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Abstract. Typical security models used for proving security of deployed cryptographic primitives do
not allow adversaries to rewind or reset honest parties to an earlier state. Thus, it is common to see
cryptographic protocols rely on the assumption that fresh random numbers can be continually generated.
In this paper, we argue that because of the growing popularity of virtual machines and, specifically, their
state snapshot and revert features, the security of cryptographic protocols proven under these assumptions
is called into question. We focus on public-key encryption security in a setting where resetting is possible
and random numbers might be reused. We show that existing schemes and security models are insufficient
in this setting. We then provide new formal security models and show that making a simple and efficient
modification to any existing PKE scheme gives us security under our new models.

1 Introduction

In the past few decades, cryptographers have modeled numerous cryptographic primitives and proto-
cols in order to argue about their security. Because of this, we have strong tools to securely execute
just about any desirable task. These tools include symmetric and public-key encryption, message au-
thentication codes, digital signatures, secure key exchange protocols, and more. Moreover, the security
guarantees are provable by reductions from problems conjectured to be difficult.

A typical security model has an adversary playing a game against an environment which may
contain multiple honest parties. As the adversary interacts with the environment and time progresses,
the states of the honest parties continually change to reflect events that take place. For example, if an
adversary is executing an interactive protocol with an honest party (call her Alice) and the adversary
sends a message to Alice, then Alice’s next message will be a function of her current state, which will
itself be a function of the past messages she has received from the adversary. This essentially means
that an adversary cannot ‘take back’ messages and try others, effectively rewinding the protocol and
resetting Alice’s state.

Modeling security of protocols in this way is natural because it fits our understanding of how the
world works. Time travel, as far as we know, is impossible, and the complex states of our computers
are constantly changing every time we click a mouse or receive a packet from the network. Thus, it
seems perfectly reasonable that protocols proven secure in this model will continue to be secure in the
forseable future. However, as we argue in this paper, this may not be the case because of the increasing
popularity of virtual machines.

Virtual Machines. In the past few years, it has become common for systems to run on virtual
machines. In short, a virtual machine (VM) is software that emulates a real machine. A VM consists
of a virtual machine monitor (or hypervisor) which can emulate multiple virtual computers that can
have varying instruction sets and run multiple operating systems. The VM monitor will then share the
physical machine’s resources among the virtual machines, translating machine instructions and acting
as a simulator for the underlying operating systems.

It is especially common for servers to run on virtual machines. This will likely become even more
typical in the future given the rising popularity of cloud computing services like Amazon’s Elastic



Compute Cloud (EC2) [1]. In this service, a user buys some compute time and receives access to a
virtual machine on one of Amazon’s servers. Within that VM, the user can run a fully functional OS
and, in particular, run a web server for his or her business.

Thus far, virtual machines have often been seen as being beneficial to security. Because VMs
provide a type of sandbox, they have been used to test potentially malicious code [13] and isolate web
browsers from the rest of the system to mitigate the effects of browser vulnerabilities [14]. VMs have
also been used to more easily create large honeypots [21]. Despite this, the focus of this paper is on
how VMs can be detrimental to security. The reason, which also happens to be one of the most useful
features of VMs, is the ability to take state snapshots.

State Snapshots. Virtual machines allow a user to take a snapshot of the current system state.
This snapshot contains the contents of all the virtual machine’s disks and the contents in memory
at the time of the snapshot. At a later point in time, the VM can be reverted back to this previous
state and restarted. To see why this may be useful, consider the following scenario. Alice, a system
administrator, is running an important web server on a virtual machine, and at some point in time
there is a crash or some other major problem. Instead of spending time diagnosing the problem and
getting the system working again, Alice can instead revert the VM back to a ‘good state’ for which
she has a snapshot. In other words, Alice takes a snapshot of the system when things are running
smoothly, and then reverts back to this state whenever things go wrong. In this scenario, the server
has effectively traveled back in time; program variables and other state that may have been in memory
are now active again. Thus, if an adversary is attacking Alice’s server and can make it crash (using,
for example, a DoS attack), he essentially has the ability to rewind the server.

