or 2 strings in {0, 1}m, this scheme can at most
double the fraction of the strings that map to the subset of
interest. This fact is formalized and proved in [31, Lemma 4.1].

D. Interactive Hashing

Interactive Hashing [28] is a cryptographic primitive be-
tween two players, the sender (Bob) and the receiver (Alice).
It takes as input a string w ∈ {0, 1}m from Bob, and produces
as output two m-bit strings, one of which is w and the other is
w′ 6= w. Let the two output strings be w0 and w1, according
to lexicographic order. There exists a d ∈ {0, 1} such that
wd = w. The output strings are available to both Bob and
Alice. Interactive Hashing has, briefly and informally, the
following properties: a) The cheating Alice cannot tell which
of (w,w′) was Bob’s input (as long as w and w′ are a priori
equally likely to be the input), and b) At least one of (w,w′)
is effectively beyond the control of the cheating Bob. We
will focus on the information-theoretic variant of IH, which
originates from [5].

Definition 3 (Security of Interactive Hashing [17]). An in-
teractive hashing protocol is secure for Bob if for every
unbounded strategy of Alice (A′), and every W , if W0, W1

are the outputs of the protocol between an honest Bob with
input W and A′, then the distributions {V iew〈A

′,B〉
A′ (W )|W =

W0} and {V iew〈A
′,B〉

A′ (W )|W = W1} are identical, where
V iew

〈A′,B〉
A′ (W ) is Alice’s view of the protocol when Bob’s

input is W . An interactive hashing protocol is (s, ρ)-secure for
Alice if for every S ⊆ {0, 1}m of size at most 2s and every
unbounded strategy of Bob (B′), if W0, W1 are the outputs of
the protocol, then

Pr[W0,W1 ∈ S] < ρ,
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where the probability is taken over the coin tosses of Alice
and Bob. An interactive hashing protocol is (s, ρ)-secure if it
is secure for Bob and (s, ρ)-secure for Alice.

Let a ∈ {0, 1} be such that Wa = W . If the distribution
of the string Wā over the randomness of the two parties is
η-close to uniform on all strings not equal to Wa, then the
protocol is called η-uniform interactive hashing.

Constant Round Interactive Hashing: We present the con-
stant round IH protocol of [17, Section 5.4]. One of the princi-
pal tools used in this protocol is η-almost t-wise independent
permutation. Let π be a t-wise independent permutation, then
when π is applied in any t points in {0, 1}m, π behaves as a
truly random permutation. In an η-almost t-wise independent
permutations π′, the distribution on any t points has statis-
tical distance at most η to the distribution induced on these
points by a truly random permutation. A 2-wise independent
permutation can be built choosing a, b ∈R GF (2m), a 6= 0
(the strings {0, 1}m are identified with the field GF (2m)) and
defining the permutation by g(x) = ax + b (see, e.g., [17,
Section 5.2] for a survey).

Another tool used in this protocol is the 2-1 hash function.
Let h: {0, 1}m → {0, 1}m−1 be a 2-1 hash function. Then,
for each output of h there are exactly 2 pre-images. Notice
that to construct a 2-wise independent 2-1 hash function, one
can take a 2-wise independent function and omit the last bit
of its output.

Let the set S ⊂ {0, 1}m have size |S| = 2s. Note that
we think of S as a subset whose strings have some particular
property and the sender’s input to IH is w ∈ {0, 1}m. Then,
the parameters of the protocol are m and s, also we set t = m
and η = ( 1

2v )t, where v = s − logm. The protocol uses the
following tools:
• A family Π of η-almost t-wise independent permutations
π: {0, 1}m → {0, 1}m,

• A family G of 2-wise independent 2-1 hash functions g:
{0, 1}m−v → {0, 1}m−v−1,

• A family H (induced by Π and G) of 2-1 hash functions
h: {0, 1}m → {0, 1}m−1 defined as:

h(x) , π(x)1, ..., π(x)v, g(π(x)v+1, ..., π(x)m),

where π(x)i denotes the ith bit of π(x).
Let Bob be the sender and Alice be the receiver. Bob has

the input w ∈ {0, 1}m.

Protocol 1.
1) Alice chooses π ∈R Π and sends the description of π

to Bob.
2) Bob computes π(w) = z1...zm, where zi is the ith bit

of π(w), and sends the bits z1...zv to Alice.
3) Alice chooses g ∈R G and sends the description of g to

Bob.
4) Bob computes and sends g(zv+1...zm) to Alice.
5) Both compute and output (w0, w1) such that h(w) =

h(w0) = h(w1).

