We start by considering the central task in this setting, i.e., securely verifying the position of a device. Despite much work in this area, we show that in the Vanilla (or standard) model, the above task (i.e., of secure positioning) is impossible to achieve. In light of the above impossibility result, we then turn to the Bounded Retrieval Model (a variant of the Bounded Storage Model) and formalize and construct information theoretically secure protocols for two fundamental tasks: \begin{itemize} \item Secure Positioning; and \item Position Based Key Exchange. \end{itemize} We then show that these tasks are in fact {\em universal\/} in this setting -- we show how we can use them to realize Secure Multi-Party Computation.
Our main contribution in this paper is threefold: to place the problem of secure positioning on a sound theoretical footing; to prove a strong impossibility result that simultaneously shows the insecurity of previous attempts at the problem; and to present positive results by showing that the bounded-retrieval framework is, in fact, one of the ``right" frameworks (there may be others) to study the foundations of position-based cryptography.
Category / Keywords: cryptographic protocols / secure positioning, extractors, bounded retrieval model Publication Info: Full version of paper to appear at CRYPTO'09 Date: received 21 Jul 2009 Contact author: nishanth at cs ucla edu Available formats: PDF | BibTeX Citation Version: 20090727:041413 (All versions of this report) Discussion forum: Show discussion | Start new discussion