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Abstract. In this work, we apply the rebound attack to the AES based
SHA-3 candidate Lane. The hash function Lane uses a permutation
based compression function, consisting of a linear message expansion
and 6 parallel lanes. In the rebound attack on Lane, we apply several
new techniques to construct a collision for the full compression function
of Lane-256 and Lane-512. Using a relatively sparse truncated di�eren-
tial path, we are able to solve for a valid message expansion and collid-
ing lanes independently. Additionally, we are able to apply the inbound
phase more than once by exploiting the degrees of freedom in the parallel
AES states. This allows us to construct semi-free-start collisions for full
Lane-256 with 296 compression function evaluations and 288 memory,
and for full Lane-512 with 2224 compression function evaluations and
2128 memory.
Keywords: SHA-3, LANE, hash function, cryptanalysis, rebound at-
tack, semi-free-start collision

1 Introduction

In the last few years the cryptanalysis of hash functions has become an important
topic within the cryptographic community. The attacks on the MD4 family of
hash functions (MD5, SHA-1) have especially weakened the con�dence in the
security of this design strategy [14,15]. Many new and interesting hash function
designs have been proposed as part of the NIST SHA-3 competition [12]. The
large number of submissions and di�erent design strategies require di�erent and
improved cryptanalytic techniques as well.
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At FSE 2009, Mendel et al. published the rebound attack [10] - a new tech-
nique for analysis of hash functions which has been applied �rst to reduced ver-
sions of the Whirlpool [2] and Grøstl [4] compression functions. Recently, the
rebound attack on Whirlpool has been extended in [8], which in some parts is
similar to our attack. The main idea of the rebound attack is to use the available
degrees of freedom in the internal state to e�ciently ful�ll the low probability
parts in the middle of a di�erential trail. The straight-forward application of the
rebound attack to AES based constructions allows a quick and thorough analysis
of these hash functions.

In this work, we improve the rebound attack and apply it to the SHA-3 can-
didate Lane. The hash function Lane [5] uses an iterative construction based on
the Merkle-Damgård design principle [3,11] and has been �rst analyzed in [16].
The permutation based compression function consists of a linear message ex-
pansion and 6 parallel lanes. The permutations of each lane are based on the
round transformations of the AES. In the rebound attack on Lane, we �rst
search for di�erences and values, according to a speci�c truncated di�erential
path. This truncated di�erential path is constructed such that a collision and
a valid expanded message can be found with a relatively high probability. By
using the degrees of freedom in the chaining values, we are able to construct a
semi-free-start collision for the full versions of Lane-256 with 296 compression
function evaluations and memory of 288, and for Lane-512 with 2224 compres-
sion function evaluations and memory of 2128. Although these collisions on the
compression function do not imply an attack on the hash functions, they violate
the reduction proofs of Merkle and Damgård, and Andreeva [1].

2 Description of Lane

The cryptographic hash function Lane [5] is one of the submissions to the NIST
SHA-3 competition [12]. It is an iterated hash function that supports four digest
sizes (224, 256, 384 and 512 bits) and the use of a salt. Since Lane-224 and
Lane-256 are rather similar except for truncation, we write Lane-256 whenever
we refer to both of them. The same holds for Lane-384 and Lane-512.

The hashing of a message proceeds as follows. First, the initial chaining value
H−1, of size 256 bits for Lane-256, and 512 bits for Lane-512, is set to an initial
value that depends on the digest size n and the optional salt value S. At the same
time, the message is padded and split into message blocks Mi of length 512 bits
for Lane-256, and 1024 bits for Lane-512. Then, a compression function f is
applied iteratively to process message blocks one by one asHi = f(Hi−1,Mi, Ci),
where Ci is a counter that indicates the number of message bits processed so
far. Finally, after all the message blocks are processed, the �nal digest is derived
from the last chaining value, the message length and the salt by an additional
call to the compression function.
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2.1 The Compression Function

The compression function of Lane-256 transforms 256 bits (512 in the case of
Lane-512) of the chaining value and 512 bits (resp. 1024 bits) of the message
block into a new chaining value of 256 bits (512 bits). It uses a 64-bit counter
value Ci. For the detailed structure of the compression function we refer to
the speci�cation of Lane [5]. First, the chaining value and the message block
are processed by a message expansion that produces an expanded state with
doubled size. Then, this expanded state is processed in two layers. The �rst
layer is composed of six permutation lanes P0,. . . ,P5 in parallel, and the second
layer of two parallel lanes Q0, Q1.

P2P1P0

f f- �? - �?

? ? ? ? ? ?

? ?

f- �
?

? ?
hi Mi

hi+1

P3 P4 P5

Q0 Q1

Message Expansion

Fig. 1. The compression func-
tion of Lane.

function Round(r,X)
X ← SubBytes(X)
X ← ShiftRows(X)
X ← MixColumns(X)
X ← AddConstant(r, X)
X ← AddCounter(r, X)
X ← SwapColumns(X)

end function

Fig. 2. Pseudocode for the round transfor-
mation used in the Lane permutations.