This brings up some important questions. What happens to our supposedly secure cryptographic
tools in a setting with resets? Are they still secure? Researchers have examined these questions before
for zero-knowledge [12, 20, 3] and identification protocols [8], where the motivation was smart cards
that cannot keep internal state. However, the growing popularity of virtual machines means we need
to ask these questions for a wider range of cryptographic primitives.

To see why reset attacks can have negative effects on cryptographic protocols, consider a com-
mon assumption in cryptography: it is possible to contiually generate fresh and unbiased random
numbers. This is an assumption made in nearly every cryptographic protocol. It is, however, consid-
ered reasonable since pseudorandom number generators (PRNGs) are well-studied both in theory and
practice (c.f., [19, 16]). In deployed systems, PRNGs are often implemented in software and consist of
numerous state variables and arrays that are occasionally seeded with entropy and used to generate
pseudorandom numbers. For example, in OpenSSL [2], the software PRNG has a 1023-byte array
(entropy pool) that is supposed to contain high entropy data from a variety of sources, as well as some
variables with counters and other important state. At a high level, when random bytes are requested,
data from the entropy pool and information in the state variables1 is continually mixed together using
a cryptographic hash function and the result is the output of the PRNG. However, these arrays and
variables will be captured by a state snapshot since they reside in memory. If the machine is later reset,
the PRNG could output a string of “random” bytes that it already outputted sometime in the past
before the machine was reset. These un-fresh coins might then be used in a cryptographic operation
with potentially disastrous consequences.

Our Results. In this paper, we focus on one particular primitive, public-key encryption, and make
the following contributions. First, we provide formal security definitions to model public-key encryption
security in the face of resetting attacks. Second, we show that existing PKE schemes and their common
security notions IND-CPA [17] and IND-CCA [22] are insufficient when such resetting attacks are

1 This might also include other information like the process ID of the process requesting the random bytes.



possible. Third, we show that, perhaps somewhat surprisingly, a small and efficient modification can
be made to any existing PKE scheme secure under the typical notions (e.g., IND-CCA) in order
to ensure security against resetting attacks. Our modification does not rely on random oracles [10],
requires no extra assumptions, and is very efficient.

A Closer Look. The generally accepted “right” notion of security for public-key encryption is
indistinguishability under chosen-ciphertext attack (IND-CCA). Though this is a strong notion of
security, it fails to suffice in a setting where randomness may be reused. At a high level, the reason
is that for many schemes, given a ciphertext and the corresponding plaintext it is often possible to
learn some of the coins (or some useful function of the coins) used to encrypt the message. If another
ciphertext is generated using those same coins, it may be possible for an adversary to learn parts of the
underlying plaintext. More specifically, consider an encryption scheme that applies a trapdoor one-way
function to a random value r and then concatenates H(r) ⊕m and G(r ‖m). This scheme is known
to be IND-CCA secure if H and G are modeled as random oracles [10]. Now, if another message m′ is
encrypted using the same coins r, the message will be xor’d with the same pad H(r), and anyone who
knows m will also know the pad and be able to learn m′.

Since IND-CCA is insufficient for our setting, we develop a new notion of security for PKE which
we call IND-RA for indistinguishability under resetting attack. Our security notion is similar to IND-
CCA except that we allow the adversary to continually see encryptions under the same coins, as if
the adversary is continually resetting a server and observing new encryptions. An important aspect
of our security definition is that we allow the adversary to see encryptions under public keys chosen
by the adversary and using coins that are not fresh. In particular, the adversary could see a message
encrypted under a public key for which it knows the secret key, allowing it to decrypt the ciphertext;
because of this, it is important that in the process of decryption not too much information is leaked
about the coins used to create the ciphertext, meaning that randomness-recovering encryption cannot
meet our security definition. Allowing this power in the definition is important because it models the
possibility that a machine sends an encrypted message to some user Bob, is reset by the adversary,
and is then forced to encrypt a message to the adversary using the same coins. We want to ensure
that even if this happens, the adversary does not learn any information about Bob’s message. This is
a strong security requirement, but nonetheless, we are able to meet it.

