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Abstract

The weakening of the widely used SHA-1 hash function
has also cast doubts on the strength of the related algo-
rithms of the SHA-2 family. The US NIST has therefore
initiated the SHA-3 competition in order to select a mod-
ern hash function algorithm as a “backup” for SHA-2.
This algorithm should be efficiently implementable both
in software and hardware under different constraints. In
this paper, we present hardware implementations of the
four SHA-3 candidates ARIRANG, BLAKE, Grøstl, and
Skein with the primary constraint of minimizing chip area.

1 Introduction

The basic functionality of a cryptographic hash function
is to take an arbitrarily long message1 and deliver a fixed-
size output, the so-called message digest. Hash functions
are widely used in modern security protocols and applica-
tions like digital signatures, message authentication, pass-
word protection, and pseudo-random number generation.
Following cryptanalytical advances, the popular SHA-1
algorithm [9] has been seriously weakened [2, 11]. As a
reaction, the US National Institute of Standards and Tech-
nology (NIST) has recommended to switch to the SHA-2
family of hash functions [9]. However, as SHA-2 is very
similar in structure to SHA-1, it is feared that the discov-
ery of serious cryptanalytic attacks on SHA-2 might only
be a matter of time.

As a response to this problem, NIST has set up the
SHA-3 competition [7] with the goal of identifying one
(or more) modern hash functions which can act as a drop-
in replacement for the SHA-2 family. Following the offi-
cial call for submissions in November 2007, 64 algorithms
were proposed for SHA-3 in October 2008. The tentative
timeline of the competition aims at the selection of a win-
ner in the middle of 2012 after two evaluation rounds of
roughly 18 months each. As of now, about a third of the

1Normally, hash functions have an upper limit for the input message
size, e.g. 264 − 1 bits for SHA-256.

candidates has not been selected for the first evaluation
round, has been withdrawn, or has been conceded as bro-
ken. The rest of the hash functions is currently undergoing
scrutiny by the cryptographic community and their imple-
mentation properties are evaluated on various platforms
and under various constraints.

In the domain of hardware implementations, low-area
constraints are often found in small embedded systems
where the cost per produced unit is of paramount impor-
tance. Additionally, such systems often have a low power
budget. Prominent examples include RFID tags and cryp-
tographic smart-cards.

In order to estimate the suitability of some promis-
ing SHA-3 candidates, we have implemented ARIRANG,
BLAKE, Grøstl, and Skein in hardware with the main em-
phasis on the reduction of the required silicon area. The
hardware modules have been evaluated in regard to their
size, throughput, and energy consumption. With this work
we hope to make a valuable contribution to the hardware
evaluation effort for the SHA-3 competition [4].

The rest of this paper is organized as follows. Common
properties of hash functions in general and of our four
implementations in particular are described in Section 2.
More detailed elaborations on the four implementations
are given in Sections 3, 4, 5, and 6. Each of these sec-
tions includes a brief outline of the hash algorithm and the
most important properties of the corresponding hardware
module. In Section 7 we summarize our practical results
and compare the four implementations. Conclusions are
drawn in Section 8.

2 Hash Functions and Their Implementa-
tion in Hardware

In the following, we briefly describe the principal con-
cepts used in hash functions and the general design
choices we have taken for our hardware implementations.

2.1 General Properties of Hash Functions
Most of the SHA-3 candidates employ a similar concept

to transform the input message to the output message di-
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Figure 1. A hash function with sequential compression of message blocks.

gest. The message is padded to a size which is a multi-
ple of a fixed block size and is segmented into individual
message blocks. Message blocks are then processed se-
quentially (as in the four algorithms examined in this pa-
per) or in a more parallel fashion (e.g. as inner nodes of a
tree structure). The results of the processing of individual
message block are connected together by so-called chain-
ing values. The compression function of the hash algo-
rithm takes the chaining value and a message block (and
possibly some additional inputs) and produces an updated
chaining value.

Figure 1 depicts a hash function with the compression
function compress, which hashes the message blocks M1

to MN and produces the message digest MD. The chain-
ing values are C0 to CN . At the beginning of the hash-
ing, an initialization vector (IV) is used as first chaining
value C0. The compression of message block Mi yields
the chaining value Ci. After all message blocks have
been processed, the message digest is derived from the
last chaining value CN via the so-called output function
(labeled out in Figure 1).

All SHA-3 candidates must support four message digest
sizes: 224, 256, 384, and 512 bits. Most of the sub-
missions define so-called hash function families which
consist of separate algorithm variants for the different
message digests. For example, the ARIRANG specifica-
tion [3] defines the variants ARIRANG-224, ARIRANG-
256, ARIRANG-384, and ARIRANG-512, where the
trailing number indicates the length of the message digest.
The variants usually differ only in some details, e.g. value
of some constants, size of the chaining value, size of the
inner state of the compression function.