It has been shown in [17, Section 5.4] that for all
s,m such that s ≥ logm + 2, the above protocol is a

(s, 2−(m−s)+O(logm))-secure η′-uniform interactive hashing
protocol for η′ = (2s−logm−1)−m < 2−m.

III. OBLIVIOUS TRANSFER PROTOCOLS

In the so-called one-out-of-two string oblivious transfer
(String OT), Alice inputs two strings b0, b1 ∈ {0, 1}k and
Bob inputs a bit c called the choice bit. Bob receives bc and
remains ignorant about bc, while Alice remains ignorant about
Bob’s choice. In this work, we assume that the inputs are
uniformly random. It can be done without loss of generality
due to the (very efficient) randomized self-reduction of OT [2,
Section 3.2].

We assume a malicious (a.k.a. active) adversary that can
have an arbitrary behavior. The players are connected by a
noiseless channel and by a Generalized Erasure Channel [1]
(which, loosely speaking, is a combination of a discrete
memoryless channel and the erasure channel).

Definition 4 (Generalized Erasure Channel [1]). A discrete
memoryless channel {W : X → Y} will be called the
Generalized Erasure Channel if the output alphabet Y can
be decomposed as Y0 ∪ Y∗ such that W (y|x) does not
depend on x ∈ X , if y ∈ Y∗. For a GEC, we denote
W0(y|x) = 1

1−p∗W (y|x), x ∈ X , y ∈ Y0, where p∗ is the
sum of W (y|x) for y ∈ Y∗ (not depending on x).

We will use the security definition of String OT from [15].
In particular, this definition implies that the String OT proto-
col, which satisfies it, is sequentially composable. The follow-
ing notions and the theorem come from [15]. The statistical
information of X and Y given Z is defined as

IS(X;Y |Z) = SD(PXY Z , PZPX|ZPY |Z).

A F-hybrid protocol consists of a pair of algorithms P =
(A1, A2) that can interact by means of two-way message
exchange and have access to some functionality F . A pair
of algorithms Ã = (Ã1, Ã2) is admissible for protocol P if
at least one of the parties is honest, that is, if at least one of
the equalities Ã1 = A1 and Ã2 = A2 is true. Let B denote
(B0, B1).

Theorem 1. A protocol P securely realizes String OT (for
strings of dimension k) with an error of at most 6ε if for every
admissible pair of algorithms Ã = (Ã1, Ã2) for protocol P
and for all inputs (B,C), Ã produces outputs (U, V ) such
that the following conditions are satisfied:
• (Correctness) If both parties are honest, then U = ⊥ and

Pr[V = BC ] ≥ 1− ε.
• (Security for Alice) If Alice is honest, then we have
U =⊥ and there exists a random variable C ′ distributed
according to PC′|B,C,V , such that IS(B;C ′|C) ≤ ε and
IS(B;V |C,C ′, BC′) ≤ ε.

• (Security for Bob) If Bob is honest, we have V ∈ {0, 1}k
and IS(C;U |B) ≤ ε.

The protocol is secure if ε is negligible in the security
parameter n.

If the GEC is used n times, the oblivious transfer rate of
the protocol is given by ROT = k

n .
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The oblivious transfer capacity [26] is the supremum of the
achievable rates when the protocol is secure. In this work, we
considered the oblivious transfer capacity of the Generalized
Erasure Channel when the adversaries are malicious.

Theorem 2. For a Generalized Erasure Channel with p∗ ≥
1
2 , the oblivious transfer capacity in the case of malicious
adversaries is (1 − p∗)C(W0) where C(W0) is the Shannon
capacity of the discrete memoryless channel {W0 : X → Y0}.

In the next section, we prove the direct part. The converse
follows from the fact that is not possible to achieve greater
oblivious transfer rates even when only passive adversaries
are considered [1].

IV. STRING OT PROTOCOL BASED ON GEC
Now, we present our protocol for string oblivious transfer

from Generalized Erasure Channel. It is based on the protocol
for String OT from the erasure channel [31, Protocol 5.1].

Protocol 2.
1) Alice and Bob select a (typically very small) positive

constant α < 1−p∗
7 and set β = 1− p∗ − 2α.