We note that though our security notion provides seemingly the best possible security guarantees
for PKE under reset attacks, it may still be insufficient for some applications. This is due to an inherent
limitation in a model that allows repeated randomness: if the same message is encrypted twice to the
same public key using the same randomness, the resulting ciphertexts will be identical. Thus, plaintext
equality may be leaked to an adversary, which could be problematic in some applications. Therefore,
care should be taken when deploying applications using PKE on virtual machines.

Previous Work. Resettability has been considered in cryptography in the setting of zero-knowledge
proof systems [12, 20, 3], the related area of identification protocols [8], and multiparty computa-
tion [18]. Zero-knowledge proofs allow a prover to prove an assertion to a verifier without revealing
any information other than whether or not the assertion is true. Proving the soundness2 and zero-
knowledge properties in a setting where provers and verifiers can rewind each other is a difficult and
interesting theoretical question. To see why, consider the notion of resettable-soundness in the stan-
dard model, considered by [3]. Nearly all known zero-knowledge proofs are designed specifically so that
the ability to rewind the verifier allows one to easily convince it of any statement; this is useful for
proving the zero-knowledge property. Yet, if we then give the prover that same ability to rewind the

2 Informally, an interactive protocol is sound if it is difficult for a malicious prover to convince the verifier that a false
statement is true.



verifier, it becomes problematic to prove soundness. This problem has also been studied extensively
in other models (c.f., [20]). However, to the best of our knowledge, no one has previously looked at
practical and deployed cryptographic primitives like public-key encryption in such a setting, nor has
anyone realized the importance of the question given the rising popularity of virtual machines.

In the symmetric setting, Rogaway and Shrimpton [23] investigate secure key-wrap and discuss
how their techniques can apply to handle IV misuse, where IVs, which should always be fresh, are
reused (possibly because of a faulty implementation). Since IVs are typically counter variables or fresh
random numbers, investigating their reuse is similar to investigating the effect of a state reset.

Our work is also loosely related to public-key encryption with randomness re-use [4] and stateful
public-key encryption [9]. However, both are concerned with making PKE schemes more efficient by
reusing some, but not all random coins and still require encrypting parties to have access to fresh and
unbiased randomness.

Bellare et al. recently introduced hedged public-key encryption [6]. At a high level, they present
encryption schemes that are IND-CPA secure when the randomness used to encrypt is good, while
meeting a weaker notion they call IND-CDA when the randomness is bad but the message/randomness
pairs still have high entropy. Interestingly, while their goal is similar to ours and reused randomness
could be considered “bad” randomness, their definitions do not capture the resettability setting.

Paper Organization. In Section 2, we discuss important definitions and notation that will be needed
in the rest of the paper. In Section 3, we define our new notion of security for public-key encryption
that models resetting attacks. In Section 4, we give constructions for schemes that meet our new notion
of security.

2 Preliminaries

Notation. For an integer n ∈ N, let [n] denote the set {1, . . . , n}. Throughout the entire paper, k ∈ N
denotes the security parameter and 1k its unary encoding. Unless stated otherwise, all algorithms in
this paper are randomized. We use “PT” for polynomial-time.

Our security definitions use the code-based games from [11]. Security definitions are formulated
by considering a game played with an adversary. Such a game consists of procedures Initialize and
Finalize as well as procedures for handling oracle calls the adversary can make. At the start of the
game, Initialize is run and its output is given to the adversary. The adversary then runs and may make
oracle calls that are answered by the corresponding game procedures. When the adversary halts with
output w, that becomes the input to the Finalize procedure and the resulting output of Finalize is
called the output of the game. We denote by GA ⇒ w the event that game G, when run with adversary
A, outputs w. Sometimes we let GA denote the event GA ⇒ true.