2.2 The Message Expansion

The message expansion of Lane takes a message block Mi and a chaining value
Hi−1 and produces the input to six permutations P0,. . . ,P5. In Lane-256, the
512-bit message block Mi is split into four 128-bit blocks m0, m1, m2, m3 and
the 256-bit chaining value Hi−1 is split into two 128-bit words h0, h1 as fol-
lows m0||m1||m2||m3 ← Mi, h0||h1 ← Hi−1. Then, six more 128-bit words
a0, a1, b0, b1, c0, c1 are computed

a0 = h0 ⊕m0 ⊕m1 ⊕m2 ⊕m3 , a1 = h1 ⊕m0 ⊕m2 ,

b0 = h0 ⊕ h1 ⊕m0 ⊕m2 ⊕m3 , b1 = h0 ⊕m1 ⊕m2 ,

c0 = h0 ⊕ h1 ⊕m0 ⊕m1 ⊕m2 , c1 = h0 ⊕m0 ⊕m3 .

(1)

Each of these 128-bit values, as in AES, can be seen as 4 × 4 matrix of bytes.
In the following, we will use the notion x[i, j] when we refer to the byte of the
matrix x with row index i and column index j, starting from 0.
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The values a0||a1, b0||b1, c0||c1, h0||h1, m0||m1, m2||m3 become inputs to the
six permutations P0, . . . , P5 described below. The message expansion for larger
variants of Lane is identical but all the values are doubled in size.

2.3 The Permutations

Each permutation lane Pi operates on a state that can be seen as a double AES
state (2 × 128-bits) in the case of Lane-256 or quadruple AES state (4 × 128-
bits) for Lane-512. The permutation reuses the transformations SubBytes (SB),
ShiftRows (SR) and MixColumns (MC) of the AES with the only exception, that
due to the larger state size, they are applied twice or four times in parallel.

Additionally, there are three new round transformations introduced in Lane.
AddConstant adds a di�erent value to each column of the lane state and AddCounter
adds part of the counter Ci to the state. Since our attacks do not depend on these
functions, we skip their details here. The third transformation is SwapColumns
(SC) - used for mixing parallel AES states. Let xi be a column of a lane state.
In Lane-256, SwapColumns swaps the two right columns of the left half-state
with the two left columns of the right half-state, and in Lane-512, SwapColumns
ensures that each column of an AES state gets swapped to a di�erent AES state:

SC256(x0||x1|| . . . ||x7) = x0||x1||x4||x5||x2||x3||x6||x7

SC512(x0||x1|| . . . ||x15) = x0||x4||x8||x12||x1||x5||x9||x13||
x2||x6||x10||x14||x3||x7||x11||x15 .

The complete round transformation consists of the sequential application of all
these transformations in the given order. The last round omits AddConstant and
AddCounter. Each of the permutations Pj consists of six rounds in the case of
Lane-256 and eight rounds for Lane-512.

The permutations Q0 and Q1 are irrelevant to our attack because we will
get collisions before these permutations. An interested reader can �nd a detailed
description of Q0 and Q1 in [5].

3 The Rebound Attack on Lane

In this section �rst we give a short overview of the rebound attack in general
and then, describe the di�erent phases of the rebound attack on Lane in detail.

3.1 The Rebound Attack

The rebound attack was published by Mendel et al. in [10] and is a new tool
for the cryptanalysis of hash functions. The rebound attack uses truncated dif-
ferences [6] and is related to the attack by Peyrin [13] on the hash function
Grindahl [7]. The main idea of the rebound attack is to use the available degrees
of freedom in the internal state to ful�ll the low probability parts in the middle
of a di�erential path. It consists of an inbound and subsequent outbound phase.
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The inbound phase is an e�cient meet-in-the-middle phase, which exploits the
available degrees of freedom in the middle of a di�erential path. In the mostly
probabilistic outbound phase, the matches of the inbound phase are computed
backwards and forwards to obtain an attack on the hash or compression function.
Usually, the inbound phase is repeated many times to generate enough starting
points for the outbound phase. In the following, we describe the inbound and
outbound phase of the rebound attack on Lane.

3.2 Outline of the Rebound Attack on Lane

Due to the message expansion of Lane, at least 4 lanes are active in a di�erential
attack. We will launch a semi-free-start collision attack, and therefore we assume
the di�erences in (h0, h1) to be zero. Hence, lane P3 is not active and we choose
P1 and thus, (b0, b1) to be not active as well. The active lanes in our attack
on Lane are P0, P2, P4 and P5. The corresponding truncated di�erential path
for the P-lanes of Lane-256 is shown in Fig. 4. This path is very similar to
the truncated di�erential path for Lane-256 shown in the Lane speci�cation
[Fig. 4.2, page 33], but turned upside-down. The truncated di�erential path used
in the attack on Lane-512 is the same as in the Lane speci�cation [Fig. 4.3,
page 34] and shown in Fig. 5. The main idea of these paths is to use di�erences
in only one of the parallel AES states for the inbound phases. This allows us
to use the freedom in the other states to satisfy the outpound phases. Since we
search for a collision after the P-lanes, we do not need to consider the Q-lanes.

The main idea of the attack on Lane is that we can apply more than one
e�cient inbound phase by using the degrees of freedom and the relatively slow
di�usion due to the 2 (or 4) parallel AES states of Lane-256 (or Lane-512). The
positions of the active bytes of two consecutive inbound phases are chosen such
that when merging them, the number of the common active bytes of these phases
is as small as possible. Since we can �nd many independent solutions for these
inbound phases, we store them in some lists to be merged. In the outbound
phase of the attack we merge the results of the inbound phases and further,
merge the results of all active P-lanes. Note that the merging of two lists can be
done e�ciently. In each merging step, a number of conditions need to be ful�lled
for the elements of the new list. We merge the lists in a clever order, such that
we �nd one colliding pair for the compression function at the end.