2) Alice randomly chooses xn according to the probability
distribution that achieves the Shannon capacity of W0

and sends xn to Bob through the GEC.
3) Bob receives the string yn and collects the good (those

corresponding to y ∈ Y0) and the bad (those correspond-
ing to y ∈ Y∗) positions in sets G and B, respectively.
He aborts if |G| < (1− p∗ − α)n = βn+ αn.

4) Bob chooses c ∈R {0, 1} and w ∈R {0, 1}m, where
m = dlog

(
βn
αn

)
e. He decodes w into a subset S of

cardinality αn (out of βn) using the encoding scheme
of Section II-C. Bob then defines two disjoint sets Rc
and Rc of cardinality βn. Rc consists only of positions
from G, chosen randomly and without repetition. Rc has
αn positions from G (defining the subset RSc ) and the
remaining positions are chosen from G ∪ B, randomly
and without repetition. Bob sends the descriptions of R0

and R1 to Alice.
5) Alice checks that no position is repeated in the sets R0

and R1, otherwise she aborts.
6) Bob sends w to Alice using Interactive Hashing (Pro-

tocol 1). Let w0, w1 be the output strings, let S0, S1

be the corresponding subsets of cardinality αn and let
b ∈ {0, 1} be such that wb = w.

7) Bob announces a = b⊕ c as well as yR
Sa
0 and yR

Sa
1 .

8) Alice checks if yR
Sa
0 and yR

Sa
1 are 2ε jointly typical for

a discrete memoryless channel {W0 : X → Y0} (see the
appendix) with her input on these positions. If they are
not jointly typical, Alice aborts.

9) Alice chooses randomly 2-universal hash functions
g0, g1 : X βn → {0, 1}βn[H(X|Y ∈Y0)+ε] (with ε > 0
such that the output length is integer). She computes
g0(xR0) and g1(xR1). She also randomly chooses 2-
universal hash functions h0, h1 : X βn → {0, 1}δn,
where δ = (β − 5α)H(X)− β(H(X|Y ∈ Y0) + ε)− γ
and γ > 0 such that the output length is integer. She
sends g0(xR0), g1(xR1) and the descriptions of g0,

g1, h0, h1 to Bob. Alice outputs r0 = h0(xR0) and
r1 = h1(xR1).

10) Bob computes all possible x̃Rc that are jointly typical
with yRc and satisfy gc(x̃Rc) = gc(x

Rc). If there exists
exactly one such x̃Rc , Bob outputs rc = hc(x̃

Rc).
Otherwise, he outputs rc = 0δn.

Remark 1. Since in Step 10 Bob uses the output of universal
hash functions to correct errors, the above protocol is not
computationally efficient. However, this suffices for our result
as we only claim possibility of achieving the OT capacity.

Theorem 3. The above string oblivious transfer protocol is
secure.

a) Correctness: When Alice and Bob are honest, Bob
does not obtain the correct output either if he aborts in Step 3,
or if he does not obtain exactly x̃Rc = xRc in Step 10. By the
Chernoff bound [7], the probability that Bob aborts in Step 3
is a negligible function of n. Bob does not obtain exactly
x̃Rc = xRc either if xRc is not jointly typical with yRc (which
according to the definition of joint typicality occurs only with
probability negligible in n), or if there exists another xRc that
is both jointly typical with yRc and has gc(xRc) = gc(x

Rc).
However, the number of xRc that are jointly typical with yRc

is upper bounded by 2βn[H(X|Y ∈Y0)+ε′] (for 0 < ε′ < ε and
n sufficiently large), so the Leftover-Hash Lemma guarantees
that for n sufficiently large with overwhelming probability the
output of gc on these xRc is not equal to gc(xRc). As all the
failure probabilities are negligible in n, the protocol meets the
correctness requirement.

b) Security for Bob: Since in GEC, every input symbol x
is erased (i.e. ends up in Y∗) with probability p∗ independent
of x, Alice does not know which input symbols were erased.
Hence, the distribution of (R0,R1) is independent of c from
Alice’s point of view. Another point where Bob uses c to
generate messages to Alice is in Step 7. Upon receiving a,
Alice can correctly guess c if and only if she can correctly
guess b, but the security of Interactive Hashing protocol
guarantees that the view of Alice is the same for b = 0
and b = 1, except with negligible probability. Remember that
Alice’s views in the IH protocol are identical. Also, the IH
protocol is η′ < 2−m uniform, as mentioned in Section II-D.
However, η′ is negligible, since m = dlog

(
βn
αn

)
e = O(n), that

follows by applying Stirling’s approximation. This implies that
the probability that wb̄ is non-uniform in {0, 1}m \ w (and
hence the probability that Alice’s views are not identical) is
negligible.

