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Abstract. In this paper, we improve the recent rebound and start-from-the-middle
attacks on AES-like permutations. Our new cryptanalysis technique uses the fact that
one can view two rounds of such permutations as a layer of big Sboxes preceded and fol-
lowed by simple affine transformations. The big Sboxes encountered in this alternative
representation are named Super-Sboxes. We apply this method to two second-round
SHA-3 candidates Grøstl and ECHO, and obtain improvements over the previous crypt-
analysis results for these two schemes. Moreover, we improve the best distinguisher
for the AES block cipher in the known-key setting, reaching 8 rounds for the 128-bit
version.
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1 Introduction

Hash functions are among the most important and widely spread primitives in cryptography.
Informally a hash function H is a function that takes an arbitrarily long message as input
and outputs a fixed-length hash value of size n bits. The classical security requirements for
such a function are collision resistance and (second)-preimage resistance. Namely, it should
be impossible for an adversary to find a collision (two different messages that lead to the same
hash value) in less than 2n/2 hash computations, or a (second)-preimage (a message hashing to
a given challenge) in less than 2n hash computations. Recently, most of the standardized hash
functions [32, 27] have suffered from major improvements in hash function cryptanalysis [36,
35]. As a response, the NIST organized the SHA-3 competition [29] and 51 candidates were
accepted to the first round. In July 2009, 14 of them have been selected to the second round.
Among them, several hash proposals like Grøstl [14] or ECHO [3] use parts of the standardized
block cipher AES [28, 10] as internal primitives or mimick the structure of this cipher.

The separation between block ciphers and hash functions has always been blurry as many
constructions [31,7] are known that turn the former into the latter. For example, the Davies-
Meyer mode converts a secure block cipher into a secure compression function and is incorpo-
rated in a large majority of the currently known hash functions. A major difference between
the cryptanalysis of block ciphers and hash functions is that the attacker can fully control the
inner behavior of a hash function. In other words, the attacker can use more efficiently the
freedom degrees available on the input (i.e. the number of independent binary variables he has
to determine). A new security model for block ciphers, the so-called known-key model [19],
was recently proposed in order to fill the gap between those two situations. In this model, the
secret key is known to the adversary and its goal is to differentiate the behavior of a random
instance of the block cipher from the one of a random permutation by constructing a set of
(plaintext, ciphertext) pairs satisfying an evasive property. Such a property is easy to check
but impossible to achieve with the same complexity and a non-negligible probability using
oracle accesses to a random permutation and its inverse. In particular, reduced versions of



the AES have been studied in this setting [19,26].1 An even more demanding requirement for
block ciphers, also introduced for filling the gap between block ciphers and hash functions, is
to behave as an ideal cipher, i.e. a family of independent random permutations indexed by
the key space, even when the key values can be chosen by an adversary. It has been recently
shown that the full AES-256 does not behave as an ideal cipher due to the existence of a
so-called chosen key distinguisher [5].

Cryptanalysis of AES-based hash functions began with the hash family proposal Grindahl [18]
for which collision attacks have been found [30, 17]. This showed that truncated differen-
tials [20] are useful when cryptanalyzing a byte-oriented primitive such as the AES. Later on,
the rebound attack [25] was shown to lead to substantial efficiency improvements in the free-
dom degrees usage of the attacker [24, 37, 22, 21]. The idea is to build a differential path and
use the available freedom degrees in the “most expensive” part of the path. The “cheaper”
parts are then covered in an inside-out manner in both forward and backward directions.
More recently, improved variants of the initial rebound attack such as the so-called “start-
from-the-middle” attack were also introduced [23].
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Fig. 1. The compression functions of Grøstl, ECHO-256, and ECHO-512 illustrated from the
top down.

1 It was noticed in [8] that for any cipher which key space is smaller than the plaintext space, it is
possible to construct a (plaintext, ciphertext) pair satisfying an evasive relation by encrypting the
key under itself. However, known key distinguishers such as those of [19, 26] differentiate round-
reduced versions of AES from a random permutation in a less contrived manner than such a generic
evasive relation.