In more detail, we �rst �lter the results of each inbound phase for those
solutions, which can connect both inbound phases (see Fig. 4). Then, we merge
the resulting lists of two lanes such that we get a collision after the P-lanes,
and parts of the message expansion are ful�lled. Finally, we �lter the results of
the left P-lanes (P0, P2) and the right P-lanes (P4, P5), such that the conditions
on the whole message expansion are ful�lled. In the attack, we try to keep the
size of the intermediate results at a reasonable size. We need to ensure, that the
complexity of generating the lists is below 2n/2, but still get enough solutions in
each phase to continue with the attack.
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Fig. 3. The inbound phase for Lane-256 (left) and Lane-512 (right). Black
bytes are active, gray bytes �xed by solutions of the inbound phase.

3.3 The Inbound Phase

In the rebound attack on Lane, we �rst apply the inbound phase for a number of
times. Therefore, we will explain this phase and the corresponding probabilities
in detail here. In the inbound phase, we search for di�erences and values conform-
ing to the truncated di�erential path for Lane-256 or Lane-512 shown in Fig. 3,
with active bytes marked by black bytes. We only describe the application of one
inbound phase here. In the example of Fig. 3, we have 16 active S-boxes between
state #4 and state #5. It follows from the MDS property of MixColumns, that
this path has at least one active byte in each of the 4 corresponding columns
prior to the �rst, and after the second MixColumns transformation (state #2 and
state #7). Note that the active bytes in state #2 and state #7 can also be at
any position marked by gray bytes.

In the inbound phase, we �rst choose random di�erences for the 4 active
bytes after the second MixColumns transformation (state #7). These di�erences
are linearly propagated backward to 16 active bytes at the output of the previous
SubBytes layer (state #5). Next, we take random di�erences for the 4 active bytes
prior to the �rst MixColumns transformation (state #2) and linearly propagate
forward to 16 active bytes at the input of SubBytes (state #4). Then, we need
to �nd a match for the input and output di�erences of all 16 active S-boxes. For
a single S-box, the probability that a random S-box di�erential exists is about
one half, which can be veri�ed easily by computing the di�erential distribution
table of the AES S-box (see [10] for more details).

For each matching S-box, we get at least two (in some cases 4) possible
byte values such that the S-box di�erential holds. Hence, we get at least 216

possible values for one full AES state, such that the di�erential path for the
chosen di�erences in state #2 and state #7 holds. In other words, after trying
216 non-zero di�erences of state #2 and state #7, we get at least 216 solutions
for the truncated di�erential path between state #2 and state #7. Hence, the
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average complexity to �nd one solution for the inbound phase (di�erences and
values) is about 1. Note that this holds for both, Lane-256 and Lane-512.

3.4 The Outbound Phase

After we have found di�erences and values for each inbound phase of the active
lanes, we need to connect these results and propagate them outwards in the
outbound phase. In backward direction, we need to match the message expansion
at the input of each lane. In forward direction, we need to match the di�erences
of two P-lanes on each side to get a collision. We describe the conditions for
these two parts according to our truncated di�erential path in the following.

The Message Expansion. After the inbound phases, we get values and di�er-
ences at the input and output of the 4 active lanes P0, P2, P4 and P5. Since we
have zero di�erences in (h0, h1) and (b0, b1), we get using the message expansion
for lane P1 (see Equation (1)):

∆b0 = 0 = ∆m0 ⊕∆m2 ⊕∆m3 , ∆b1 = 0 = ∆m1 ⊕∆m2

Hence, we get the following relation for the message di�erences in m0, m1, m2,
and m3:

∆m1 = ∆m2 = ∆m0 ⊕∆m3 (2)

Using (1) we get for the di�erences in the expanded message words (a0, a1) and
(c0, c1):

∆a0 = ∆m1 , ∆a1 = ∆m3 , ∆c0 = ∆m0 , ∆c1 = ∆m2 (3)

and thus, the following relations between a0, a1, c0, and c1:

∆a0 = ∆c1 = ∆a1 ⊕∆c0 (4)

Beside the di�erences, we also need to match the values of the message ex-
pansion. Since we aim for a semi-free-start collision, we can freely choose the
chaining value (h0, h1) such that the conditions on (a0, a1) are satis�ed:

h0 = a0 ⊕m0 ⊕m1 ⊕m2 ⊕m3 , h1 = a1 ⊕m0 ⊕m2

That means we have conditions on the input (c0, c1) left, which we need to match
with the message words m0, m1, m2 and m3. Since we can vary lanes P0,P2 and
P4,P5 independently in the following attacks, we can satisfy these conditions by
merging the results of both sides. Using the equations of the message expansion,
we get for (c0, c1) using the values of (a0, a1):

c0 = a0 ⊕ a1 ⊕m0 ⊕m2 ⊕m3 , c1 = a0 ⊕m1 ⊕m2

We can rearrange these equations in order to have all terms corresponding to
P0,P2 on the left side and all terms of P4,P5 on the right side:

m0 ⊕m2 ⊕m3 = c0 ⊕ a0 ⊕ a1 , m1 ⊕m2 = c1 ⊕ a0 (5)
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For merging the two sides, we will compute, store and compare the following
values of each list:

v1 = c0 ⊕ a0 ⊕ a1 , v2 = c1 ⊕ a0 , v3 = m0 ⊕m2 ⊕m3 , v4 = m1 ⊕m2

Colliding P-Lanes. In the forward direction, we need to �nd a collision for the
di�erences in P0 and P2, such that ∆P0⊕∆P2 = 0 and for the di�erences in P4

and P5, such that ∆P4 ⊕∆P5 = 0. Note that we can swap the order of the last
MixColumns with the XOR operation of the P-lanes since both transformations
are linear. Hence, we only need to match the di�erences after the last SubBytes
layer in each of the two active lanes. The blue bytes in Fig. 4 of Lane-256, or
the red, blue and yellow bytes in Fig. 5 of Lane-512 are independent of the
inbound phase. Hence, we can use the freedom in these bytes to �nd a collision
after the P-lanes.

4 Semi-Free-Start Collision for Lane-256

In the rebound attack on Lane-256, we construct a semi-free-start collision for
the full compression function using 296 compression function evaluations and
memory requirements of 288. We will use the 6-round truncated di�erential path
given in Fig. 4 which is very similar to the one shown in the Lane speci�cation
[Fig. 4.2, page 33]. We search for a collision after the P-lanes of Lane and use
the same truncated di�erential path in the 4 active lanes P0, P2, P4 and P5. Since
we do not consider di�erences in h0 and h1, but we �x their values, the result
will be a semi-free-start collision. The attack on Lane-256 consists basically of
the following parts:

1. First Inbound Phase: Apply the inbound phase at the beginning of the
truncated di�erential path (state #2 to state #7) for each lane P0, P2, P4,
P5 independently.

2. Second Inbound Phase: Apply the inbound phase in the middle of each
lane again (state #10 to state #15).

3. Merge Inbound Phases: Merge the results of the two inbound phases
(state #7 to state #10).

4. Merge Lanes:Merge the two neighboring lanes P0,P2 and P4,P5 and satisfy
according di�erences of the message expansion.

5. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and satisfy
the remaining conditions on the message expansion (di�erences and values).

6. Find Collisions: Choose remaining free values (neutral bytes) to �nd a
collision for each side (P0, P2) and (P4, P5) independently.

7. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and satisfy
the conditions on the message expansion of the remaining bytes.
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4.1 First Inbound Phase

We start the attack on Lane-256 by applying the �rst inbound phase to each
of the 4 active lanes P0, P2, P4, P5 independently. In each lane, we start with 5
active bytes in state #2 and 8 active bytes in state #7 and choose 296 random
non-zero di�erences for these 13 bytes (note that we could choose up to 2104

di�erences). We propagate backward and forward to 16 active bytes at the input
(state #4) and output (state #5) of the SubBytes layer in between. We get at
least 296 solutions for the inbound phase with a complexity of 296 (see Sect. 3.3).
For each result, only the red and black bytes in Fig. 4 are determined, i.e. the
di�erences as well as the actual values of the bytes are found. Note that we
have chosen the position of active bytes in state #0, such that at least one term
of Equation (2) or (4) is zero for each byte. At this point, we can compute
backwards to state #0 and independently verify the condition on one byte of
the input di�erences:

P0 : ∆a0[0, 0] = ∆a1[0, 0] , P4 : ∆m0[2, 3] = ∆m1[2, 3]
P2 : ∆c0[2, 3] = ∆c1[2, 3] , P5 : ∆m2[0, 0] = ∆m3[0, 0]

The condition on each of these bytes is ful�lled with a probability of 2−8 and we
store the 288 valid results of each lane P0, P2, P4 and P5 in the corresponding
lists L0, L2, L4 and L5. Note that we store the values and di�erences of state
#10 (red and black bytes) in these lists, since we need to merge these bytes with
the second inbound phase in the following. For an e�cient merging step, the
lists are stored in hash tables (or sorted) according to the bytes to be merged
(di�ences and values of active bytes in state #10).

4.2 Second Inbound Phase

Next, we apply the inbound phase again to match the di�erences at SubBytes
between state #12 and state #13. We start with 264 di�erences in the 8 active
bytes of state #10 and 232 di�erences in the 4 active bytes of state #15. Hence,
we get about 296 solutions for the second inbound phase with a complexity of
296. For each result, the gray and black values in Fig. 4 between state #7 and
state #18 are determined. Again, this means we �x the actual values of these
bytes. The results of the second inbound phase for each lane are stored in lists
L′0, L

′
2, L

′
4 and L′5. A node of each lists holds the values and di�erences of state

#10 (gray and black bytes). Again, the lists are stored in hash tables (or sorted)
according to the bytes (black bytes) to be merged.

4.3 Merge Inbound Phases

The two previous inbound phases overlap in 8 active bytes (state #7 to state
#10). We connect the two inbound phases by checking the conditions on the
overlapping bytes of state #10. Since both values and di�erences need to match,
we get a condition on 128 bits. We merge the 288 results of the �rst inbound
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phase and 296 results of the second inbound phase to get 288×296×2−128 = 256

di�erential paths for each lane. A pair connecting both inbound phases is found
trivially. For each node of the �rst list (for example L0), we check the overlapping
bytes against the values of the second list (L′0). Since the second list is a hash
table, the e�ort for producing all 256 valid pairs is 288 hash table lookups.