Public-key encryption. A public-key encryption (PKE) scheme AE = (K, E ,D) is a triple of PT
algorithms. The randomized key generation algorithm K, on input the security parameter 1k, outputs
a pair of keys (pk, sk). The randomized encryption algorithm E , on input public key pk and message
m ∈ {0, 1}η(k), outputs a ciphertext c. We let ρ(k) denote the number of coins E uses on messages of
length η(k). Finally, the deterministic decryption algorithm D, on input a secret key sk and ciphertext
c, outputs either ⊥ in the case of failure, or m ∈ {0, 1}η(k). We require that for all k ∈ N, all (pk, sk)
outputted by K(1k) and for all {0, 1}η(k), it is true that D(sk, E(pk,m)) = m.

We say the IND-advantage of an adversary A is

Advind
AE,A(k) = 2 · Pr

[
INDA

AE(k)⇒ true
]
− 1 ,

where the security game is found in Figure 1. To differentiate between chosen-plaintext and chosen-
ciphertext attacks, we consider adversary classes. Let ACPA

ind be the class of all PT ind-adversaries



making 1 LR query and 0 Dec queries.3 Let ACCA
ind be the class of all PT ind-adversaries making 1

LR query and any number of Dec queries.
We let IND-XXX be the set of all PKE schemes AE such that Advind

AE,A(k) is a negligible function
in k for all A ∈ AXXX

ind , for XXX ∈ {CPA,CCA}.

proc. Initialize(k):

b←$ {0, 1} ; (pk, sk)←$K(1k)
S ← ∅
Ret pk

proc. Dec(c):

If c ∈ S then return ⊥
Else return D(sk, c)

proc. LR(m0, m1): Game INDAE(k)

c←$ E(pk, mb)
S ← S ∪ {c}
Return c

proc. Finalize(b′):

Ret (b = b′)

Fig. 1. Security game for IND security.

Pseudorandom Functions. Let Fun : Keysk ×Domk → Rngk be a family of functions indexed by a
security parameter k. We say the PRF-advantage of a prf-adversary D is

Advprf
Fun,D(k) = Pr

[
REALDFun(k)⇒ 1

]
−Pr

[
RANDD

Fun(k)⇒ 1
]
,

where the security games can be found in Figure 2. While Keysk, Domk, and Rngk can be arbitrary
finite sets, in this paper we will always consider families of functions with Keysk = {0, 1}`(k), Domk =
{0, 1}n(k), and Rngk = {0, 1}t(k) for some polynomials `(·), n(·), and t(·).

proc. Initialize(k):

K←$ Keysk
Ret 1k

proc. Fun(x):

Return Fun(K, x)

Game REALF (k)

proc. Finalize(a):

Ret a

proc. Initialize(k):

FunTab← ∅
Ret 1k

proc. Fun(x):

If FunTab[x] = ⊥ then
FunTab[x]←$ Rngk

Return FunTab[x]

Game RANDF (k)

proc. Finalize(a):

Ret a

Fig. 2. Security games for pseudorandom function security.

3 Security Definition

Let AE = (K, E ,D) be a PKE scheme. We say the RA-advantage of an adversary A is

Advra
AE,A(k) = 2 · Pr

[
RAA
AE(k)⇒ true

]
− 1 .