Table 1. Summary of results for AES and the internal permutations used in Grøstl-256 and
ECHO. Some structural observations [16,2] for Grøstl have not been included in the Table.

target rounds
computational memory

type source
complexity requirements

AES
7 224 216 known-key-distinguisher see [23]

8 248 232 known-key-distinguisher this paper

Grøstl-256
permutation

7 256 distinguisher see [23]

8 2112 264 distinguisher this paper

ECHO internal
permutation

7 2384 264 distinguisher see [23]

8 2768 2512 distinguisher this paper

Table 2. Summary of results for the compression functions of Grøstl-256 and ECHO.

target rounds
computational memory

type source
complexity requirements

Grøstl-256

comp. function

6 2120 264 semi-free-start collision see [25]

6 264 264 semi-free-start collision see [23]

7 2120 264 semi-free-start collision this paper

7 256 distinguisher see [23]

8 2112 264 distinguisher this paper

ECHO
none none none —comp. function

Our contribution. In this paper, we further improve the rebound or start-from-the-middle
attacks for AES-like permutations. The idea is to view two consecutive rounds of an AES-like
permutation as the application of a so-called Super-Sbox [15, 12, 11]: this allows a more ef-
ficient use of the freedom degrees.2 Instead of dealing with the classical 8-bit AES Sboxes,
one will consider 32-bit Sboxes each composed of two AES Sbox layers surrounding one Mix-
Columns and one AddConstant function. The resulting attack method, that we propose to
name Super-Sbox cryptanalysis, is not only simpler than the previous ones, it also results
in performance improvements since we are now able to find deviations from the behavior of
a random permutation up to 8 rounds. We also provide an analysis regarding the freedom
degrees available during the attack. We apply this technique to (1) AES, (2) the internal
permutations P and Q of Grøstl, and (3) the internal permutation PE of ECHO. The link
between the compression functions of Grøstl and ECHO and the underlying internal permuta-
tions is illustrated in Figure 1. Our results for AES and the internal permutations of Grøstl
and ECHO are summarized in Table 1. We obtain an 8-round distinguisher in the known-key
model for all versions of the AES block cipher. This is the first published “attack” against
the 8-round version of AES-128, for which the full number of rounds is 10. We also present a
distinguisher for the 8-round reduced internal permutations of Grøstl-256 (the full number
of rounds is 10) and for the full number of rounds of the internal permutation of ECHO-256
(8 rounds). In the case of Grøstl-256, our distinguishers for round-reduced versions of the
internal permutation can be immediately converted into distinguishers for reduced versions of
the compression function with the same number of rounds, or even semi-free-start collisions in
some cases3. We outline in Table 2 the results obtained for reduced versions of the Grøstl-256
compression function. In the case of ECHO and its reduced versions, our distinguishers for the
internal permutation cannot be converted into distinguishers for the compression function

2 Note that a similar technique, independently discovered by Lamberger et al. [21], has been applied
by these authors to the Whirlpool hash function.

3 Similar unpublished results have been recently announced in [13]



due to the extra protection provided by the final shrinking stage of the compression function
– namely its convolution effect on the output distribution of the permutation.

2 Description of the analyzed schemes

We give in this section a generic description of an AES-like permutation and we then provide
the parameters in this generic model for AES, Grøstl and ECHO. We refer to the corresponding
specifications [28,10,14,3] for a detailed description of these schemes.

A generic n-bit AES-like permutation has an internal state that can be viewed as a square
matrix of c-bit cells with r columns and r rows. A cell will be denoted by Ci,j , where i
is its row position and j its column position in the matrix, starting the counting from 0.
The permutation is composed of R rounds and each round has four layers. The first layer
(AddConstant or AC) is a constant/key addition function. More precisely, for each cell of the
internal state, we XOR a c-bit constant. The second layer (SubBytes or SB) is a non-linear
function defined by the application of an Sbox S: for each cell Ci,j of the internal state, we
compute C ′i,j = S[Ci,j ]. The third layer (ShiftRows or ShR) permutes the position of each
cell in its own row: for each cell Ci,j of the internal state, we compute C ′i,j = Ci,Subi(j) where
Subi(j) is parametrized by the row i. Finally, the last layer (MixColumns or MC) is a linear
function that mixes all the columns of the internal state separately. The round function on
an internal state C can thus be defined as:

MixColumns ◦ ShiftRows ◦ SubBytes ◦AddConstant(C).
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Fig. 2. The generic AES-like permutation

Even though the MixColumns functions used in AES, Grøstl, and ECHO are distinct (we
do not provide here their detailed specification), we can stick to this generic description since
we are only interested in the differential properties of this layer, which remain essentially the
same.