Note that for each pair which satis�es and connects both inbound phases,
the di�erences and values between state #0 and state #18 (black, red and gray
bytes) are determined. We compute and store the 256 input values and di�erences
of state #0 in lists L0, L2, L4 and L5. Altough we still do not know half of the
state, each of these input pairs conforms to the whole truncated di�erential path
from state #0 to state #24 with a probability of 1. In other words, we know
that in state #24, there are at most the given bytes active.

4.4 Merge Lanes

Next, we continue with merging the solutions of each lane by considering the
message expansion. We �rst combine the inputs of lane P0 and P2 by merging
lists L0 and L2. When merging these lists, we need to satisfy the conditions on
the di�erences of the message expansion. We have conditions on 5 active bytes
of state #0 in lane P0 and P2 (see Fig. 4). Remember that we have chosen the
position of these active bytes, such that at least one term of Equation (2) or (4)
is zero. Hence, we only need to check if two corresponding byte di�erences are
equal. Since we have already veri�ed one byte di�erence (see Sect. 4.1), we have
4 byte condition left:

∆a0[0, 0] = ∆c1[0, 0] , ∆a1[0, 1] = ∆c0[0, 1] (6)

∆a1[1, 1] = ∆c0[1, 1] , ∆a0[2, 3] = ∆c0[2, 3] (7)

These conditions are ful�lled with a probability of 2−32 and by merging two lists
(L0 and L2) of size 256, we get 256 × 256 × 2−32 = 280 valid matches which we
store in list L02. We repeat the same for lane P4 and P5 by merging lists L4 and
L5. We get 280 matches for list L45 as well, since we need to ful�ll the 32-bit
conditions on the di�erences of the following 4 bytes:

∆m1[0, 0] = ∆m2[0, 0] , ∆m0[0, 1] = ∆m3[0, 1] (8)

∆m0[1, 1] = ∆m3[1, 1] , ∆m0[2, 3] = ∆m2[2, 3] (9)

Again, if we use hash tables or the previous lists are sorted according to the
bytes to match, the merge operation can be performed very e�ciently. Hence,
the total complexity to produce the lists L02 and L45 is determined by their �nal
size and requires an e�ort of around 280 computations.

4.5 Message Expansion

For all entries of the lists L02 and L45, the values in 32 bytes and di�erences in
10 bytes of each of (a0, a1, c0, c1) and (m0,m1,m2,m3) have been �xed (red and

11



black bytes in state #0 of Fig. 4). Note that the conditions on the di�erences of
each side on its own have already been ful�lled (P0 ↔ P2 and P4 ↔ P5). Hence,
if we just ful�ll the conditions on the remaining di�erences between P0 ↔ P4,
then the conditions on P2 ↔ P5 are satis�ed as well. Using Equations (2)-(4),
the position of active bytes in Fig. 4 and the already matched di�erences of
Sect. 4.1 and Sect. 4.4, we only have the following 4 byte conditions left:

∆a0[0, 0] = ∆m1[0, 0] , ∆a1[0, 1] = ∆m0[0, 1]
∆a1[1, 1] = ∆m0[1, 1] , ∆a0[2, 3] = ∆m0[2, 3]

Note that we also need to ful�ll the conditions on the values of the states.
Remember that we can freely choose the chaining values (h0, h1) to satisfy the
values in the �rst 16 bytes of the message expansion (a0, a1). To ful�ll the con-
ditions on the 16 bytes of (c0, c1) we need to satisfy Equation (5) using the
corresponding values v1, v2, v3 and v4. Hence, we need to �nd a match for the
following values and di�erences by merging lists L02 and L45:

� 8 bytes of v1 from L02 with v3 from L45,
� 8 bytes of v2 from L02 with v4 from L45,
� 4 bytes of di�erences in L02 and in L45.

Since we have 280 elements in each list and conditions on 160 bits, we expect to
�nd 280 × 280 × 2−160 = 1 result. This result satis�es the message expansion for
all lanes and is a solution for the truncated di�erential path of each active lane
between state #0 and state #24. However, we do not get a collision at the end
of the P-lanes yet, since we do not know the di�erences of state #24.

4.6 Find Collisions

In this phase of the attack, we search for a collision at the end of the P-lanes
(P0, P2) and (P4, P5) using the remaining freedom in the second half of the state.
Note that the 16-byte di�erence in state #24 is obtained from 8-byte di�erence
in state #22 with the linear transforms MixColumns and SwapColumns. Hence,
the collision space (the 16 bytes where the two lanes di�er) has only 264 distinct
elements. If we take a look at Fig. 4, we get for the values in state #7:

� The black, red and gray bytes represent values which have already been
determined by the previous parts of the attack.

� The blue bytes represent values not yet determined and can be used to vary
the di�erences in state #22.