Finally, note that no matter what the malicious Alice ac-
tually sends in Step 9, Bob will not abort. In particular, this
prevents reaction attacks. Therefore, the distribution of Alice’s
view of the protocol does not depend on c with overwhelming
probability.

c) Security for Alice: Our proof follows the lines of
Savvides’ proof [31, Section 5.1]. We first present some
definitions.

Definition 5. Let u(R) be the number of positions contained
in R such that the corresponding output at this position was
an erasure.
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Definition 6. S is called good for R if u(RS) < α2n,
otherwise it is called bad for R.

There are two cases to consider: (i) both u(R0) and u(R1)
are greater than or equal to 2αn, (ii) either u(R0) or u(R1)
is less than 2αn. We will prove the security for Alice in each
case. For the first case we need the following two lemmas
from [31, Section 5.1] which follow from the Chernoff bound,
the union bound and the properties of the encoding scheme
used.

Lemma 2. Let R be a set of cardinality βn such that u(R) ≥
2αn. Then the fraction f of subsets S of cardinality αn that
are good for R satisfies f < e−α

2n/4.

Lemma 3. Let R0,R1 be sets of cardinality βn such that
u(R0) ≥ 2αn and u(R1) ≥ 2αn. Then the fraction of strings
w that decode to subsets S that are good for either R0 or R1

is no larger than 4e−α
2n/4.

Since the fraction of the strings w ∈R {0, 1}m that are
good for either R0 or R1 is no larger than 4e−α

2n/4, we
can set the security parameter s of the interactive hashing
protocol to log(4e−α

2n/42m) = m− α2n
4 log e+ 2. Therefore

we have that ρ = 2−(m−s)+O(logm) = 2−α
2 log(e)n/4+O(logn)

and so, by the security of the interactive hashing protocol,
the probability that Bob gets both w0 and w1 to be good for
either R0 or R1 is a negligible function of n. Then, with
overwhelming probability, one of the sets (w.l.o.g. R0) will
have u(RSa0 ) ≥ α2n.

We know by lemma 4 (in the appendix), that if two n
long strings are not jointly typical at a randomly chosen
(according to a uniform distribution) linear fraction of po-
sitions, this implies the non joint-typicality of these n long
strings. Therefore, Bob succeeds in the test of Step 8 (i.e.,
finds yR

Sa
0 jointly typical with Alice’s input) only if he

correctly guesses y’s values for the bad positions that are
jointly typical with Alice’s input. For n sufficiently large,
there are at most 2α

2n[H(Y ∈Y0|X)+ε] (ε > 0) sequences of y’s
values that are jointly typical with Alice’s input, and there
are at least 2α

2n[H(Y ∈Y0)−ε] typical sequences for the y’s
values, so the probability that Bob succeeds in the test is
less than 2α

2n[H(Y ∈Y0|X)−H(Y ∈Y0)+2ε] = 2−α
2n[C(W0)−2ε]

which is a negligible function of n. As all the possibilities
of Bob cheating successfully in the protocol occur only with
negligible probability, the protocol is secure for Alice in the
case that both u(R0) and u(R1) are at least 2αn.

We now analyze the security if either u(R0) or u(R1) is
less than 2αn (w.l.o.g. we assume that u(R0) < 2αn). By
the Chernoff bound, we have that |B| > (p∗ − α)n with
overwhelming probability. Since only (1−2β)n positions were
not used in R0,R1, then u(R0) + u(R1) + (1 − 2β)n >
(p∗ − α)n and so u(R1) > (1 − p∗ − 7α)n = βn − 5αn.
Since more than βn−5αn positions from R1 are erasures and
Alice only sends βn[H(X|Y ∈ Y0) + ε] bits of information
about xR1 in Step 9, we have that H∞(XR1 |ViewBob) >
n[(β − 5α)H(X) − βH(X|Y ∈ Y0) − βε], where ViewBob

denotes all the information that Bob knows. So the property
of the 2-universal hash function h1 for extracting n[(β −

5α)H(X)−βH(X|Y ∈ Y0)−βε−γ] bits of information (with
γ > 0) follows from the Leftover-Hash Lemma. Therefore,
Bob has only negligible information about r1, and the security
follows for the case that either u(R0) or u(R1) is less than
2αn.