Extended known key model for the considered schemes In what follows, we will intro-
duce distinguishers for permutations and compression functions based upon specific examples
of the above generic AES-like permutation. Therefore we have to explain what we mean by
“distinguisher” in this context. Our aim is to capture structural properties that differenti-
ate the behavior of permutations or functions belonging to a family of permutations (resp.
functions) indexed by a parameter from the one of a random permutation (resp. a random
function). In the case of permutations, these parameters can be viewed as a known key and
our notion of distinguisher entirely coincides with the notion of known key distinguisher. In



order to also cover the case of compression functions, we introduce a natural extension of the
notion of known key distinguisher to a family F = {fi} of functions indexed by a parameter
i ∈ I. We (informally) define a distinguisher for F as a procedure allowing an adversary to
construct, when input with a randomly drawn parameter value i of a function of F , a t-uple of
(input, output) pairs for fi satisfying (with a non negligible probability) an evasive property
independent of i. An evasive property means in this context a property impossible to achieve
with the same complexity and a non-negligible probability using oracle accesses to a random
function.4 We propose to view the permutations and compression functions based upon the
generic AES construction as families of permutations (resp. functions) indexed by the a param-
eter set I = C ×SB equipped with the uniform probability distribution. For a given family, C
is defined as the set of possible values for the constants involved in the various AddConstant
layers, and SB represents the set of tuples of r2R permutations involved in the various Sub-
Bytes layers (R represents as before the number of rounds of the considered instances of the
generic AES construction, and r the number of rows and columns of the matrices representing
their states). This allows to define structural distinguishers for these permutations and these
compression functions, using the extended known key model introduced above.

2.1 AES

Following our generic description, AES is a n = 128-bit block cipher that can handle 128,
192 or 256-bit keys and those variants have a different number of rounds, 10, 12 and 14
respectively. The internal state is viewed as a 4× 4 matrix of bytes and SB is an 8-bit Sbox.
The ShiftRows transformation is simply defined by Subi(j) = (j − i) mod 4. Finally, we note
that in AES the MixColumns transformation of the last round is not applied and that the last
round is composed with an extra AddConstant transformation.

Since we will analyze AES in the known-key attacker model, the key schedule and the key
additions can be replaced by the AddConstant function. In the known key distinguishers for
R-round versions of AES considered in the sequel, the set C consists of all R+1-tuples of 128-bit
constants equiped with the uniform law, and the set SB can be either defined as the singleton
containing the actual SubBytes layers or as the set of all 16R-tuples of bijections over {0, 1}8.
Our distinguishers are equally applicable in both settings, and can be immediately converted
into known key distinguishers for R-round versions of AES-128, AES-192, and AES-256.

2.2 Grøstl

Grøstl is a double-pipe hash function whose compression function is built upon two AES-like
permutations P and Q (that only differ by the constants used during the AddConstant layer).
In the case of Grøstl-256, the internal state of those permutations can be viewed as a 8× 8
matrix of bytes and their number of rounds is 10. The ShiftRows transformation is defined by
Subi(j) = (j − i) mod 8. In the case of Grøstl-512, the internal state of those permutations
can be viewed as a 8× 16 matrix of bytes, thus not fitting in our generic model.

Finally, as already shown on Figure 1, the compression function takes a message input M
and a chaining variable input CV and outputs a new chaining variable CV ′ with

4 Considering a family of functions rather than one single function allows us to express a structural
property common to many individual functions. Moreover, it avoids the considerable difficulties
one would encounter in the case of one single function f for expressing the requirement that the
evasive property used to distinguish f must be “independent” of f as to exclude for instance the
evasive property trivially provided by each (input,output) pair of f ; in addition, if the size of I
is larger than the input size of F , considering a family of functions instead of one single function
allows us to avoid the already mentioned paradox of [8].



CV ′ = P (CV ⊕M)⊕Q(M)⊕ CV.

In the subsequent analysis of the security of R-round versions of the Grøstl-256 permutations
and the associated compression function, we either define the set C as the singleton containing
the actual constants used in the AddConstant layers or the set of all possible R-tuples of 512-
bit constants (this will not make any difference for our distinguishers), and we define SB as
the set of all the 64 ·R-tuples of bijections over {0, 1}8.

2.3 ECHO

ECHO is also a double-pipe hash function. It uses a compression function built upon a 2048-
bit AES-like permutation which i-round version is denoted by P i

E . The internal state of this
permutation can be viewed as a 4 × 4 matrix of 128-bit words. The Sbox layer on a 128-bit
cell is composed of two AES rounds with a fixed key. The AddConstant layer is not present
(or equivalently is present with constant values equal to zero) and in order to avoid trivial
vulnerabilities that would result from an entirely symmetric round function, each Sbox in ECHO
is distinct thanks to different key additions in each invocation of the 2-round AES. As for the
AES, the ShiftRows transformation is simply defined by Subi(j) = (j−i) mod 4. In the case of
the ECHO-256 compression function, 8 rounds of the permutation are applied and a shrinking
transformation is performed after the final feedforward. This transformation (denoted here
by shrink256) consists of “XORing” all the four 512-bit columns together. Finally, as already
shown on Figure 1, the compression function takes a message input M and a chaining variable
input CV and outputs a new chaining variable CV ′ with

CV ′ = shrink256(P 8
E(CV ||M)⊕ (CV ||M)).