The security game RA can be found in Figure 3. In the game, the adversary is given a target public
key pk∗ and can make queries to three oracles. It can query the LR oracle with index j and messages
3 It is well known that allowing multiple LR queries is equivalent by a standard hybrid argument.



m0 and m1. In response, the adversary receives the encryption of mb under the target public key pk∗

using the coins indexed by j. The adversary is also given an Enc oracle which takes as input a public
key pk, index j, and message m. The oracle returns the encryption of m under public key pk using
the coins indexed by j. It is important that the adversary can choose the public key pk. In particular,
the adversary can query Enc with a public key for which it knows the corresponding secret key. With
both the LR and Enc oracles, an adversary can continually see messages encrypted under the same
coins by repeatedly querying the same index. This is how we model resetting attacks. Of course, the
adversary can also see messages encrypted under other coins by querying other indices. Finally, the
adversary can also query a Dec oracle with a ciphertext and receive its decryption.

proc. Initialize(k):

b←$ {0, 1} ; (pk∗, sk∗)←$K(1k)
CoinTab← ∅ ; S ← ∅
Ret pk∗

proc. Enc(pk, j, m):

If CoinTab[j] = ⊥ then
CoinTab[j]←$ {0, 1}ρ(k)

rj ← CoinTab[j]
c← E(pk, m; rj)
Return c

proc. LR(j, m0, m1): Game RAAE(k)

If CoinTab[j] = ⊥ then
CoinTab[j]←$ {0, 1}ρ(k)

rj ← CoinTab[j]
c← E(pk∗, mb; rj)
S ← S ∪ {c}
Return c

proc. Dec(c):

If c ∈ S then return ⊥
Else return D(sk∗, c)

proc. Finalize(b′):

Ret (b = b′)

Fig. 3. Security game for defining security against resetting attacks.

Equality Patterns. As we mentioned above, if there are no restrictions on the LR queries that an
ra-adversary A can make, then A can trivially win the game. To see this, consider an ra-adversary
that first queries Enc(1,m) and then queries LR(1,m,m′), where m,m′ ∈ {0, 1}η and m 6= m′. The
Enc query will give the adversary the encryption of m under coins r1, and the LR query will give the
adversary either the encryption of the same message m under the same coins r1, or it will give the
adversary the encryption of m′ under coins r1. Clearly the adversary only needs to compare the two
oracle answers and guess 0 if they are the same and guess 1 otherwise.

This attack is an inherent limitation of the resettable PKE setting, since for fixed coins encryp-
tion becomes a deterministic function. (It is also similar to limitions in the setting of deterministic
PKE [5].) Nevertheless, as we said earlier, we are interested in achieving the best security possible in
this situation. Therefore, we consider security against all adversaries “that don’t trivially win”. This
informal notion is captured formally by the following definition:

Let A be any adversary that queries I different indices to its LR and Enc oracles and makes qi
queries to the LR oracle with index i. Let Ei be the set of all messages m such that A makes query
Enc(pk∗, i,m). Let (mi,1

0 ,mi,1
1 ), . . . , (mi,qi

0 ,mi,qi
1 ) be A’s LR queries for index i ∈ [I]. Then, if for all

i ∈ [I] and for all j 6= k ∈ [qi],

mi,j
0 = mi,k

0 iff mi,j
1 = mi,k

1 ,

and for all i ∈ [I] and all j ∈ [qi]

mi,j
0 6∈ Ei ∧m

i,j
1 6∈ Ei,



then we say that A is equality-pattern respecting.

Adversary Classes. To differentiate between various kinds of attacks, we use classes of adversaries.
Let A(q,i)-XXX

ra be the class of all PT equality-pattern respecting adversaries that make q total LR
queries, query LR and Enc with at most i different indices, and make 0 Dec queries if XXX = CPA
and 0 or more Dec queries if XXX = CCA. Using hybrid arguments, we can prove the following two
claims:

Claim. For every i ∈ N and every ra-adversary Aq,i ∈ A(q,i)-XXX
ra there exists an ra-adversary Aq,1 ∈

A(q,1)-XXX
ra such that

Advra
AE,Aq,i(k) ≤ i ·Advra

AE,Aq,1(k) ,

where the running time of Aq,1 is about the same as that of Aq,i.

