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Abstract. Hash function Skein is one of the 14 NIST SHA-3 second
round candidates. Threefish is a tweakable block cipher as the core of
Skein, defined with a 256-, 512-, and 1024-bit block size. The 512-bit
block size is the primary proposal of the authors. Skein had been up-
dated after it entered the second round; the only difference between
the original and the new version is the rotation constants. In this pa-
per we construct related-key boomerang distinguishers on round-reduced
Threefish-512 based on the new rotation constants using the method of
modular differential. With these distinguishers, we mount related-key
boomerang key recovery attacks on Threefish-512 reduced to 32, 33 and
34 rounds. The attack on 32-round Threefish-512 has time complexity
2195 with memory of 212 bytes. The attacks on Threefish-512 reduced to
33 and 34 rounds have time complexity of 2324.6 and 2474.4 encryptions
respectively, and both with negligible memory. The best key recovery
attack known before is proposed by Aumasson et al. Their attack, which
bases on the old rotation constants, is also a related-key boomerang at-
tack. For 32-round Threefish-512, their attack requires 2312 encryptions
and 271 bytes of memory.

Key words: Threefish-512, related-key boomerang attack, modular dif-
ferential.

1 Introduction

Cryptographic hash functions play a very important role in cryptology. With the
break of MD5 and SHA-1 [14][15], the situation of the hash functions becomes
alarming. Although no flaws of SHA-2 have been found, SHA-2 still has the same
structure and design principle as MD5 and SHA-1. To deal with the undesirable
situation, NIST held a Hash competition for a new hash standard(SHA-3). At
this time, 56 out of 64 submissions to the SHA-3 competition are publicly known
and available. There are 51 submissions in the first round and 14 submissions
have entered the second round. Skein [10] is one of the second-round candidates,
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Table 1. Existing Key Recovery Attacks on Round Reduced Threefish-512

Attack #rounds #keys time memory source

related-key key recovery* 25 2 2416.6 − [1]

related-key key recovery* 26 2 2507.8 − [1]

related-key boomerang key recovery* 32 4 2312 271 [1]

related-key boomerang key recovery 32 4 2195 212 Section 4

related-key boomerang key recovery 33 4 2324.6 − Section 5

related-key boomerang key recovery 34 4 2474.4 − Section 5

* results based on the old rotation constants

bases on the tweakable block cipher Threefish, which is defined with a 256-, 512-
, 1024-bit block size and 72, 72, 80 rounds respectively. After getting into the
second round, the authors changed the rotation constants [11]. In this paper, we
will focus on Threefish-512 with the new rotation constants.

In the paper [1] accepted by Asiacrypt 2009, Aumasson et al. presented sev-
eral results on Skein-512 and Threefish-512, all the results are based on the
original constants. They gave a known-related-key 35-round boomerang distin-
guisher on threefish-512, but they had only given a key recovery attack of 32
rounds. The difference they used is the XOR difference and they used the al-
gorithms in [9] to find the differentials of their attacks. Their attacks can be
applied for the new rotations as well, with new differential trails and different
probabilities.

We use another kind of difference, i.e. modular differential and use the
method of Wang et al. [13,14] to construct modular differential paths. Then
we use the modular differential to construct the boomerang distinguishers based
on the new rotation constants. The use of modular differential is essential as the
modular differential has advantages against the XOR differential for attacking
Threefish. With the modular differential, we can get differential trails with much
higher probability. Furthermore, we can get many trails with the same probabil-
ity, so we can get boomerang distinguishers with much higher probability. The
results are summarized in Table 1.

This paper is organized as follows. In Section 2.2, we give a brief description
of Threefish. The related-key boomerang attack is described in section 3. Section
4 and Section 5 give our main attacks. Finally, we give the conclusion in Section
6.

2 Preliminaries and Notations

In this section, we first list some notations used in this paper, then give brief
descriptions of Threefish.

2.1 Notations

– ∆x = x′ − x: the word difference
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– ∆xj−1 = x′j−1 − xj−1 = ±1: the signed bit-wise difference that is produced
by changing the j-th bit of x (for j = 1, . . . , 64). x[j], x[−j] are the resulting
values by only changing the j-th bit of the word x. x[j] is obtained by
changing the j-th bit of x from 0 to 1, and x[−j] is obtained by changing
the j-th bit of x from 1 to 0.

– x[±j1,±j2, . . . ,±jl]: the value by changing j1-th, j2-th, . . . , jl-th bits of x.
The sign ”+” (usually is omitted) means that the bit is changed from 0 to
1, and the sign ”−” means that the bit is changed from 1 to 0. We use it to
represent the signed bit-wise difference of ∆x.

– K1,K2,K3,K4: four related keys, all of them are 512 bits and composed of
eight 64-bit words

– ∆1
k,∆2

k: word-wise differences of the keys
– T1, T2, T3, T4: four related tweak values, all of them are 128 bits and com-

posed of two 64-bit words
– ∆1

t ,∆
2
t : word-wise differences of the tweaks

– α, β, γ, ζ, η: 512-bit differences, composed by eight 64-bit words
– kd: the (d + 1)-th word of a subkey (0 ≤ d ≤ 7)
– ks,d: the (d + 1)-th word of the (s + 1)-th subkey(0 ≤ s ≤ 18, 0 ≤ d ≤ 7)
– ks,d,j : the (j + 1)-th bit of the (d + 1)-th word of the (s + 1)-th subkey

(0 ≤ s ≤ 18, 0 ≤ d ≤ 7, 0 ≤ j ≤ 63)
– Pi: (i = 1, 2, 3, 4) 512-bit plaintext, composed by eight 64-bit words
– Ci: (i = 1, 2, 3, 4) 512-bit ciphertext, composed by eight 64-bit words
– pi,j : the (j + 1)-th word of Pi (j = 0, . . . , 7)
– ci,j : the (j + 1)-th word of Ci (j = 0, . . . , 7)
– MSB: the most significant bit

2.2 Brief Description of Threefish

The following notions are the same as those in [11]. The word size which Threefish
operates on is 64 bits. Let Nw denotes the number of words in the key and the
plaintext, Nr be the number of rounds. For Threefish-512, Nw = 8 and Nr = 72.
Let vd,i be the value of the ith word of the encryption state after d rounds. The
procedure of encryption is:

v0,i = pi for i = 0, . . . , Nw − 1,

where pi is a 64-bit word and (p0, . . . , pNw−1) is the 512-bit plaintext.
For each round, we have:

ed,i =
{

(vd,i + kd/4,i)mod 264 if d mod 4 = 0,
vd,i otherwise.