In the case of the ECHO-512 compression function, 10 rounds of the permutation are applied
and a shrinking transformation is applied after the final feedforward. This transformation
(denoted by shrink512) consists of “XORing” the two first and the two last 512-bit columns
together.

CV ′ = shrink512(P 10
E (CV ||M)⊕ (CV ||M)).

Since ECHO is a nested design of AES-like permutations, we will use the prefix “BIG” when
referring to one of the three layers of the 2048-bit permutation. When not using this prefix,
we will refer to the layers of the 2-round AES permutation in the BIG-Sbox of ECHO.

In the subsequent analysis of the security of R-round versions of the ECHO permutation, we
define the set C as the singleton containing the R-tuple of AddConstant layers associated with
the constant zero, and SB as the set of all the 16 ·R-tuples of bijections over {0, 1}128.

3 The Super-Sbox cryptanalysis technique

In this section, we introduce the Super-Sbox view for two rounds of an AES-like permuta-
tion [15, 12, 11, 10]. Based on this observation, we describe a new cryptanalysis technique in
the generic framework of Section 2 and we will apply it to the specific cases of AES, Grøstl
and ECHO in the following section.



3.1 The generic differential paths

In the following attacks, we will consider two distinct generic truncated differential paths for
AES-like permutations. The only difference considered between two words A and A′ is the
XOR difference, that is δ = A ⊕ A′. The first path is 7-round long and the second one is 8-
round long. Both are depicted in Figure 3. A white cell denotes a c-bit word without difference
(inactive word) and a dark cell represents a truncated c-bit difference (active word), that is
a non-zero difference whose actual value is not considered by the attacker.
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Fig. 3. 7-round and 8-round differential paths for AES-like permutations.

When dealing with truncated differentials for AES-like permutations, one can easily check
that only the MixColumns transformations will not behave deterministically. Indeed, while
AddConstant have no effect on the difference of a cell and ShiftRows just permutes the
array of c-bit differences, the SubBytes transformation will impact the value of the differ-
ence, but it will not affect the truncated difference. The matrix multiplication underlying the
MixColumns transformation presents the interesting property of being a Maximum-Distance
Separable (MDS) mapping: the number of active input and output cells is always greater or
equal to r + 1 (unless there is no active input and output cell at all). The probability of a
truncated differential transition through the restriction of the MixColumns transformation
to one column that meets the MDS constraints is determined by the number of active cells
in the output column. More precisely, if such a differential transition contains k > 0 active
cells in the output column, its probability of success is closely approximated by 2−c(r−k).
For example, a 4 7→ 1 transition for one column of the AES MixColumns layer has a success
probability of approximatively 2−24. Note that the same reasoning applies when dealing with
the inverse function of the MixColumns layer as well.

3.2 Previous start-from-the-middle attacks

By observing the two previous differential paths, one can easily be convinced that the most
costly part is located in the middle rounds, where the full internal state is active. Therefore,
the classical early-round use of the freedom degrees available to the attacker is not successful
in this case. It is more efficient to actually utilize the freedom degrees during the middle
rounds and then let the rest of the differential trail be verified backward and forward in a
probabilistic way.



3.3 The Super-Sbox view

In [15,12,11,10], Daemen and Rijmen introduced the super box representation for two rounds
of the AES in order to study differential properties. The underlying idea is simple: by consid-
ering (r× c)-bit permutations (named here Super-Sboxes) instead of the usual c-bit S-boxes,
two rounds of an AES-like permutation can be represented using only one non-linear layer.
More precisely, the application of two AES-like permutation rounds on a internal state C

MC ◦ ShR ◦ SB ◦ AC ◦MC ◦ ShR ◦ SB ◦ AC(C)

can be rewritten
MC ◦ ShR ◦ SB ◦ AC ◦MC ◦ SB ◦ ShR ◦ AC(C)

since two adjacent SubBytes and ShiftRows transformations commute. The middle part

Super-SB = SB ◦ AC ◦MC ◦ SB

of the former composition represents a layer of column-wise applications of r (r×c)-bit Super-
Boxes. The transformation associated with two consecutive rounds can thus be rewritten

MC ◦ ShR ◦ Super-SB ◦ ShR ◦ AC(C).