A. Achieving the Oblivious Transfer Capacity

For n sufficiently large, α, ε and γ can be made arbitrarily
small without compromising the security of the protocol. So
the limit of strings lengths can go to n(1 − p∗)[H(X) −
H(X|Y ∈ Y0)] that is equal to n(1 − p∗)C(W0) since the
probability distribution of X in the protocol is the one that
achieves the Shannon capacity of the channel W0. So the
limit of oblivious transfer rate can go to (1−p∗)C(W0) for n
sufficiently large, thus proving the direct part of the theorem 2.
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[11] C. Crépeau, J. Kilian. Achieving Oblivious Transfer Using Weakened
Security Assumptions (Extended Abstract). FOCS 1988, pages 42-52.
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APPENDIX

The following definitions follow largely the book of Csiszár
and Körner [16].

Definition 7. For a probability distribution P on X and ε > 0
the ε-typical sequences form the set

T nP,ε = {xn ∈ Xn : ∀x ∈ X |N(x|xn)− nP (x)| ≤ εn &

P (x) = 0⇒ N(x|xn) = 0},

with the number N(x|xn) denoting the number of symbols x
in the string xn.

The type of xn is the probability distribution Pxn(x) =
1
nN(x|xn). Then, xn ∈ T nP,ε ⇒ |Pxn(x)−P (x)| ≤ ε,∀x ∈ X .

Properties 1.
1) P⊗n(T nP,ε) ≥ 1− 2|X | exp(−nε2/2).
2) |T nP,ε| ≤ exp(nH(P ) + nεD).
3) |T nP,ε| ≥ (1− 2|X | exp(−nε2/2)) exp(nH(P )− nεD),

with the constant D =
∑
x:P (x) 6=0− logP (x). See [16] for

more details.

Extending this concept to the conditional ε-typical se-
quences, we have:

Definition 8. Consider a channel W : X → Y and an input
string x ∈ Xn. For ε > 0, the conditional ε-typical sequences
form the set

T nW,ε(xn) = {yn : ∀x ∈ X , y ∈ Y |N(xy|xnyn)

−nW (y|x)Pxn(x)| ≤ εn
&W (y|x) = 0⇒ N(xy|xnyn) = 0}

=
∏
x

T IxWx,εPxn (x)−1,

where Ix are the sets of positions in the string xn where
xk = x.

Properties 2.
1) Wn

xn(T nW,ε) ≥ 1− 2|X ||Y| exp(−nε2/2).
2) |T nW,ε| ≤ exp(nH(W |Pxn) + nεE).
3) |T nW,ε| ≥

(
1− 2|X ||Y| exp(−nε2/2)

)
· exp(−nH(W |Pxn)− nεE),

with the constant E = maxx
∑
y:W (y)6=0− logWx(y) and the

conditional entropy H(W |P ) =
∑
x P (x)H(Wx). See [16]

for more details.

It is a well know fact that if xn and yn are conditional
ε-typical according the definition 8, then

|T nW,ε| ≤ 2n(H(Y |X)+ε).

We now prove the following lemma:

Lemma 4. Let W : X → Y be a discrete memoryless channel
and xn ∈ Xn, yn ∈ Yn be the input and output strings of this
channel. Let A be a random subset of [n] such that |A| = δn,
0 < δ ≤ 1. Let xA and yA be the restrictions of xn and yn

to the positions in the set A. If xn and yn are conditional
ε-typical, then xA and yA are conditional 2ε-typical for any
ε > 0 and n large enough.

Proof:
By hypothesis xn and yn are conditional ε-typical, so for

every symbols x and y we have that

|N(xy|xnyn)− nPxn(x)W (y|x)| ≤ εn,

for a large enough n.
Given the conditional ε-typical strings xn and yn, the

probability of selecting one pair with the specific values x
and y for the substrings xA and yA is N(xy|xnyn)

n . We have
that

Pxn(x)W (y|x)− ε ≤ N(xy|xnyn)

n
≤ Pxn(x)W (y|x) + ε.

Therefore, by the Chernoff bound [7], for n large enough with
overwhelming probability the number of pairs of x and y in
the substrings xA and yA, N(xy|xAyA), is limited by

δn (Pxn(x)W (y|x)− ε− ε′) ≤ N(xy|xAyA)

≤ δn (Pxn(x)W (y|x) + ε+ ε′) ,

for any ε′ > 0. Making ε′ = ε we have that the substrings xA

and yA are conditional 2ε-typical.