Where kd/4,i is the i-th word of the subkey added to the d-th round. For i =
0, . . . , Nw − 1, d = 0, . . . , Nr − 1. Then mixing and word permutations followed:

(fd,2j , fd,2j+1) := MIXd,j(ed,2j , ed,2j+1) for j = 0, . . . , Nw/2− 1,

vd+1,i := fd,π(i) for i = 0, . . . , Nw − 1.
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Where MIXd,j(x0, x1) = (x0 +x1, (x1 ≪ Rd,j)⊕ (x0 +x1)), with Rd,j a rotation
constant depending on d and j. The permutation π(·) can be found in Table 3
of [11] , and the rotation constant Rd,j can be referred to Table 4 of [11]. The
original rotation constants can be found in [10].

After Nr rounds, the ciphertext is given as follows:

ci := (vNr,i + kNr/4,i)mod 264 for i = 0, . . . , Nw − 1,

where (c0, . . . , cNw−1) is the 512-bit ciphertext.
The key schedule starts with the key K0, . . . , KNw−1 and the tweak t0, t1.

First we compute:

KNw := b264/3c ⊕
Nw−1⊕

i=0

Ki and t2 := t0 ⊕ t1.

Then the subkeys are derived:

ks,i := K(s+i) mod(Nw+1) for i = 0, . . . , Nw − 4
ks,i := K(s+i) mod(Nw+1) + ts mod 3 for i = Nw − 3
ks,i := K(s+i) mod(Nw+1) + t(s+1) mod 3 for i = Nw − 2
ks,i := K(s+i) mod(Nw+1) + s for i = Nw − 1

3 Related-key Boomerang Attack

The boomerang attack was first introduced by Wagner[12]. It is an adaptive
chosen plaintext and ciphertext attack. And it was further developed by Kelsey
et al.[8] into a chosen plaintext attack called the amplified boomerang attack,
then Biham et al. further developed it into the rectangle attack [3]. The related-
key boomerang attack was first published in [4]. Both of the attacks in this
paper and in [1] are related-key boomerang ones. One can extend the attacks
to amplified boomerang attacks, with more data and time complexity. In the
following, we only introduce the 4-related-key, adaptive chosen plaintext and
ciphertext scenario. We use the modular differential, in the rest of the paper the
addition and subtraction are modular addition and subtraction.

The boomerang attack bases on the differential attack [2], the idea is joining
two short differential characteristics with high probabilities in a quartet instead
of a long differential to get a distinguisher with more rounds and higher proba-
bility. Let E be a block cipher with block size of n, it is considered as a cascade
of two sub-ciphers: E = E1 ◦ E0. For the sub-cipher E0 there is a related-key
differential trail α → β with probability p, and for E1 there is a related-key
differential trail γ → ζ with probability q. E−1, E0−1

, E1−1 stand for the in-
verse of E, E0, E1 respectively. The related-key boomerang distinguisher can be
constructed as follows:

– Randomly choose a pair of plaintexts (P1, P2) such that P2 − P1 = α.
– Encrypt P1, P2 with two related keys K1 and K2 respectively to get C1 =

EK1(P1), C2 = EK2(P2).
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– Compute C3 = C1 + ζ, C4 = C2 + ζ. Decrypt C3, C4 with K3 and K4

respectively to get P3 = E−1
K3

(C3), P4 = E−1
K4

(C4).
– Check whether P4 − P3 = α.

We call a quartet (P1, P2, P3, P4), whose corresponding ciphertexts (C1, C2, C3,
C4), which passes the boomerang distinguisher a right quartet if it satisfies the
following conditions besides P2 − P1 = α and P4 − P3 = α,

E0
K2

(P2)− E0
K1

(P1) = β (1)

E1
K3

−1
(C3)− E1

K1

−1
(C1) = E1

K4

−1
(C4)− E1

K2

−1
(C2) = γ (2)

If a quartet satisfies the two equations above, we have E1
K4

−1(C4)−E1
K3

−1(C3) =
β. Since we have a differential α → β in E0 and P2 − P1 = α, the probability of
equation 1 is p. Similarly, the probability of equation 2 is q2, as the probabilities
of γ → ζ and γ ← ζ are the same. Finally, there is another probability of p to
get P4 − P3 = α from E1

K4

−1(C4) − E1
K3

−1(C3). As a result, the probability to
get a right quartet is p2q2. The quartets that pass the distinguisher but don’t
satisfy equations (1) (2) are called false quartets. It’s known that for a random
permutation, P4 − P3 = α with probability 2−n. Therefore, pq > 2−n/2 must
hold for the boomerang distinguisher to work.

Furthermore, the attack can be mounted for all possible β’s and γ’s simulta-
neously, so a right quartet can be gotten with probability (p̂q̂)2, where:

p̂ =
√∑

β

Pr2(α → β) and q̂ =
√∑

γ

Pr2(γ → ζ)

In our attacks, we get boomerang distinguishers with many possible β’s and γ’s.
More details about boomerang attack can be found in [12,3].

4 Improved Related-key Boomerang Key Recovery
Attack on 32-round Threefish-512

In this section, we describe the related-key boomerang distinguisher on Threesfish-
512 reduced to 32 rounds, which can be used to recovery the key of 32-round
Threesfish-512. In the rest of this paper, the least significant bit is the 1-st bit,
and the most significant bit is the 64-th bit.

4.1 The Modular Differential

Wang et al. [13,14] introduced the technique of modular differential, which can
be used to to find efficiently collisions on the main hash functions from the MD4
family. They considered the relationship among the modular differences, XOR
differences and the signed bit-wise differences. With the technique, we find a
good differential characteristic for 16-round Threesfish-512.

Here we introduce two theorems from [7] that are useful in our attack,
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Theorem 1 (from [7]) If x[±j1,±j2, . . . ,±j] is fixed, then the difference ∆x
and the XOR-difference are uniquely determined.

Theorem 2 (from [7]) x ∈ Zn chosen uniformly at random. If ∆x = 2k, 0 ≤
l ≤ n − k − 1, then Pr(x[k + l,−(k + l − 1), . . . ,−k]) = 2−(l+1), Pr(x[−(n −
1), . . . ,−(k)]) = 2−(n−k). If ∆x = −2k, 0 ≤ l ≤ n − k − 1, then Pr(x[−(k +
l), k + l − 1, . . . , k]) = 2−(l+1), Pr(x[n− 1, . . . , k]) = 2−(n−k).

The proofs of the two theorems are refered to [7]. The two theorems play an
important role in our attacks. As we know, there are only three operations in
Threefish: modular addition, XOR, and rotational shift. The operation between
the subkeys and intermediate states is modular addition. So we choose modular
subtraction as the measure of difference in the plaintext and the ciphertext.
Among the differential path, we fix the signed bit-wise differences of the two
operators before the XOR operation by means of Theorem 2. Then we can get
a signed bit-wise difference after the XOR operation with certain probability.