This is depicted in Figure 4.

first round second round

AC SB ShR MC AC SB ShR MC

AC ShR SB MC AC SB ShR MC

AC ShR
Super-SB
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Fig. 4. Three equivalent views of 2 rounds of an AES-like permutation

3.4 The Super-Sbox cryptanalysis

Our overall strategy is the same as in the previous rebound or start-from-the-middle attacks:
we will try to find a pair of internal state values in the middle of a well chosen truncated
differential path (where the full internal state is active) such that the path is verified for
as many possible rounds as possible backward and forward. We call this part the controlled
rounds and the rest of the path in both directions will be fulfilled probabilistically.

In order to describe our attack, we use the 8-round path from Figure 3. With a restricted
number of operations on average, we will find an internal state values pair such that the path
is verified for three middle rounds: from the beginning of round 2 until the end of round 4. A
more detailed description of the three controlled rounds is given in Figure 5.

Before describing the attack, we have to make an assumption: we require that the number
of potential distinct differences at the start of the controlled rounds (Sstart) or at the end of
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Fig. 5. A detailed Super-Sbox view (see Figure 4) of the controlled rounds (from round 2 to
round 4) of the 8-round differential path from Figure 3

the controlled rounds (Send) be at least (2c − 1)r. In other words, we must have at least r
active cells in Sstart or in Send. Note that this assumption holds for all the types of controlled
rounds that will be considered in the two differential paths of Figure 3. Without loss of
generality, we consider for the rest of the description that this assumption is fulfilled for the
ending difference mask.

The controlled rounds. The initial state of the controlled round is Sstart at the beginning
of round 2 (see Figure 5). Since the AddConstant and SubBytes layers of this round have
no effect on truncated differentials, we can directly begin at S′start, i.e. just after those two
transformations. Thus, we select a random difference value (we do not use truncated differ-
ences in the subsequent procedure) for all the active cells of the internal state S′start at the
output of the Sbox layer of round 2. Since the difference mask for the entire internal state
is now specified, one can apply the ShiftRows and MixColumns transformations and enter
round 3 with an updated difference mask. We then easily deduce the input difference mask
∆ = (∆1, · · · , ∆r) in Sin for the r-tuple of Super-Sboxes of Super-SB.

Now we perform the following local precomputation: for each of the r Super-Sboxes,
knowing its input difference mask ∆i, we go through all the 2(rc)−1 pairs of input values
differing by ∆i and compute the Super-Sbox forward. This provides 2(rc)−1 output differences
values (distinct or not). For each Super-Sbox output difference reached, the attacker stores
the appropriate pair(s) of input that led to it. We name this storage by Tables Ti for each
Super-Sbox i and note that this precomputation phase requires about 2rc operations and
memory.

We now go backward by starting from the end of round 4: we pick a random difference for
all the active cells of the internal state Send at the output of the MixColumns transformation
of round 4. We can invert this MixColumns layer and get the differences on its input. By
also inverting the ShiftRows function of round 4, we get the aimed output difference mask
∆′ = (∆′1, · · · , ∆′r) in Sout for the r Super-Sboxes of Super-SB. We only have to check whether
for all the r Super-Sboxes (numbered i = 1 to r), the output difference ∆′i is present in tables
Ti. If this is the case, we can efficiently enumerate all the pairs of input difference ∆ in Sin

leading to an output ∆′ in Sout. It is easy to see that if ∆′ = (∆′1, · · · , ∆′r) was a fully
random r-tuple of output differences for the r Super-Sboxes, the average value over ∆′ of
the number n(∆′) of distinct pairs of input difference ∆ resulting in an output difference ∆′

would be exactly 1/2 (this actually holds for any permutation, independently of the fact that
this permutation is a r-tuple of Super-Sboxes).5 We make the (natural) heuristic assumption

5 The exact distribution of the number n(∆′) of pairs is complex to derive, but one can at least
notice that if n(∆′) 6= 0, i.e. the numbers n1, · · · , nr of input pairs returned by tables T1, · · · , Tr

are all distinct from zero, then n(∆′) = n1×· · ·×nr×2r−1 since each tuple of pairs provides 2r−1

pairs of complete blocks (as a matter of fact, the values of each pair of inputs to one Super-Sbox
can be swapped, but each of the 2r pairs of blocks one obtains this way are repeated two times).
Though this is not essential for the estimate of the attack complexity, we can expect the two most



that though ∆′ is not selected from the whole set D of all 2r2c possible difference values, but
from a smaller subset D′ of (2c − 1)r ' 2rc difference values, the average value of n(∆) over
D′ remains extremely close to 1/2. This assumption is supported by the fact that D′ consists
of difference values with r2 active cells, and this output difference pattern meets the MDS
constraints of the r Super-Sboxes for any input difference pattern.