To �nd a collision between two lanes, we can still choose 264 values for the blue
bytes in state #7 of each lane and store these results in lists L0, L2, L4 and
L5. Note that for these 264 values, we get only 232 di�erent values for the two
free bytes in the �rst and �fth column of state #18. Hence, we can only iterate
through 232 di�erences in state #22 for each lane. However, this is enough to
�nd one colliding di�erence for each side, since 232×232×2−64 = 1. By repeating
this step 232 times for each side, we expect 264 × 264 × 2−64 = 264 results for
each merged list L02 and L45.
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4.7 Message Expansion

Finally, we need to match the message expansion for the remaining 32 bytes
of each side. Hence, we just repeat the same procedure as we did for the �rst
half of state #0, except that we only need to match the values of 32 bytes but
no di�erences. Again, we can use the remaining bytes of (h0, h1) to ful�ll the
conditions on 16 bytes of (a0, a1). Since, we have 264 solutions in each list L02

and L45, we expect to �nd 264 × 264 × 2−128 = 1 colliding pair for (c0, c1) and
thus, a collision for the full compression function of Lane-256.

4.8 Complexity

Let us �nd the complexity of the whole attack. The �rst inbound phase requires
296 computations and 288 memory, the second inbound requires 296 computations
and 296 memory, and the merging of the inbound phases requires 288 hash table
lookups and 256 memory. Obviously, the second inbound phase and the merge
inbound phases can be united to lower the memory requirement of these three
steps. Namely, we create the lists L0, L2, L4 and L5 in the �rst inbound phase.
Then, for each di�erential path of the second inbound phase, instead of storing
it in a list, we immediately check if it can be merged with some di�erential from
the lists. Only if it can be merged, we do the outbound phase and compute state
#0. Hence, the �rst three steps of our attack require around 296 computations
and 288 memory. The merge lanes step requires 280 computations and memory.
The message expansion steps require 280 computations, while the �nd collisions
steps require 232 computations. Hence, the total attack complexity is around
296 computations and 288 memory. Note that the cost of each computation is
never greater than the cost of one compression function evaluation. Therefore,
the complexity to �nd a semi-free-start collision for all 6 rounds of Lane-256 is
about 296 compression function evaluations and 288 memory.

5 Semi-Free-Start Collision for Lane-512

In the rebound attack on Lane-512, we construct a semi-free-start collision for
the full, 8-round compression function using 2224 compression function evalu-
ations and memory requirements of 2128. We use the same iterative truncated
di�erential path as shown in the speci�cation of Lane-512 [Fig. 4.3, page 34],
which is given in Fig. 5. Similar to the attack on Lane-256, we search for a
collision after the P-lanes and use the same truncated di�erential path in the 4
active lanes P0, P2, P4 and P5. The attack on Lane-512 consists basically of the
following parts:

1. First Inbound Phase: Apply the inbound phase at the beginning of the
truncated di�erential path (state #2 to state #7) for each lane P0, P2, P4,
P5 independently.

2. Merge Lanes:Merge the two neighboring lanes P0,P2 and P4,P5 and satisfy
according di�erences of the message expansion.
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3. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and satisfy
the remaining conditions on the message expansion (di�erences and values).

4. Second Inbound Phase: Apply the inbound phase in the middle of each
lane again (state #10 to state #15).

5. Merge Inbound Phases: Merge the results of the two inbound phases.

6. Starting Points: Choose random values for the brown bytes in state #7 to
get enough starting points for the subsequent phases.

7. Merge Lanes: Merge the values of the starting points for the two neigh-
boring lanes P0,P2 and P4,P5 and satisfy the according di�erences of the
message expansion.

8. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and satisfy
the remaining conditions on the message expansion (di�erences and values)
for the starting points.

9. Third Inbound Phase: Apply the inbound phase at the end of each lane
for a third time (state #18 to state #23).

10. Merge Inbound Phases: Merge the results of the three inbound phases
and use the remaining freedom in between.

11. Find Collisions: Merge the corresponding two lanes to �nd a collision for
each side (P0, P2) and (P4, P5) independently.

12. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and satisfy
the conditions on the message expansion of the remaining bytes.

5.1 First Inbound Phase

We start the attack on Lane-512 by applying the �rst inbound phase to each
of the 4 active lanes P0, P2, P4, P5 independently. In each lane, we start with 8
active bytes in state #2 and 4 active bytes in state #7 and choose 284 random
non-zero di�erences for these 12 bytes (note that we could choose up to 296

di�erences). We propagate backward and forward to 16 active bytes at the input
(state #4) and output (state #5) of the SubBytes layer in between. We get at
least 284 matches for the inbound phase with a complexity of 284 (see Sect. 3.3).
For each result, the gray and black bytes in Fig. 5 are determined. Hence, we
can already verify the condition on one byte of the input di�erences for each
lane by computing backwards to state #0:

P0 : ∆a0[2, 2] = ∆a1[2, 2] , P0 : ∆a0[2, 6] = ∆a1[2, 6]
P2 : ∆c0[1, 1] = ∆c1[1, 1] , P2 : ∆c0[1, 5] = ∆c1[1, 5]
P4 : ∆m0[1, 1] = ∆m1[1, 1] , P4 : ∆m0[1, 5] = ∆m1[1, 5]
P5 : ∆m2[2, 2] = ∆m3[2, 2] , P5 : ∆m2[2, 6] = ∆m3[2, 6]

The conditions on each of the lanes are ful�lled with a probability of 2−16 and we
store the 268 valid matches of each lane P0, P2, P4 and P5 in the corresponding
lists L0, L2, L4 and L5.
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5.2 Merge Lanes