For example, in the MIX function, suppose we have y0[−11, 16] and x1[2, 4, 7].
After left shift of, say, 9 bits, x1 becomes (x1 ≪ 9)[11, 13, 16]. So for y1 = (x1 ≪
9)⊕ y0, the bit differences in bit 11 and 16 disappear with probability 1. y1[13]
if the 13-th bit of y0 is 0 and y1[−13] if the 13-th bit of y0 is 1, both of them
appear with probability 1/2. We call it that there is a bit condition on the 13-th
bit of y0.

4.2 The 32-round Boomerang Distinguisher with 4 Related Keys

The four related keys have the relationship below.

K2 = K1 + ∆1
k,K3 = K1 + ∆2

k,K4 = K1 + ∆1
k + ∆2

k.

The four related tweaks have the similar relationship:

T2 = T1 + ∆1
t , T3 = T1 + ∆2

t , T4 = T1 + ∆1
t + ∆2

t .

Then one can deduce

K4 = K2 + ∆2
k,K4 = K3 + ∆1

k, T4 = T2 + ∆2
t , T4 = T3 + ∆1

t .

In this attack, we make use of two 16-round differential trails, each one
of them is extended from a 8-round local collision by adding four addition
rounds on the top and the bottom. Set δ = 263, ∆1

k = (0, 0, 0, 0, 0, 0, 0, δ),
∆2

k = (0, 0, δ, δ, 0, 0, 0, 0), ∆1
t = (δ, 0), ∆2

t = (δ, δ).
According to the key schedule algorithm, we can get two subkey differential

trails Trail1 and Trail2. The differential trails are given in Table 2.
It is obvious that the probabilities of Trail1 and Trail2 are both 1.
We decompose the 32-round Threefish-512 into: E = E1 ◦ E0, where E0

contains the fisrt 16 rounds(including the subkey adding of 16-th round) and E1

contains round 17-32(excluding the subkey adding of the 16-th round, including
the subkey adding of the 32-th round).
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Table 2. Subkey Differential Trails for 32-round Distinguisher

Trail1 Trail2

s k0 k1 k2 k3 k4 k5 k6 k7 k0 k1 k2 k3 k4 k5 k6 k7

0 0 0 0 0 0 δ 0 δ 0 0 δ δ 0 δ δ 0

1 0 0 0 0 0 0 0 δ 0 δ δ 0 0 δ 0 0

2 0 0 0 0 0 0 0 0 δ δ 0 0 0 0 δ 0

3 0 0 0 0 δ 0 0 0 δ 0 0 0 0 δ δ 0

4 0 0 0 δ δ 0 δ 0 0 0 0 0 0 δ 0 δ

5 0 0 δ δ 0 δ δ 0 0 0 0 0 0 0 0 δ

6 0 δ δ 0 0 δ 0 0 0 0 0 0 0 0 0 0

7 δ δ 0 0 0 0 δ 0 0 0 0 0 δ 0 0 0

8 δ 0 0 0 0 δ δ 0 0 0 0 δ δ 0 δ 0

9 0 0 0 0 0 δ 0 δ 0 0 δ δ 0 δ δ 0

Using the related-key boomerang distinguisher in Section 3, we first find
related-key differential trails α → β and γ → ζ. Subkey differential Trail1

is compatible with α → β, and subkey differential Trail2 is compatible with
γ → ζ.

We set α = (1 + 28 + 212 + 218 + 230 + 236 + 240 + 254 + 258,−1− 28 − 230 −
236 − 258, 24 + 210 + 215 + 240 + 243 + 246,−24 − 210 − 240 − 243, 233 + 249 +
252,−233 − 249 + 263, 24 + 215 + 231,−215 − 231 + 263),

ζ = (29 + 242, 27, 29 + 238 + 248, 221 + 263, 263, 2 + 29 + 230 + 238 + 240 + 248 +
255, 263, 29 + 213 + 234 + 242).

For β and γ, we have many choices as we can choose the sign of difference.
One of the differential trails α → β is shown in Table 4 in the Appendix, and

the first column is the intermediate values. We make vi,j , ei,j , fi,j be the same
meaning as in Section 2.2. vi,j,k, ei,j,k, fi,j,k are the (k + 1)-th bits of vi,j , ei,j ,
fi,j (k = 0, . . . , 63). The second column gives the differences of column one. The
third column means the signed bit-wise differences of column two. It means that
any signed bit-wise difference with the difference in the second column is OK if
we don’t give a value in the third column. The sufficient conditions to make the
third column hold are given in Table 7.

We can get many other β’s by flipping certain bit differences of e14,5, e15,3,
e15,5, e15,7, v16,1, v16,3, v16,5 and v16,7. For example, in Table 4, we choose the
difference of e14,5 to be −29+263 instead of 29+263 by changing the bit condition
of e14,5,9 into 1. Then the difference of e15,2 becomes −29 + 263. We keep the
other differences of e15 unchanged, and the difference of v16,0 and e16,0 becomes
−29 + 242. Then we get a different β with the same probability. By similar
methods, we can get 218 β’s. The β’s can be formulated as:

β’s = (±29±242,±27,±29±238±248,±221 +263,±263,±2±29±230±238±
240 ± 248 ± 255, 263,±29 ± 213 ± 234 ± 242),

and all the differential trails α → β have the same probability.
Similarly, there are many γ’s by flipping the differences of e16,0, e16,2, e16,4

and e16,6. Then the signs of differences of ei,j ’s (i = 16, 17, 18, 19; j = 1, 3, 5, 7)
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should be decided to get the local collision after the 20-th round. So the γ’s can
be formulated as:

γ = (±1± 28 ± 212 ± 218 ± 230 ± 236 ± 240 ± 254 ± 258,∓1∓ 28 ∓ 230 ∓ 236 ∓
258,±24±210±215±240±243±246,∓24∓210∓240∓243,±233±249±252,∓233∓
249 + 263,±24 ± 215 ± 231,∓215 ∓ 231 + 263).

So we get 221 differential trails γ → ζ, all with the same probability. One of
the differential trails γ → ζ starts from the second row of Table 4, it has the
same probability as the differential α → β.

Notice that in the trail of Table 4, there is no conditions on the MSB. But it
will add one bit condition in the next round if the MSB shifts to anther position
and XORs with a bit that has no difference. The probabilities of the resulting
bit difference to be 1 or -1 are both 1/2 no matter what the sign of MSB is.

From Table 7 we know that Pr(α → β) = Pr(γ → ζ) = 2−57. So p̂q̂ =√
218 × 22×(−57)

√
221 × 22×(−57) = 294.5. Therefore, the probability of our related-

key boomerang distinguisher is 2−189.

4.3 The Key Recovery Attack on 32-round Threefish-512

We give the key recover attack on 32-round Threefish-512 exploiting the 32-round
boomerang distinguisher above.