2.2 Design Choices for Our Implementations

We have chosen to implement only the variants with a
256-bit message digest, i.e. ARIRANG-256, BLAKE-32,
Grøstl-256, and Skein-256-2562. For the sake of brevity,
only the implemented variants are discussed in the subse-
quent sections. All four implementations assume that the
padding is performed externally and that only complete
message blocks are supplied as input. The modules are
fully self-contained, producing the message digest from
the supplied message blocks without the need of any ex-

2Skein-X-Y denotes the variant of Skein where X is the size of the
inner state of the compression function, and Y is the size of the message
digest.

ternal memory. The interfaces allow connection to a mi-
crocontroller as coprocessor, e.g. in a system-on-chip im-
plementation. After the optimization of the hardware ar-
chitectures, the modules have been synthesized with the
Cadence PKS shell and power has been simulated with
Synopsys NanoSim.

3 ARIRANG

The hash function family ARIRANG has been designed
by Chang et al. [3]. It reuses some transformations of the
Advanced Encryption Standard (AES) [8].

3.1 Algorithm Description

After message padding, ARIRANG-256 initializes its
256-bit chaining value with an IV. A counter value is
added to the chaining value, before it is mixed with the
next message block in the compression function, yield-
ing the next chaining value. The ARIRANG-256 com-
pression function consists of 40 similar steps, where each
step mixes in two 32-bit words from the so-called message
schedule, which is an expansion of the message block.
The message schedule generates 16 extra words via XORs
from the 16 words of the 512-bit message block and from
16 constants.

A single step of the compression function transforms the
eight 32-bit words of the intermediate state, performing
eight XORs, four fixed-distance rotates and applying the
so-called G(256) function twice. The step function is de-
picted in Figure 2. The G(256) function works on a single
32-bit word using the AES SubBytes and MixColumns
transformations. After 20 steps and 40 steps, the original
chaining value is XORed to the intermediate state of the
compression function. The message digest is the chaining
value after the processing of the last message block.

3.2 Implementation

We have implemented the low-area version of
ARIRANG-256 in Verilog. The datapath is able to
process a complete step of the compression function in a
single clock cycle. To this end it includes two instances
of the G(256) function, requiring eight S-boxes and two
MixColumns multipliers. The S-boxes are implemented
as simple hardware look-up tables by specification of the
input-output relation in Verilog [10]. The 16 extra words
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Figure 2. Step function of ARIRANG-256 for round t.

of the message schedule are generated directly from the
message block and are not stored in dedicated registers.

The bulk of the sequential logic consist of registers for
the 256-bit chaining value, the eight 32-bit working vari-
ables for the compression function, the 64-bit counter for
the counter addition, the two 32-bit input words of the
message schedule for the current step, and the 512-bit
message block. A message block can be processed in only
44 clock cycles, which results in a relatively high through-
put.

4 BLAKE

Aumasson et al. have designed the hash function family
BLAKE [1]. BLAKE combines three known and ana-
lyzed concepts: The iteration mode HAIFA, the internal
structure of the LAKE hash function (local wide-pipe de-
sign), and a modified version of the ChaCha stream cipher
as compression function.

4.1 Algorithm Description

The BLAKE-32 compression function works on an in-
ternal state of 512 bits, represented as a (4 × 4)-matrix
of 32-bit words. The chaining value is only half the size
of the internal state. It is expanded to 512 bits in the ini-
tialization phase of the compression function, then mixed
with the message block in a number of “ChaCha-like”
rounds, and the result is compressed to 256 bits in the fi-
nalization phase, yielding the next chaining value. The
designation as local wide-pipe design stems from the lo-
cal expansion of the chaining value in the compression
function.

The core of the compression function consists of the so-
called G function. The G function takes four 32-bit words
of the internal 512-bit state, combines it with two 32-bit
words of the message block and two 32-bit constants and
delivers four 32-bit words as result. The additional in-
dex input, ranging between 0 and 7, decides which mes-
sage words and constants are used for the mixing. The G

function features six additions modulo 232, six XORs and
four individual word rotations by a fixed distance. Fig-
ure 3 shows the G function for index i. A single round
consists of eight invocations of the G function: Four on
the columns of the state and four on the diagonals of the
state. Thus, in a high-performance hardware implementa-
tion, four G functions could be instantiated in parallel. A
total of ten rounds is executed.
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Figure 3. The G function of BLAKE-32 for index i.