Next, we continue with merging the solutions of each lane by considering the
message expansion. We �rst combine the results of lane P0 and P2 by merging
lists L0 and L2. When merging these lists, we need to satisfy the conditions on
the di�erences of the message expansion for the following 6 bytes:

∆a1[0, 0] = ∆c0[0, 0] , ∆a1[0, 4] = ∆c0[0, 4]
∆a0[1, 1] = ∆c0[1, 1] , ∆a0[1, 5] = ∆c0[1, 5]
∆a0[2, 2] = ∆c1[2, 2] , ∆a0[2, 6] = ∆c1[2, 6]

Since this match is ful�lled with a probability of 2−48 and we merge two lists of
size 268, we get 268 × 268 × 2−48 = 288 valid matches which we store in L02. We
repeat the same for lane P4 and P5 merge lists L4 and L5. We get 288 matches
for list L45, since we need to ful�ll conditions on di�erences of 6 bytes as well:

∆m0[0, 0] = ∆m3[0, 0] , ∆m0[0, 4] = ∆m3[0, 4]
∆m0[1, 1] = ∆m2[1, 1] , ∆m0[1, 5] = ∆m2[1, 5]
∆m1[2, 2] = ∆m2[2, 2] , ∆m1[2, 6] = ∆m2[2, 6]

5.3 Message Expansion

For all entries of lists L02 and L45, the values in 32 bytes and di�erences in 16
bytes of each of (a0, a1, c0, c1) and (m0,m1,m2,m3) have been �xed (gray and
black bytes in state #0 of Fig. 5). Since the conditions on the di�erences of each
side on its own have already been ful�lled, we just need to match the conditions
on the remaining 6-byte di�erences between each side (P0, P2) and (P4, P5):

∆a1[0, 0] = ∆m0[0, 0] , ∆a1[0, 4] = ∆m0[0, 4]
∆a0[1, 1] = ∆m0[1, 1] , ∆a0[1, 5] = ∆m0[1, 5]
∆a0[2, 2] = ∆m1[2, 2] , ∆a0[2, 6] = ∆m1[2, 6]

Remember that we can freely choose the chaining values (h0, h1) to satisfy the
values in the �rst 16 bytes of the message expansion (a0, a1). To ful�ll the condi-
tions on the 16 bytes of (c0, c1) we need to �nd matches for the following values
and di�erences using lists L02 and L45:

� 8 bytes of v1 from L02 with v3 from L45,
� 8 bytes of v2 from L02 with v4 from L45,
� 6 bytes of di�erences in L02 and in L45.

Since we have 288 elements in each list and conditions on 176 bits, we expect to
�nd 288 × 288 × 2−176 = 1 result. This result satis�es the message expansion for
all lanes and is a solution for the truncated di�erential path of each active lane
between state #0 and state #10.
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5.4 Second Inbound Phase

Next, we apply the inbound phase again to match the di�erences at SubBytes
between state #12 and state #13. After the �rst inbound phase, the values of
16 bytes in state #10 (black and gray bytes), and the di�erence in 16 bytes (1st
AES-block) of state #12 (black bytes) have already been �xed. Hence we can
start with 232 possible 4-byte di�erences in state #15, compute backwards to
state #13 and need to match the di�erences in the SubBytes layer. We expect
to �nd at least 232 solutions for the second inbound phase (see Sect. 3.3).

5.5 Merge Inbound Phases

The result of the second inbound phase are 232 values for the 16 bytes in state
#10 (green and black bytes). From the �rst inbound phase, we have obtained
one solution for 16 bytes in state #10 (gray and black bytes) as well. In these
16 bytes, the values of the 4 active bytes (black) overlap between both inbound
phases and the probability for a successful match is 2−32. Among the 232 results
of the second inbound phase, we expect to �nd one solution to match the values
of state #10. Once we have found a match, we can compute the values of the
newly determined 12 bytes in state #7, marked by green bytes in Fig. 5.

5.6 Starting Points

In this phase of the attack, we will compute a number of starting points which
we will need for the subsequent steps. For each lane, we choose random values
for the 12 bytes in state #7 (marked by brown bytes in Fig. 5) and compute
the corresponding 16-byte values in state #0. We repeat this step 264 times and
store the results in the corresponding lists L′0, L

′
2, L

′
4 or L′5.

5.7 Merge Lanes

Next, we merge lists L′0 and L′2 to get the list L′02, consisting of 2128 values for
the 32 newly determined bytes of (m0,m1,m2,m3) (brown bytes of state #0 in
lane P0 and P2). Further, we merge lists L′4 and L′5 to get the list L′45 of size
2128 containing the 32 byte values of (a0, a1, c0, c1).

5.8 Message Expansion

Finally, we satisfy the conditions of the message expansion on (a0, a1) using the
values of (h0, h1), and use the two lists L′02 and L′45 to satisfy the conditions on
(c0, c1). Since we need to match 16 bytes of (c0, c1) and have 2128 elements in
both lists, we expect 2128 × 2128 × 2−128 = 2128 matching pairs which we store
in list Ls. We will use these values in a later phase of the attack.
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5.9 Third Inbound Phase

Now, we extend the truncated di�erential path by applying a third inbound
phase between state #18 and state #23 for each active lane. Note that the
values in 16 bytes of state #18 (black and green bytes), and the di�erences in 16
bytes (1st AES-block) of state #20 (black bytes) have already been �xed due to
the second inbound phase. Similar to the second inbound phase, we start with
232 4-byte di�erences in state #23 and compute backwards to state #21 to get
a match for the SubBytes layer. Since we have 232 starting di�erences, we expect
to �nd 232 results for the third inbound phase, with �xed values and di�erences
for the 16 bytes in state #15 (purple and black bytes).