1. For i = 1, ..., 2193

(a) Randomly choose plaintexts P i
1, compute P i

2 = P i
1 + α.

(b) Encrypt plaintext pair (P i
1, P

i
2) with K1,K2 resp. to get (Ci

1, C
i
2). Com-

pute Ci
3 = Ci

1 + ζ, Ci
4 = Ci

2 + ζ. Then decrypt (Ci
3, C

i
4) with K3,K4 resp.

to get (P i
3, P

i
4).

(c) Check whether P i
3 − P i

4 = α, if so, store the quartet (Ci
1, C

i
2, C

i
3, C

i
4).

2. (a) Guess 192 bits of the final subkey words k8,0, k8,2, k8,7 and subtract
them from the corresponding words of every elements of quartets stored
in Step 1. If there are at least 13 quartets, whose resulting words sat-
isfy the signed bit-wise differential, we store this 192-bit subkey triple
(k8,0, k8,2, k8,7).

(b) Then guess 192 bits of the final subkey words k8,1, k8,3, k8,5 and subtract
them from the corresponding words of every elements of quartets stored
in Step 1. If there are at least 13 quartets, whose resulting words sat-
isfy the signed bit-wise differential, we store this 192-bit subkey triple
(k8,1, k8,3, k8,5).

3. Search the remaining 128 bits of the final subkey by brute force.

Once we recover the subkey, the main key is known too.

Analysis of the Attack. In Step 1, we need 2194 encryptions and 2194 de-
cryptions.

Since the probability of the related-key boomerang distinguisher is 2−189,
there will be 2193 × 2−189 = 24 right quartets and 2193 × 2−512 = 2−319 false
quartets left. The complexity of Step 2 is 2197 one round encryptions, which
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equivalent to 2192 32-round encryptions. So the complexity is dominated by
Step 1.

In Step 2, (a) and (b) are executed independently. For (a), the probability
for a ciphertext pair to satisfy the signed bit-wise differential after subtracting
the round key is 2−9. Therefore, the probability for a quartet to satisfy the
conditions is 2−18. So the probability for a false subkey triple to be stored is
2−18×13 = 2−234, and a right subkey triple will be stored with probability 1. The
number of false subkey triples to be stored is 2192 × 2−234 = 2−42. For (b), the
situation is the same as (a).

The expected number of quartets passed Step 2 for a false key is 24×2−18 =
2−14. Let Y be the number of the quartets passed Step 2 for a false key, using the
Poisson distribution, we have Pr(Y ≥ 13) ≈ 0. The expected quartets passed
Step 2 for the right key is 16. Let Z be the number of the quartets passed Step
2 for the right key, Pr(Z ≥ 13) ≈ 0.81.

From the analysis above, the only memory needed is to store the 16 quartets,
about 212 bytes. The time complexity is 2195, the data complexity is 2194, the
success rate is 0.81.

5 Related-key Boomerang Key Recovery Attack on
Threefish-512 reduced to 33 and 34 rounds

Obviously, to extend the attack to 33 and 34 rounds, we have to construct 33-
and 34-round related-key boomerang distinguishers. We decompose the 33-round
Threefish-512 into: E′ = E′1 ◦ E′0. E′0 is the same as E0 in Section 4. E′1 is
extended from E1 by adding one more round to the bottom. After the last round,
a final subkey is added. The 34-round distinguisher adds two rounds in stead of
one round to the bottom of E1, and it has different subkey differential trails.
There is a main obstacle that if we want to extend the distinguisher to more
than 32 rounds we have to fix four words’ signed bit-wise differences before and
after the 32-th round’s subkey adding. But for a given unknown key it is unclear
what the probability for fixing both the differences actually is.

To solve this problem, we first assume that the key is chosen uniformly at
random and compute the probability for 33- and 34-round distinguishers, then
use the distinguishers to recover the keys using method different from that in
Section 4.

Note that we still have many β’s and γ’s to construct distinguishers of 33
and 34 rounds. Moreover, our differential trails from round 1 to round 16 for
33-round and 34-round distinguishers are both the same as those in the 32-
round distinguisher. And differential trails from round 16 to round 31 for 33-
round distinguisher are the same as those in the 32-round distinguisher. In the
34-round distinguisher, as we have different subkey differential trails, we have
different trails from round 16 to round 34. The subkey differential trail for 34-
round distinguisher are given in Table 3. We give the differential trail of round
32 and 33 for 33-round distinguisher in Table 5, one of the differential trails
from round 16 to round 34 for 34-round distinguisher is given in Table 6. The
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Table 3. Subkey Differential Trails for 34-round Distinguisher

Trail′1 Trail′2

s k0 k1 k2 k3 k4 k5 k6 k7 k0 k1 k2 k3 k4 k5 k6 k7

0 0 0 0 0 0 δ 0 δ 0 0 0 δ 0 δ δ 0

1 0 0 0 0 0 0 0 δ 0 0 δ 0 δ δ δ 0

2 0 0 0 0 0 0 0 0 0 δ 0 δ 0 δ 0 0

3 0 0 0 0 δ 0 0 0 δ 0 δ 0 0 0 δ 0

4 0 0 0 δ δ 0 δ 0 0 δ 0 0 0 δ δ 0

5 0 0 δ δ 0 δ δ 0 δ 0 0 0 0 δ 0 δ

6 0 δ δ 0 0 δ 0 0 0 0 0 0 0 0 0 0

7 δ δ 0 0 0 0 δ 0 0 0 0 0 0 0 δ δ

8 δ 0 0 0 0 δ δ 0 0 0 0 0 δ δ δ 0

9 0 0 0 0 0 δ 0 δ 0 0 0 δ 0 δ δ 0

columns in Table 5,6 have the same meaning as those in Table 4. The sufficient
conditions for the differential in Table 5 6 are given in Table 8 9. Table 5, 6, 8,
9 are given in the Appendix.

5.1 Related-key Boomerang Key Recovery Attack on 33-round
Threefish-512

We can know from Table 7 8 that the probability of the differential trails from
round 16 to round 33 is 2−118. So the probability of the 33-round distinguisher
is (218 × 22×(−57))× (221 × 22×(−118)) = 2−311.

We will use a method similar to that used in [5] [6] to recover the subkey
bits.

When recovering keys of 33-round Threefish-512, we will use the inverse di-
rection of the distinguisher, say we choose ciphertext pairs, decrypt them, add
differences of the first round to the plaintexts then encrypt them to test whether
there are quartets passing the boomerang distinguisher.