Claim. For every q ∈ N and every ra-adversary Aq,1 ∈ A(q,1)-XXX
ra there exists an ra-adversary A1,1 ∈

A(1,1)-XXX
ra such that

Advra
AE,Aq,1(k) ≤ q ·Advra

AE,A1,1
(k) ,

where the running time of A1,1 is about the same as that of Aq,1.

Proof of Claim 3 (Sketch). Let Aq,i be any equality pattern respecting ra-adversary making q queries to
LR and querying LR and Enc on at most i different randomness indices. We will build an adversary
Aq,1 making at most q queries to the LR oracle and querying LR and Enc on at most 1 randomness
index. The adversary Aq,1 runs Aq,i and guesses an index j ∈ {1, . . . , i}. It then uniformly chooses
coins r` for ` 6= j and answers Enc and LR queries from Aq,i as follows. On query Enc(pk, k,m), if
k = j then Aq,1 replies with its own Enc oracle and otherwise uses coins rk to answer the query. On
query LR(k,m0,m1), if k < j (resp. k > j) then Aq,1 replies with the encryption of m0 (resp. m1)
under coins rk; if k = j then Aq,1 replies using its own LR oracle. At the end of the simulation, Aq,1
outputs the same guess bit as Aq,i.

Proof of Claim 3 (Sketch). Let Aq,1 be any equality pattern respecting ra-adversary making q queries
to LR and querying LR and Enc on only a single randomness index. We can build an adversary A1,1

making only a single LR query. Adversary A1,1 guesses a query t ∈ {1, . . . , q} and answers the first
t− 1 LR queries using its Enc oracle applied to m0, the tth query using its own LR oracle, and the
rest of the queries again using Enc, this time applied to m1. As above, A1,1 outputs the same answer
as Aq,1.

Given the above claims, we let AXXX
ra = A(1,1)-XXX

ra for XXX ∈ {CPA,CCA} and focus on adver-
saries in these classes for the rest of the paper. Notice that when we consider adversaries in this simpler
class, the equality pattern restriction is much easier to state: an adversary A making LR and Enc
queries with only a single index j and making one LR query (j,m0,m1) is equality-pattern respecting
if for all Enc queries (pk∗, j,m) made by A, it is the case that m 6∈ {m0,m1}. In other words, an
equality-pattern respecting adversary never requests the encryption of a message m under the target
public key pk∗ if that same message appears in its LR query.

Finally, let RA-XXX be the set of all PKE schemes AE such that Advra
AE,A(k) is a negligible

function in k for all A ∈ AXXX
ra , for XXX ∈ {CPA,CCA}.

Relation to IND. Now that we have formally defined resettable security for public-key encryption,
it is useful to compare it to indistinguishability under chosen plaintext and chosen-ciphertext attacks,
the typical notions of security for PKE. The relationship is summarized in the following proposition.



Proposition 1. For XXX ∈ {CPA,CCA},
RA-XXX ( IND-XXX .

Proof. We first show RA-XXX ⊆ IND-XXX by contradiction. Suppose there is some encryption scheme
AE that is RA-XXX but is not IND-XXX. Let A be an ind-adversary with noticeable advantage against
AE . We construct ra-adversary B as follows: B runs A and single oracle query LR(m0,m1) from A,
adversary B queries its own LR oracle with (j,m0,m1) for a fresh index j. In the case that XXX is
CCA, decryption queries from A are directly answered with the same decryption query from B. Now,
B’s queries are clearly equality pattern respecting since there is only one of them, and it easily follows
that B has noticeable advantage in the RA game, giving us a contradiction.