5.10 Merge Inbound Phases

The values of the second and the third inbound phase overlap in 4 active bytes
(black) of state #18. Since we have 232 results of the third inbound phase, we
expect to �nd one solution after merging the two phases. Once we have found
a match, we can compute the values of the newly determined 12 bytes in state
#15, marked by purple bytes in Fig. 5. Next, we need to connect all three
inbound phases. For all possible 8-byte values of state #10 marked by red bytes,
we compute the 16 corresponding bytes in state #15 (2nd AES-block). If the
computed values satisfy the 4 bytes in state #15 marked by purple, we store
the result of each lane in the corresponding lists La

0 , L
a
2 , L

a
4 and La

5 . In total,
we obtain 264 · 2−32 = 232 entries in each list. We repeat the same for the bytes
marked by blue and yellow, and generate the lists Lb

i and Lc
i for each of the

active lanes with index i ∈ {0, 2, 4, 5}. For each lane, we merge the three lists
La

i , L
b
i and Lc

i and store the 296 results in lists L∗i . Note that for each entry in
these lists, we can determine all values and di�erences of the corresponding lane.

5.11 Find Collisions

In this phase of the attack, we �nally search for a collision at the end of the
P-lanes (P0, P2) and (P4, P5) using the elements of lists L∗i . To �nd a collision at
the end of the P-lanes, we need to match the 16 byte di�erences in state #32 of
the two corresponding active lanes such that ∆(P0⊕P2) = 0 and ∆(P4⊕P5) = 0.
Note that we can satisfy these conditions independently for each side (P0, P2)
and (P4, P5). Since we need to match 128 bits and we have 296 elements in each
list L∗i , we expect to �nd 296 · 296 · 2−128 = 264 collisions for each side. We store
the corresponding inputs (a0, a1, c0, c1) for the collisions between lane P0 and
P2 in list L∗02 and the inputs (m0,m1,m2,m3) for the collisions between lane P4

and P5 in list L∗45.

5.12 Message Expansion

Finally, we need to match the message expansion for the remaining 32 bytes
of each side. Hence, we just repeat the same procedure as we did for the �rst
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part of state #0, except that we only need to match the values of 32 bytes
but no di�erences. Again, we use the values of (h0, h1) to satisfy the conditions
on (a0, a1) �rst. Then, we match the values of the 32 bytes in (c0, c1). Since
we only have 264 entries in both of L∗02 and L∗45, the success probability for a
match is 264 · 264 · 2−256 = 2−128. However, we can still repeat from Sect. 5.6
using a di�erent starting point stored in list Ls. Since we have 2128 elements in
list Ls, we can repeat the previous steps up to 2128 times. Hence, we expect to
�nd one valid match for the message expansion and thus, a collision for the full
compression function of Lane-512.

5.13 Complexity

The total complexity of the rebound attack on Lane-512 is determined by the
merging step after the third inbound phase. This step has a complexity of 296

compression function evaluations and is repeated 2128 times. The memory re-
quirements are determined by the largest lists, which are L′02 and L′45 (or Ls)
with a size of 2128. Hence, the total complexity to �nd a semi-free-start collision
for Lane-512 is about 2128 · 296 = 2224 compression function evaluations and
2128 in memory.

6 Conclusion

In this work, we have applied the rebound attack to the hash function Lane.
In the attack we use a truncated di�erential path with di�erences concentrating
mostly in one part of the lanes. Due to the relatively slow di�usion of parallel
AES rounds, we are therefore able to solve parts of the lanes independently.
First, we search for di�erences and values (for parts of the state) according to
the truncated di�erential path and also satisfy the message expansion. Then, we
choose values which can be changed such that the truncated di�erential path and
according message expansion still holds. The freedom in these values is then used
to search for a collision at the end of the lanes without violating the di�erential
path or message expansion.

In the rebound attack on Lane, we are able to construct semi-free-start col-
lisions for full round Lane-224 and Lane-256 with 296 compression function
evaluations and memory of 280, and for full round Lane-512 with complexity of
2224 compression function evaluations and memory of 2128. Although these colli-
sions on the compression function do not imply an attack on the hash functions,
they violate the reduction proofs of Merkle and Damgård, or Andreeva in the
case of Lane. However, due to the limited degrees of freedom, a collision attack
on the hash function seems to be di�cult for full round Lane.
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0:

SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB

1:

SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR

2:

MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC

3:

SC SC SC SC SC SC

4:

SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB

5:

SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR

6:

MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC

7:

SC SC SC SC SC SC

8:

SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB

9:

SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR

10:

MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC

11:

SC SC SC SC SC SC

12:

SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB

13:

SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR

14:

MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC

15:

SC SC SC SC SC SC

16:

SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB SB

17:

SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR SR

18:

MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC MC
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Fig. 5. The truncated di�erential path for 8 rounds of Lane-512. Lane P0 shows
the plain truncated di�erential path, lane P2 other possible truncated di�erential
paths and lane P4 and P5 are used to describe the attack.
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