It is obvious that if the differences of a ciphertext pair after subtracting the
last subkey don’t satisfy the conditions of the boomerang distinguisher, then
this pair can’t follow the differential trails of the distinguisher. Therefore, we
can control some bits of the ciphertext pair to make certain one bit condition
of the last round difference depends completely on a corresponding last subkey
bit. In this way, we can recover 192 last subkey bits one by one. We will recover
the least significant 10 bits of k9,0, k9,1 and k9,6; the least significant 35 bits of
k9,3 and k9,4; the least significant 31 bits of k9,2; the least significant 39 bits of
k9,5; and the least significant 22 bits of k9,7.

We will depict how to recover the least significant 10 bits of k9,6 as an example
to illustrate the method. We make use of two of the bit conditions in v33,6,
i.e. v33,6[8, 10]. Instead of using randomly chosen ciphertexts (C1, C2) only with
C2−C1 matching the desired difference, we also fix the least significant 7 bits of
c1,6, c2,6 to be zero, the 8-th bit of c1,6, c2,6 to be 0, 1 resp. and the other bits of
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C1, C2 are chosen randomly. Now there is no carry in the 8-th bit, so only when
k9,6,7 = 0 can v33,6 satisfy the bit condition of v33,6[8].

Then we choose sufficiently many such cipherext pairs and make them go
through the boomerang distinguisher. If there are quartets passed, we know
that k9,6,7 = 0. Otherwise, we conclude that k9,6,7 = 1.

Now we are leaving to estimate the probability of making a mistake that
wrongly assuming k9,6,7 = 1 while in fact k9,6,7 = 0. Since our related-key
boomerang distinguisher has a probability of 2−311, if we make our decision
after t2311 tries, the error probability can be approximated by

(1− 2−311)t2311
= ((1− 2−311)2

311
)t ≈ (1/e)t

After recovering k9,6,7, we modify the choice of ciphertext pairs and recover key
bit k9,6,6.

– If k9,6,7 = 0, then we generate ciphertext pairs where the least significant 7
bits are 1000000. The 8-th bit of c1,6 is set to 0, the 8-th bit of c2,6 is set to
1. It must be k9,6,6 = 0 to satisfy the bit condition. So after t2311 tries, if
there are quartets passed, we conclude k9,6,6 = 0. Otherwise, k9,6,6 = 1.

– If k9,6,7 = 1, we generate ciphertext pairs where the the least significant 7
bits are 1000000. The 8-th bit of c1,6 is set to 0, the 8-th bit of c2,6 is set to
1. But in this case, we demand for a carry in the 8-th bit, so when k9,6,6 = 1
can the difference satisfy the bit condition.

Apply this procedure recursively to recover the least significant 8 bits of k9,6.
After that, a similar argument allows to recover k9,6,8 and k9,6,9. We use the
already known key bits, choose ciphertext pairs to control the bit differences
and carries. And then we make the decision. In some cases, one might have to
fix several bits in the ciphertext pair in order to get one bit difference, but the
idea is the same.

For the other subkey words we recover the bits with a very similar procedure.
In our attack, we choose t = 16.

Analysis of the Attack. For each bit to be recovered, we need at most
2t2311 = 2316 decryptions and the same number of encryptions. So the most
complexity for recovering one bit is 2317 encryptions. As we want to recover 192
bits, we need 192 ·2317 ≈ 2324.6 encryptions. The data complexity is 2323.6. After
recovering the 192 bits, we search the rest 320 bits by brute force. So the time
complexity is about 2324.6, memory complexity is negligible.

The success rate of one bit is 1 − (1/e)16, so the total success rate is (1 −
(1/e)16)192 ≈ 0.99998.

5.2 Related-key Boomerang Key Recovery Attack on 34-round
Threefish-512

From Table 6 we know that one of the differential trails from round 16 to round
34 has probability 2−200, and we have 233 such differential trails with the same
probability.
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As the differential trails from round 1 to round 16 are the same as those
in the 32-round distinguisher, the probability of the 34-round distinguisher is
(218 × 22×(−57))× (233 × 22×(−200))) = 2−463.

The method to attack the 34-round Threefish-512 is similar to that in Sec-
tion 5.1. And this time we can use either forward or backward direction of the
boomerang distinguisher, here we use the forward direction. Then we recover
42 bits of the first subkey by the means of Section 5.1. The attack needs about
2474.4 encryptions and negligible memory.

6 Conclusion

We use the modular differential instead of the XOR differential to construct
boomerang distinguishers of Threefish-512. We fixed the signed bit-wise differ-
ences to get our differential trails and mount an attack on 32-round Threefish-512
with complexity that is far lower than that in [1].

Then we extend the attack to 33 and 34 rounds with 33- and 34-round related-
key boomerang distinguishers, but with a different method. We fix some bits in
the ciphertext(plaintext) pairs and run the distinguisher sufficiently many times
to recover one key bit at a time.

Further work on the key recovery attack of Threefish-512 up to 35 rounds or
more comes with unaffordable cost by means of the methods above. One may
have to find some other ways to make further improvement.
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Table 4. One of the Differential Trails α → β

Intermediate
values Differences Signed Bit-wise Differences

v0,0 1 + 28 + 212 + 218 + 230 + 236 + 240

+254 + 258

v0,1 −1− 28 − 230 − 236 − 258

v0,2 24 + 210 + 215 + 240 + 243 + 246

v0,3 −24 − 210 − 240 − 243

v0,4 233 + 249 + 252

v0,5 −233 − 249 + 263

v0,6 24 + 215 + 231

v0,7 −215 − 231 + 263

e0,0 1 + 28 + 212 + 218 + 230 + 236 + 240

+254 + 258

e0,1 −1− 28 − 230 − 236 − 258 e0,1[−1,−9,−31,−37,−59]

e0,2 24 + 210 + 215 + 240 + 243 + 246

e0,3 −24 − 210 − 240 − 243 e0,3[−5,−11,−41,−44]

e0,4 233 + 249 + 252

e0,5 −233 − 249 e0,5[−34,−50]

e0,6 24 + 215 + 231

e0,7 −215 − 231 e0,7[−16,−32]

e1,0, e1,1 215 + 246, −246 e1,0[16, 47], e1,1[−47]

e1,2, e1,3 252, −252 e1,2[53], e1,3[−53]

e1,4, e1,5 24, −24 e1,4[5], e1,5[−5]

e1,6, e1,7 212 + 218 + 240 + 254, −212 − 240 e1,6[13, 19, 41, 55], e1,7[−13,−41]

e2,4, e2,5 218 + 254, −218 e2,4[19, 55], e2,5[−19]

e2,6, e2,7 215, −215 e2,6[16], e2,7[−16]

e3,2, e3,3 254, −254 e3,2[55], e3,3[−55]

v4,7 263 v4,7[∗64]

e4 ∼ v12 0

e12,4 263 e12,4[∗64]

e13,2, e13,5 263, 263 e13,2[∗64], e13,5[∗64]

e14,0, e14,2 263, 263 e14,0[∗64], e14,2[∗64]