Next, we show that IND-XXX 6⊆ RA-XXX. To do so we give a scheme AE that is IND-XXX but
not RA-XXX. We will prove for XXX=CCA, but the proof easily extends to the CPA setting. Let
AE = (K, E ,D) be an arbitrary IND-CCA scheme. We construct a new PKE scheme AE = (K, E ,D)
such that AE is still in IND-CCA, but AE is not in RA-XXX. The scheme AE has encryption algorithm
E(pk,m; r‖K‖K ′) that outputs c1‖c2‖c3, where c1 = E(pk,K‖K ′; r), c2 = K⊕m and c3 = MACK′(c2).
The IND-CCA security of AE follows from the well-known KEM/DEM composition theorem of [15].
We can construct an ra-adversary A with advantage 1 against AE . Adversary A, upon receiving target
public key pk∗, queries the Enc oracle with (pk∗, 1, 0η(k)) and immediately learns K from the response,
since K is xor’d with all 0s. Then, A queries LR(1,m0,m1) for unique messages m0 and m1 (which
do not equal the string of all zeroes). A can then use K to decrypt the response and win the game.

Discussion. There are a few important aspects of our security definition that require more discussion.
First, as shown in Proposition 1, our definition is stronger than previous notions of security. Since

we are concerned about random coins being reused, one might ask why we even need a new definition
and do not just use deterministic public-key encryption [5], eliminating the coins altogether. The
reason is that we still want our schemes to meet the previous definitions (i.e., IND-CCA) to ensure
they have as much security as possible, and it is well-known that no deterministic scheme can ever be
IND-CCA (or IND-CPA) secure.

Second, we allow the adversary to give arbitrary public keys to the Enc oracle and see the resulting
ciphertexts under those keys and the reused coins. As mentioned in the introduction, this is important
to model the situation in which a machine is reset and then an encryption is sent to the adversary;
we want to make sure other encryptions using the same coins still maintain their privacy. This aspect
of our definition resembles a similar ability allowed in the definition of stateful PKE [9].

Third, one might wonder what our equality pattern restriction means in practice. It simply reflects
the fact that if a message is encrypted twice using the same public key and the same coins, then the
resulting ciphertexts will be the same. An adversary observing the two ciphertexts will know that the
underlying plaintexts are the same. This attack is unavoidable in the resettability setting, and whether
or not it is a problem likely depends on the application.

4 Achieving IND-RA Security

In this section we show that we can make a simple and efficient modification to any IND-XXX PKE
scheme and immediately get an RA-XXX secure scheme. Our transformation relies only on the ex-
istence of pseudorandom functions and thus we do not require the random oracle model [10]. This
means that if we take a PKE scheme that is IND-XXX secure in the standard model, our modified
scheme will be RA-XXX secure in the standard model.

Let AE = (K, E ,D) be a PKE scheme and let Fun : Keysk×Domk → Rngk be a family of functions
with Keysk = {0, 1}ρ(k), Domk = {0, 1}n(k), and Rngk = {0, 1}ρ(k). The domain size {0, 1}n(k) should



be large enough to encode any public key generated from K(1k) and a message in {0, 1}η(k). We build
a PKE scheme AE = (K, E ,D) from AE and F as follows. Key generation and decryption are the same
as in AE , and E(pk,m; r) computes r̄ ← Fun(r, pk,m) and returns E(pk,m; r̄).

Theorem 1. If AE is IND-XXX and Fun is a secure PRF, then AE is RA-XXX.

Proof. Let AE be constructed from Fun and AE as above. Let A ∈ A(1,1)-XXX
ra be an efficient ra-

adversary attacking AE . We assume that A never makes duplicate queries to the Enc oracle; this
is without loss because all such queries will return the same response. Denote by G0 the game RA
defined in Section 3. Thus by definition,

Advra
AE,A(k) = 2 · Pr

[
GA

0

]
− 1 .