Thus, by going through all the potential difference candidates for Send, we expect to get
half of the amount of distinct solutions on average. Since we previously assumed that we
have at least 2rc potential difference candidates for Send, the average complexity to find one
solution is only two operations as soon as we wish to obtain at least 2rc−1 solutions. In other
words, the 2rc cost for building the tables Ti has been absorbed by the fact that this will
allow us to test about 2rc distinct output difference values at a time. Once all the possible
output differences in Send have been exhausted, we can pick a new input difference candidate
in Sstart and build new tables Ti.

To conclude, in order to find k distinct solutions for the controlled rounds, the overall
complexity is max{2rc, k} operations and 2rc memory.

The uncontrolled rounds. The rest of the path (the uncontrolled rounds) is fulfilled
probabilistically. More precisely, we managed so far to get valid candidates from round 2
to round 4, but we have no control on the difference values in Sstart (since we selected
random differences in S′start and going through an Sbox layer impacts the difference values).
Similarly, we know the differences in Send, but the beginning of the next round is a SubBytes
transformation that does not allow us to control the behavior of the MixColumns function on
round 5. The study of the MixColumns differential properties indicates that the path will be
fulfilled with probability about 2−c(r−1) at round 1 and at round 5 since we are aiming for a
r 7→ 1 active cells differential transition through both of those two MixColumns layers. Note
that for round 0, round 6 and round 7, the probability of success is equal to one. Finally, the
attacker must find 22c(r−1) distinct solutions for the controlled rounds, providing a single valid
pair for the whole 8-round differential path with a total complexity of 22c(r−1) operations and
2rc memory.

Of course, the same technique applies to the 7-round differential characteristic of Figure 3
as well, up to the fact that since the condition on the number of distinct difference values
is fulfilled at the input of the Super-Sboxes and not on the output, one has to fix a random
value for the active cell of the ending difference (at the input of round 5) and work backward
instead of forward. Since only one round of the uncontrolled part (namely round 1) has now to
be fulfilled probabilistically, the attacker must find 2c(r−1) distinct solutions for the controlled
rounds, providing a valid pair for the whole 7-round differential path with a total complexity
of about 2rc operations and memory. If one wants to find k′ solutions for the whole 7-round
path, then the computational complexity is max{2rc, k′ × 2c(r−1)}.

3.5 Considering freedom degrees

Before moving forward into the study of the various applications of the Super-Sbox crypt-
analysis, we need to evaluate the freedom degrees available to the attacker. Indeed, we have
to be sure that our attacks will find with a good probability a valid pair for the whole dif-
ferential path considered. That is, we want to be sure that enough valid candidates for the
controlled rounds exist so that we have a good probability that one of them will fulfill the
entire characteristic. Moreover, in some of our attacks, our goal will not only be to find one

probable values of n(∆′) to be n(∆′) = 0 (with a probability about 1 − 2−r) and n(∆′) = 2r−1

(with a probability about 2−r).



valid pair, but to find many of them. In the case of some round reduced versions of Grøstl,
we will even use a birthday paradox technique on the set of valid candidates in order to find
a semi-free-start collision for the compression function. For this reason, we need to evaluate
how many valid pairs one can find for a specified differential path, and how many distinct
differential paths can be considered.

A simple counting argument shows that one can generate only about 22c−1 pairs that
verify the entire characteristic. Let us first consider the 8-round path of Figure 3: the controlled
rounds allow to produce about 22rc−1 valid pairs for rounds 2 to 4, out of which about 22rc−1×
2−2(r−1)c = 22c−1 pairs fulfill the entire condition resulting from the differential transitions
at round 1 and 5. In the case of the 7-round path from Figure 3, the controlled rounds allow
to produce about 2(r+1)c−1 valid pairs from round 2 to 4, out of which about 2(r+1)c−1 ×
2−(r−1)c = 22c−1 fulfill the entire condition resulting from the differential transitions at round
1.

We also have to count how many differential paths such as the ones from Figure 3 can
be generated. When the internal state contains only one active cell, there are clearly r2

possible positions for the location of this cell in the matrix. Since this situation happens in
the forward and in the backward direction, we get r4 distinct differential paths. To conclude,
we can generate r4 distinct differential paths, each potentially producing 22c−1 distinct valid
pairs.