e14,5, e14,7 29 + 263, 263 e14,5[10, ∗64], e14,7[∗64]

e15,0, e15,1 263, 263 e15,0[∗64], e15,1[∗64]

e15,2, e15,3 29 + 263, 242 + 263 e15,2[10, ∗64], e15,3[43, ∗64]

e15,4, e15,5 263, 29 + 238 + 248 + 263 e15,4[∗64], e15,5[10, 39, 49, ∗64]

e15,6, e15,7 263, 263 e15,6[∗64], e15,7[∗64]

v16,0, v16,1 29 + 242, 27 v16,0[10, 43], v16,1[8]

v16,2, v16,3 29 + 238 + 248, 221 v16,2[10, 39, 49], v16,3[22]

v16,4, v16,5 0, 2 + 29 + 230 + 238 + 240 + 248 + 255 v16,5[2, 10, 31, 39, 41, 49, 56]

v16,6, v16,7 0, 29 + 213 + 234 + 242 v16,7[10, 14, 35, 43]

e16,0, e16,1 29 + 242, 27

e16,2, e16,3 29 + 238 + 248, 221 + 263

e16,4, e16,5 263, 2 + 29 + 230 + 238 + 240 + 248 + 255

e16,6, e16,7 263, 29 + 213 + 234 + 242

* both positive and negative are OK
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Table 5. Differential Trail of Round 32 and 33 for 33-round Distinguisher

Intermediate Signed
values Differences Bit-wise Differences

v32,0, v32,1 29 + 242, 27 v32,0[10, 43], v32,1[8]

v32,2, v32,3 29 + 238 + 248, 221 v32,2[10,−39, 40, 49], v32,3[22]

v32,4, v32,5 0, 2 + 29 + 230 + 238 + 248 + 255 v32,5[2, 10, 31,−39,−40, 41, 49, 56]

v32,6, v32,7 0, 29 + 213 + 234 + 242 v32,7[10, 14, 35, 43]

e32,0, e32,1 29 + 242, 27 e32,1[8]

e32,2, e32,3 29 + 238 + 248, 221 + 263 e32,3[22, ∗64]

e32,4, e32,5 263, 2 + 29 + 230 + 238 + 248 + 255 e32,5[2, 10, 31, 39, 49, 56]

e32,6, e32,7 263, 29 + 213 + 234 + 242 e32,7[10, 14, 35, 43]

v33,0 29 + 221 + 238 + 248 + 263 v33,0[10, 22, 39, 49, ∗64]

v33,1 27 − 29 + 242 + 253 v33,1[8,−10, 43, 54]

v33,2 2 + 29 + 230 + 238 + 248 + 255 + 263 v33,2[2,−10, 11, 31, 39,−49, 50, 56, ∗64]

v33,3 8− 29 − 213 − 215 − 234 − 242 v33,3[8,−10,−14,−16,−35,−43,
−246 − 250 + 263 −47,−51, ∗64]

v33,4 29 + 213 + 234 + 242 + 263 v33,4[10, 14, 35, 43, ∗64]

v33,5 2 + 23 − 29 − 220 − 228 − 230 + 238 v33,5[2, 4,−10,−21,−29,−31, 39,
+248 + 255 − 257 + 263 49, 56,−58, ∗64]

v33,6 27 + 29 + 242 v33,6[8, 10, 43]

v33,7 −29 + 221 + 235 − 238 − 248 + 257 + 263 v33,7[−10, 22, 36,−39,−49, 58, ∗64]

e33,0 29 + 221 + 238 + 248 + 263

e33,1 27 − 29 + 242 + 253

e33,2 2 + 29 + 230 + 238 + 248 + 255

e33,3 8− 29 − 213 − 215 − 234 − 242

−246 − 250

e33,4 29 + 213 + 234 + 242 + 263

e33,5 2 + 23 − 29 − 220 − 228 − 230 + 238

+248 + 255 − 257

e33,6 27 + 29 + 242 + 263

e33,7 −29 + 221 + 235 − 238 − 248 + 257 + 263

* both positive and negative are OK
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Table 6: One of the Differential Trails of Round 16-34 for 34-round
Distinguisher

Intermed- Signed
iate values Differences Bit-wise Differences

e16,0 23 + 213 + 217 + 219 + 221 + 227 + 237

+239 + 245 + 249 + 255 + 258 + 259 + 263

e16,1 −23 − 213 − 217 − 219 − 239 − 245 e16,1[−4,−14,−18,−20,−40,−46,
−255 − 258 -56,-59]

e16,2 2 + 24 + 29 + 213 + 223 + 229 + 234 + 237

+240 + 249 + 262

e16,3 −24 − 213 − 223 − 229 − 237 − 249 − 262 e16,3[−5,−14,−24,−30,−38,−50,−63]

e16,4 24 + 27 + 252 + 258

e16,5 −24 − 252 − 258 e16,5[−5,−53,−59]

e16,6 213 + 223 + 234 + 240 + 250

e16,7 −234 − 240 − 250 e16,7[−35,−41,−51]

e17,0, e17,1 2 + 29 + 234 + 240, −2− 240 e17,0[2, 10, 35, 41], e17,1[−2,−41]

e17,2, e17,3 27, −27 e17,2[8], e17,3[−8]

e17,4, e17,5 213 + 223, −213 − 223 e17,4[14, 24], e17,5[−14,−24]

e17,6 221 + 227 + 237 + 249 + 259 + 263 e17,6[22, 28, 38, 50, 60, ∗64]

e17,7 −221 − 249 − 259 e17,7[−22,−50,−60]

e18,4, e18,5 227 + 237 + 263, −227 − 237 e18,4[28, 38, ∗64], e18,5[−28,−38]

e18,6, e18,7 29 + 234, −234 e18,6[10, 35], e18,7[−35]

e19,2, e19,3 263, 0 e19,2[∗64]

e19,4, e19,5 29, −29 e19,4[10], e19,5[−10]

v20,0, v20,5, v20,7 263, 263, 263 v20,0[∗64], v20,5[∗64], v20,7[∗64]

e20 ∼ v28 0

e28,6, e28,7 263, 263 e28,6[∗64], e28,7[∗64]

e29,2, e29,3 0, 223 e29,3[24]

e30,0, e30,1 223, 0 e30,0[24]

e30,6, e30,7 0, 29 + 223 e30,7[10, 24]

e31,0, e31,1 0, 223 e31,1[24]

e31,2, e31,3 0, 22 + 29 + 223 + 252 e31,3[3, 10, 24, 53]

e31,4, e31,5 29 + 223, 0 e31,4[10, 24]

e31,6, e31,7 223, 0 e31,6[24]

v32,0, v32,1 22 + 29 + 223 + 252, −223 + 231 v32,0[3, 10, 24, 53], v32,1[−24, 32]