Now consider game G1. The relevant procedures from games G0 and G1 are shown in Figure 4. In G0,
oracles LR and Enc use Fun to derive the randomness used to encrypt since this is what AE does.
However, in G1, those oracles choose fresh random coins and use those to encrypt the messages. We
claim that these games appear close to adversary A by showing there exists an efficient prf-adversary
B such that

Pr
[

GA
0

]
− Pr

[
GA

1

]
≤ Advprf

Fun,B(k) .

The adversary B, attemping to decide if it is in the real or random world, flips a bit b and chooses a
target public key pk∗ by running the key generation algorithm. B then runs A just as in G0 and G1.
On Enc and LR queries, B uses its Fun oracle to derive the randomness for encryption; in the case
of the LR query, B encrypts the message corresponding to the bit b that it chose. In the CCA case,
B answers Dec queries simply by using the secret key sk∗ (which it knows because it chooses pk∗ and
sk∗). When A eventually outputs a guess bit b′, B outputs 1 if b = b′ and 0 otherwise. We can see
that when B is in the ‘real’ world (i.e., its Fun queries are answered using Fun), it perfectly simulates
G0 for A, while if B is in the ‘random’ world (i.e., its Fun queries are answered with random range
points) then it perfectly simulates G1 for A. The claim follows.

We then claim that there exists an efficient ind-adversary C such that

Advind
AE,C(k) = 2 · Pr

[
GA

1

]
− 1 .

The ind-adversary C is given a target public key pk∗ and access to an LR oracle to which it can make
a single query. In the CCA setting it also has access to a Dec oracle. Adversary C runs A as in G1,
answering its oracle queries as follows. On A’s single LR query, C simply answers with its own LR
oracle. In the CCA setting C answers A’s Dec queries using its own Dec oracle. On Enc queries from
A, C encrypts the messages itself using fresh randomness and returns the resulting ciphertexts to A.
At the end of execution, C outputs the same bit that A guesses. It is easy to see that C perfectly
simulates the G1 game for A and the claim follows.

Combining the above equations we can see that

Advra
AE,A(k) = 2 · Pr

[
GA

0

]
− 1

≤ 2 · (Advprf
Fun,B(k) + Pr

[
GA

1

]
)− 1

≤ 2 ·Advprf
Fun,B(k) + Advind

AE,C(k) .

The existence of secure PRFs is implied by the existence of one-way functions (which are necessary
for PKE to exist), so we do not need any additional assumptions. In practice, one would want to
instantiate the PRF using HMAC [7] or a block-cipher such as AES.



Notice that in the random oracle model we can replace Fun(r, pk,m) with H(r, pk,m), where H
is a random oracle, since a random oracle gives us a simple way to construct a PRF. This can lead to
even more efficient schemes, but, of course, we lose the standard model guarantees.
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proc. Enc(pk, j, m):

If CoinTab[j] = ⊥ then
CoinTab[j]←$ {0, 1}ρ(k)

rj ← CoinTab[j]
r̄ ← Fun(rj , pk, m)
c← E(pk, m; r̄)
Return c

proc. LR(j, m0, m1): Game G0

If CoinTab[j] = ⊥ then
CoinTab[j]←$ {0, 1}ρ(k)

rj ← CoinTab[j]
r̄ ← Fun(rj , pk∗, mb)
c← E(pk∗, mb; r̄)
S ← S ∪ {c}
Return c

proc. Enc(pk, j, m):

If CoinTab[j] = ⊥ then
CoinTab[j]←$ {0, 1}ρ(k)

rj ← CoinTab[j]
r̄←$ {0, 1}ρ(k)
c← E(pk, m; r̄)
Return c

proc. LR(j, m0, m1): Game G1

If CoinTab[j] = ⊥ then
CoinTab[j]←$ {0, 1}ρ(k)

rj ← CoinTab[j]
r̄←$ {0, 1}ρ(k)
c← E(pk∗, mb; r̄)
S ← S ∪ {c}
Return c

Fig. 4. Games for the proof of Theorem 1. The procedures Initialize, Finalize, and Dec are omitted for brevity.