4 Applications

When trying to obtain distinguishing attacks for 7 rounds of an AES-like permutation, the
Super-Sbox cryptanalysis will generally not provide any complexity improvement over existing
techniques. However, our method allows the attacker to carry out an attack on a number of
rounds that was unreachable before. For example, we provide a new known-key distinguisher
attack for 8-round reduced AES and the first distinguishers for the 8-round versions of the
reduced Grøstl internal permutation, the ECHO internal permutation, and the reduced Grøstl
compression function.

4.1 Limited-birthday distinguishers

Before moving to applications of the Super-Sbox cryptanalysis, we have to describe the dis-
tinguishers we will build. One of our goals is to distinguish an AES-like permutation from an
ideal permutation in the known-key setting. The kind of distinguishers we consider consist in
deriving pairs of plaintext/ciphertext couples with a zero difference value at i prescribed input
bit positions and a zero difference value at j prescribed output bit positions (and arbitrary
difference values for the other r2c− i input bit positions and the other r2c− j output bit po-
sitions). What is the generic attack complexity in the case of an ideal (random) permutation
? More generally, we can study the problem of mapping a i-bit difference mask not neces-
sarily equal to the all-zero word to a j-bit difference mask through an ideal permutation. A
rough analysis might suggest that due to the the birthday paradox, a generic attack requiring
2min{i/2,j/2} exists. However, this is not always the case since we can find ourselves in the
situation where not enough difference positions are available in order to take full advantage
of the birthday attack. In other words we don’t always have the k/2 unconstrained difference
bits required to mount a 2k/2 collision attack on k bits.

Since we handle a permutation, the attacker can choose to study the function or its inverse.
Without loss of generality, let’s assume that i ≥ j. Due to the birthday paradox, each structure



of 2r2c−i input values obtained by fixing the value of those i bits where a zero input difference
is required allows to achieve a zero output difference on up to 2(r2c − i) prescribed output
bit positions.

– if j ≤ 2(r2c− i), then one can select 2j/2 input values from one single structure and this
suffices to achieve a collision on the j target positions. The attack complexity is about
2j/2.

– if j > 2(r2c − i), then about 2j−2(r2−i) structures have to be used to obtain a collision
on the j prescribed positions. Overall, the complexity of the attack is about 2r2c−i ×
2j−2(r2c−i) = 2i+j−r2c.

The same reasoning holds when applying the birthday paradox over the r2c−j free difference
bits on the output and attacking the inverse function.

– if i ≤ 2(r2c− j), then the attack complexity is about 2i/2.
– if i > 2(r2c− j), then the attack complexity is about 2r2c−j × 2i−2(r2c−j) = 2i+j−r2c.

It can be shown that overall, the attack complexity is max{2j/2, 2i+j−r2c}.

We want to be able to distinguish AES-like permutation-based compression functions as
well. Studying the generic attack for an ideal compression function is almost the same as
previously. The only difference is that we cannot consider the inverse function anymore, and
we have to take into account both the message and the chaining variable as inputs. Thus, we
study the problem of mapping a i-bit zero difference mask on the input chaining variable and
the message (with t denoting the total number of input bits) to a j-bit zero difference mask
on the output through an ideal compression function. By applying the birthday paradox, each
structure of 2t−i input values obtained by fixing the input values at the i positions of the
input mask bits allows to achieve a collision on up to 2(t− i) prescribed output bit positions.

– if j ≤ 2(t− i), then the attack complexity is 2j/2.
– if j > 2(t − i), then 2j−2(t−i) structures have to be used to obtain a collision on the j

prescribed positions. Overall, the complexity of the attack is 2t−i × 2j−2(t−i) = 2i+j−t.

4.2 AES

Our first application is a known-key distinguishing attack against the AES block cipher. We will
focus on the application of this attack to AES-128. Previously known attacks on round-reduced
version of AES-128 allow to reach up to 7 rounds, and for 7 rounds we get no improvement,
due to the minimal cost 2rc of the Super-Sbox technique. However, we describe here the first
known-key distinguishing attack against a 8-round reduced version of AES-128 (a recent an-
nouncement regarding an unpublished work [6] describes an 8-round chosen-key distinguisher
for AES-128). We recall that in the case of AES, the last MixColumns transformation is not
applied.

We will use the 8-round differential path from Figure 3 and we already showed that one
can get a pair of input fulfilling this path with a computation complexity of 22c(r−1) = 248

operations and 232 in memory. The amount of freedom degrees is not an issue here since we
only need to find one candidate verifying the whole differential path. This gives us a pair of
plaintext/ciphertext with 4 active cells in the input and 4 active cells in the output, with
undetermined non-zero differences. In the previous section, we gave some evidence that in the
case of a perfect random permutation this should require 264 operations, and we can conclude
that 8-round reduced AES-128 can be distinguished from an ideal cipher in a known-key model
with 248 computations and 232 memory.