v32,2, v32,3 29 + 223, −223 v32,2[10, 24], v32,3[−24]

v32,4, v32,5 223, 29 − 223 v32,4[24], v32,5[10,−24]

v32,6, v32,7 223, 22 + 29 + 237 + 244 + 252 + 258 v32,6[24], v32,7[3, 10, 38, 45, 53, 59]

e32,0, e32,1 22 + 29 + 223 + 252, −223 + 231 e32,1[−24, 32]

e32,2, e32,3 29 + 223, −223 e32,3[−24]

e32,4, e32,5 223 + 263, 29 − 223 + 263 e32,5[10,−24, ∗64]

e32,6, e32,7 223 + 263, 22 + 29 + 237 + 244 + 252 + 258 e32,7[3, 10, 38, 45, 53, 59]

e33,0 29 e33,0[10]

e33,1 22 + 25 − 29 + 213 + 231 + 252 e33,1[3, 6,−10, 14, 32, 53]
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e33,2 29 e33,2[10]

e33,3 22 + 29 − 210 + 217 + 223 + 225 + 231 + 237 e33,3[3, 10,−11, 18, 24, 26, 32, 38,
+239 + 244 + 246 + 252 + 258 + 263 40, 45, 47, 53, 59, ∗64]

e33,4 22 + 29 + 223 + 237 + 244 + 252 + 258 + 263 e33,4[3, 10, 24, 38, 45, 53, 59, ∗64]

e33,5 −29 + 218 + 228 + 242 e33,5[−10, 19, 29, 43]

e33,6 22 + 29 + 231 + 252 e33,6[3, 10, 32, 53]

e33,7 −29 + 259 e33,7[−10, 60]

v34,0 22 + 217 + 223 + 225 + 231 + 237 + 239 v34,0[3, 18, 24, 26, 32, 38, 40,
+244 + 246 + 252 + 258 + 263 45, 47, 53, 59, ∗64]

v34,1 1 + 22 + 25 + 213 + 221 + 231 + 235 + 238 v34,1[1, 3, 6, 14, 22, 32, 36, 39,
+242 + 246 + 252 43, 47, 53]

v34,2 22 + 218 + 223 + 228 + 237 + 242 + 244 + 252 v34,2[3, 19, 24, 29, 38, 43, 45, 53,
+258 + 263 59, ∗64]

v34,3 22 + 231 + 237 + 251 + 252 + 259 v34,3[3, 32, 38, 52, 53, 60]

v34,4 22 + 231 + 252 + 259 v34,4[3, 32, 53, 60]

v34,5 22 + 218 + 228 + 232 + 237 + 244 + 252 v34,5[3, 19, 29, 33, 38, 45, 53,
+256 + 258 + 263 57, 59, ∗64]

v34,6 22 + 25 + 213 + 231 + 252 v34,6[3, 6, 14, 32, 53]

v34,7 1 + 27 + 29 + 215 + 217 + 221 + 223 v34,7[1, 8, 10, 16, 18, 22, 24,
+225 + 226 + 229 + 231 + 236 26, 27, 30, 32, 37,
+239 + 246 + 250 + 263 40, 47, 51, ∗64]

e34,0 22 + 217 + 223 + 225 + 231 + 237 + 239

+244 + 246 + 252 + 258 + 263

e34,1 1 + 22 + 25 + 213 + 221 + 231 + 235 + 238

+242 + 246 + 252

e34,2 22 + 218 + 223 + 228 + 237 + 242 + 244 + 252

+258

e34,3 22 + 231 + 237 + 251 + 252 + 259 + 263

e34,4 22 + 231 + 252 + 259

e34,5 22 + 218 + 228 + 232 + 237 + 244 + 252

+256 + 258

e34,6 22 + 25 + 213 + 231 + 252 + 263

e34,7 1 + 27 + 29 + 215 + 217 + 221 + 223

+225 + 226 + 229 + 231 + 236

+239 + 246 + 250 + 263

* both positive and negative are OK
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Table 7. Sufficient Conditions of the Trail in Table 4

e0,5,33 = 1; e0,5,49 = 1; e0,3,4 = 1; e0,3,10 = 1; e0,3,40 = 1; e0,3,43 = 1;
e0,1,0 = 1; e0,1,8 = 1; e0,1,30 = 1; e0,1,36 = 1; e0,1,58 = 1;
e0,7,15 = 1; e0,7,31 = 1

e1,4,4 = 0; e1,2,4 = 0; e1,2,52 = 0; e1,0,46 = 0; e1,0,15 = 0; e1,6,12 = 0;
e1,6,18 = 0; e1,6,40 = 0; e1,6,54 = 0; e1,4,52 = 0; e1,6,46 = 0; e1,0,12 = 0;
e1,0,40 = 0

e2,4,15 = 0; e2,4,54 = 0; e2,6,15 = 0; e2,2,18 = 0; e2,0,15 = 0

e3,2,54 = 0; e3,4,54 = 0

e14,5,9 = 0

e15,5,38 = 0; e15,2,46 = 0; e14,5,48 = 0; e15,2,9 = 0; e15,3,42 = 0

v16,0,9 = 0; v16,0,43 = 0; v16,2,9 = 0; v16,2,38 = 0; v16,2,48 = 0;
v16,1,7 = 0; v16,7,34 = 0; v16,0,13 = 0; e15,3,38 = 0; e15,3,7 = 0;
e15,5,1 = 0; e15,5,30 = 0; e15,5,40 = 0; v16,5,55 = 0; v16,2,1 = 0;
v16,2,30 = 0; v16,2,40 = 0; v16,3,21 = 0

Table 8. Sufficient Conditions of the Trail in Table 5

v32,0,9 = 0; v32,0,43 = 0; v32,2,9 = 0; v32,2,38 = 1; v32,2,39 = 0; v32,2,48 = 0;
v32,1,7 = 0; v32,7,34 = 0; v32,0,13 = 0; e31,3,38 = 0; e31,3,7 = 0;
e31,5,17 = 0; e31,5,46 = 0; e31,5,47 = 1; e31,5,56 = 0; v32,5,55 = 0; v32,2,1 = 0;
v32,2,30 = 0; v32,2,40 = 0; v32,3,21 = 0

e32,1,7 = 0; e32,7,9 = 0; e32,7,13 = 0; e32,7,34 = 0; e32,7,42 = 0; e32,5,1 = 0;
e32,5,9 = 0; e32,5,30 = 0; e32,5,38 = 0; e32,5,48 = 0; e32,5,55 = 0;e32,3,21 = 0

v33,6,7 = 0; v33,6,9 = 0; v33,6,42 = 0; e32,1,25 = 0; e32,1,27 = 1; e32,1,60 = 0; v32,6,53 = 0;
v33,0,9 = 0; v33,0,21 = 0; v33,0,38 = 0; v33,0,48 = 0; e32,3,37 = 1; v33,0,57 = 0; v33,0,35 = 0;
e32,3,2 = 1; e32,3,12 = 1; e32,3,49 = 1; v33,2,1 = 0; v33,2,9 = 1; v33,2,10 = 0; v33,2,30 = 0;
v33,2,38 = 0; v33,2,48 = 1; v33,2,49 = 0; v33,2,55 = 0; e32,5,49 = 1; v33,2,3 = 0;
e32,5,54 = 0; v33,2,20 = 1; v33,2,28 = 1; e32,5,11 = 1; e32,5,19 = 0; e32,5,29 = 1;
e32,5,36 = 0; v33,2,57 = 1; v33,4,9 = 0; v33,4,13 = 0; v33,4,34 = 0; v33,4,42 = 0;
v33,4,7 = 0; e32,7,36 = 1; e32,7,40 = 1; v33,4,15 = 1; e32,7,61 = 1; e32,7,5 = 1;
v33,4,46 = 1; v33,4,50 = 1
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Table 9. Sufficient Conditions of the Trail in Table 6

e16,1,3 = 1; e16,1,13 = 1; e16,1,17 = 1; e16,1,19 = 1; e16,1,39 = 1; e16,1,45 = 1;
e16,1,55 = 1; e16,1,58 = 1; e16,3,4 = 1; e16,3,13 = 1; e16,3,23 = 1; e16,3,29 = 1;
e16,3,37 = 1; e16,3,49 = 1; e16,3,62 = 1; e16,5,4 = 1; e16,5,52 = 1; e16,5,58 = 1;
e16,7,34 = 1; e16,7,40 = 1; e16,7,50 = 1

e17,0,1 = 0; e17,0,9 = 0; e17,0,34 = 0; e17,0,40 = 0; e17,2,7 = 0; e17,4,13 = 0;
e17,4,23 = 0; e17,6,21 = 0; e17,6,27 = 0; e17,6,37 = 0; e17,6,49 = 0; e17,6,59 = 0;
e17,6,1 = 0; e17,6,40 = 0; e17,4,7 = 0; e17,2,13 = 0; e17,2,23 = 0;
e17,0,21 = 0; e17,0,49 = 0; e17,0,59 = 0

e18,4,27 = 0; e18,4,37 = 0; e18,6,9 = 0; e18,6,34 = 0; e18,2,27 = 0;
e18,2,37 = 0; e18,0,34 = 0

e19,4,9 = 0; e19,2,9 = 0

e29,3,23 = 0

e30,0,23 = 0; e30,0,9 = 0; e29,3,37 = 0

e31,4,9 = 0; e31,4,23 = 0; e31,6,23 = 0; e30,1,62 = 0;
e31,4,2 = 0; e30,7,30 = 0; e30,7,44 = 0; e31,4,52 = 0

v32,0,2 = 0; v32,0,9 = 0; v32,0,23 = 0; v32,0,52 = 0; v32,2,9 = 0; v32,2,23 = 0;
v32,4,23 = 0; v32,6,23 = 0; e31,1,15 = 1; v32,6,31 = 0; e31,7,1 = 1; e31,5,17 = 0;
e31,5,31 = 1; e31,3,31 = 0; e31,3,38 = 0; v32,0,37 = 0; v32,0,44 = 0; e31,3,17 = 0;
v32,0,58 = 0

e32,1,23 = 1; e32,1,31 = 0; e32,3,23 = 1; e32,5,9 = 0; e32,5,23 = 1;
e32,7,2 = 0; e32,7,9 = 0; e32,7,37 = 0; e32,7,44 = 0; e32,7,52 = 0; e32,7,58 = 0;

e33,0,9 = 0; e33,2,9 = 0; e33,4,2 = 0; e33,4,9 = 0; e33,4,23 = 0; e33,4,37 = 0;
e33,4,44 = 0; e33,4,52 = 0; e33,4,58 = 0; e33,6,2 = 0; e33,6,9 = 0; e33,6,31 = 0;
e33,6,52 = 0; e32,1,20 = 0; e33,6,5 = 1; e32,1,27 = 1; e33,6,13 = 0; e32,1,49 = 0;
e32,1,6 = 0; e32,7,29 = 0; e32,7,36 = 0; e33,4,10 = 1; e33,4,17 = 0; e32,7,50 = 0;
e33,4,25 = 0; e33,4,31 = 0; e32,7,0 = 0; e33,4,39 = 0; e32,7,7 = 0; e33,4,46 = 0;
e32,7,15 = 0; e32,7,21 = 0; e32,5,54 = 1; e33,5,18 = 0; e33,2,28 = 0; e33,2,42 = 1;
e32,3,37 = 1; e33,0,59 = 1;

v34,0,2 = 0; v34,0,17 = 0; v34,0,23 = 0; v34,0,25 = 0; v34,0,31 = 0; v34,0,37 = 0;
v34,0,39 = 0; v34,0,44 = 0; v34,0,46 = 0; v34,0,52 = 0; v34,0,58 = 0; v34,2,2 = 0;
v34,2,18 = 0; v34,2,23 = 0; v34,2,28 = 0; v34,2,37 = 0; v34,2,42 = 0; v34,2,44 = 0;
v34,2,52 = 0; v34,2,58 = 0; v34,4,2 = 0; v34,4,31 = 0; v34,4,52 = 0; v34,4,59 = 0;
v34,6,2 = 0; v34,6,5 = 0; v34,6,13 = 0; v34,6,31 = 0; v34,6,52 = 0; v34,6,0 = 0;
e33,1,33 = 0; e33,1,36 = 0; e33,1,44 = 0; v34,6,21 = 0; e33,1,62 = 0; v34,6,35 = 0;
v34,6,38 = 0; v34,6,42 = 1; v34,6,46 = 0; e33,1,19 = 0; e33,7,24 = 0; e33,7,53 = 0;
v34,4,37 = 0; v34,4,51 = 1; e33,7,10 = 0; e33,7,17 = 0; e33,5,52 = 0; e33,5,4 = 0;
e33,5,14 = 0; v34,2,32 = 0; e33,5,23 = 0; e33,5,30 = 0; e33,5,38 = 0; v34,2,56 = 0;
e33,5,44 = 0; v34,0,0 = 0; v34,0,7 = 0; v34,0,9 = 0; v34,0,15 = 0; e33,3,54 = 0;
v34,0,21 = 0; e33,3,60 = 0; e33,3,62 = 0; v34,7,26 = 0; v34,0,29 = 0; e33,3,4 = 0;
v34,0,36 = 0; e33,3,12 = 0; e33,3,19 = 0; v34,0,50 = 0;