4.3 Grøstl

For Grøstl, finding a valid pair following the generic 8-round path from Figure 3 requires
22c(r−1) = 2112 computations and 264 memory. The obtained pairs have the distinctive prop-
erty that i = 512−64 = 448 predetermined bits of the input difference and j = 512−64 = 448
predetermined bits of the preimage of the output difference by the linear transformation Mix-
Columns are equal to zero. We thus obtain a distinguisher for the 8-round reduced Grøstl-256
internal permutation since the ideal cipher case should require 2i+j−r2c = 2384 computations.
This immediately provides a distinguisher for the 8-round reduced Grøstl-256 compression
function as well, as can be seen on FigureFigure 1, by using the differential path for the P
permutation and inserting no difference in the message (no difference will occur in Q) or al-
ternatively with the differential path for the permutation Q only (and no difference in P ). In
both cases, the input difference of the compression function belongs to a predetermined vector
space of {0, 1}1024 of dimension 8 × 8 = 64 and the output difference belongs to the sum of
two predetermined vector spaces of {0, 1}512 of dimension 64 each, i.e. a predetermined vector
space of dimension at most 128 (by analogy i = 1024− 64 = 960 and j = 512− 128 = 384).
In the ideal compression function case, this should require 2i+j−t = 2320 computations. For
completeness, we give in Figure 6 the differential paths for the Grøstl parameters.
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Fig. 6. 7-round and 8-round differential paths for Grøstl-256

Note that in both the 7-round and 8-round cases, we can generate 22×8−1 = 215 distinct
valid pairs for each characteristic and one can build 84 = 212 distinct differential paths. We
can now try to compute semi-free-start collisions in the same manner as in [25]: we use the
birthday paradox between the solutions found for the P and Q branches in order to find
colliding difference values for the active cells of the input and the output. If one expects
x active cells in the input and y in the output of the differential path, then one can find
colliding values by computing 2(x+y)/2 valid candidates for both P and Q. Note that since it
is linear, the very last MixColumns function can be ignored and only the number of active
cells before this layer should be considered. Assuming that we have 212 × 215 = 227 freedom
degrees available in order to apply this birthday attack would be incorrect: one can apply the
birthday paradox only for the same differential path considered. Thus, we have 215 freedom
degrees for each birthday attack, and we can repeat this step 212 times. Overall, we can make
the input and output difference values collide for only log2((215)2 × 212) = 42 bits.

For this reason, one can not generate collisions for the 7-round and 8-round reduced
compression function with the paths from Figure 3. However, by using the slightly different
paths depicted in Figure 7, one can find semi-free-start collisions for the 6-round reduced
Grøstl-256 compression function with 264 = 264 operations and memory and for the 7-round
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Fig. 7. 6-round and 7-round differential paths for Grøstl-256

reduced case with 256+64 = 2120 operations and 264 memory. The particularity of those paths
is that enough freedom degrees are now left to the attacker in order to complete the final
birthday attack. The drawback is that one more r 7→ 1 transition is uncontrolled for the same
total number of rounds. Thus, this type of paths is more costly than the one from Figure 6.

4.4 ECHO

Since its structure is mimicking the AES, our results regarding the internal permutation of
ECHO are very similar, but the complexity has to adapted to the ECHO parameters. By using
the 8-round path from Figure 3, we can distinguish 8 rounds of the ECHO internal permuta-
tion from an ideal 2048-bit permutation with 2768 computations and 2512 memory (the ideal
permutation case would require 21024 computations).

Note that this distinguisher does not apply to the ECHO compression function because of
the shrink operation utilized after the internal permutation and the feedforward. As a matter
of fact the convolution effect of this operation over the output distribution of the permuta-
tion makes it considerably more difficult to mount a distinguishing attack on the compression
function of ECHO than on its underlying permutation. Moreover, since the Super-Sbox crypt-
analysis of the ECHO permutation presented above requires at least 2512 computations and
memory, it is not a well suited starting point for trying to mount a distinguisher or a collision
search attack against one of the compression functions of ECHO-256 or ECHO-512 (or one of
their single-pipe variants).

5 Conclusion

In this paper, we introduced the Super-Sbox cryptanalysis, which very often improves upon
the classical rebound or start-from-the-middle attacks both in terms of efficiency and sim-
plicity. This technique leads to improved cryptanalytic results for both Grøstl and ECHO,
two SHA-3 candidates, and to the best known-key distinguisher so far for the AES-128 block
cipher.
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