The initialization and finalization parts of the compres-
sion function are rather simple and consist only of XOR
operations. Initialization mixes the chaining value with a
user-chosen salt, a counter of hashed bits, and some con-
stants. The finalization takes the output of the ten rounds
and combines it with the input chaining value and the salt.

4.2 Implementation
Our Verilog implementation of BLAKE-32 is centered

around a 32-bit register file with a capacity of 48 words.
It has four read ports and two write ports. All values re-
quired for the hashing are stored in the register file, which
includes the input chaining value (8 words), the message
block (16 words), the salt (4 words), the current and total
bit length of the message (2 words each), and the internal
state of the compression function (16 words). The per-
mutations required for selecting message words and con-
stants for the G function is implemented as appropriate
addressing of the register file. The G function is split up
into eleven individual steps, where intermediate words are
calculated and stored back for subsequent use.

The processing of a 512-bit message block requires
1,038 clock cycles, including the loading of the block.
The bulk of this time (970 cycles) is taken up by the ten
rounds of the compression function.

5 Grøstl

Grøstl has been conceived by Gauravaram et al. [6]. It
uses operations similar to those of AES and it is based
on the wide-trail design strategy, which has already been
employed in the design of AES. As Grøstl shares many
features of AES, it can be expected to allow efficient im-
plementation for a wide range of platforms and require-
ments.



5.1 Algorithm Description
The chaining value of Grøstl-256 and each input mes-

sage block consists of eight 64-bit words. Larger message
digests require an internal state and message blocks of 16
words. Two distinct permutation functions (called P and
Q permutation) are defined based on “AES-like” transfor-
mations (AddRoundKey, SubBytes, ShiftBytes, and Mix-
Bytes), which are repeated in a number of similar rounds.
Figure 4 depicts the processing of a single 64-bit word in
a round of the P permutation, where S denotes an AES
S-box. Note that the ShiftBytes transformation is done by
the diagonal addressing of the state matrix. The Q permu-
tation looks very similar, with the exception of the round
constant, which is added to a different byte location.
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Figure 4. Processing of a 64-bit word of the internal
state in a round of the Grøstl P-permutation.

The P and Q permutations are applied to two data blocks
which depend on the chaining value and an input message
block. The two resulting blocks are then used to update
the chaining value.

5.2 Implementation
We have implemented Grøstl-256, where the P and Q

permutations transform data blocks of 512 bits. Our com-
pact hardware implementation makes use of a 64-bit data-
path which processes the columns of a data block sequen-
tially. The datapath can be switched between the func-
tionality of the P and Q permutation and it consists of two
parts: The first part comprises the transformation Add-
RoundConstant and most of SubBytes, while the second
part includes the rest of SubBytes and the MixBytes trans-
formation. ShiftBytes is performed in between these parts
on a complete 512-bit data block by dedicated logic.

Two 512-bit blocks are processed by the datapath in
an interleaved fashion: One block is piped through the
first part of the datapath, while the other block is passed
through the second part. Three 512-bit blocks are stored
during the hashing operation: The two intermediate values
of both permutations and the most recent chaining value.

6 Skein

The hash function family Skein has been developed by
Ferguson et al. [5]. It is designed to allow fast implemen-
tation on modern 64-bit processors.

6.1 Algorithm Description

Skein is based on the tweakable block cipher3 Three-
fish, with a block size of 256, 512, or 1,024 bits. The
block size of Threefish equals the message block size of
the input message and can be chosen independently from
the size of the message digest. The Matyas-Meyer-Oseas
mode is used to construct the Skein compression function
from Threefish. The specification of the format of the
tweak and a padding scheme complement the so-called
Unique Block Iteration (UBI) chaining mode. UBI is used
in Skein for message compression and as output function,
but also for IV generation and other optional operation
modes (e.g. tree hashing, keyed hashing).

For each Threefish block size, the size of the message
digest can be set to an arbitrary value. In order to distin-
guish the different Skein variants, a Threefish block size
of X bits together with a message digest size of Y bits is
designated as Skein-X-Y. The message digest size can be
changed in a hardware implementation very easily with
virtually no overhead.

Threefish consists of a number of similar rounds, which
feature only three simple operations: Addition modulo
264, XOR, and bit permutation. The Threefish rounds op-
erate on the intermediate state, which is organized as a
number of 64-bit words. The so-called MIX operation
depicted in Figure 5 transforms two 64-bit words simul-
taneously. The rotation distance (rot_dist) varies with the
Threefish block size, the round index and the position of
the two 64-bit words in the Threefish state. A Threefish
round transforms all state words with MIX and then shuf-
fles the words with a fixed permutation. After each fourth
round, a subkey is added to the state.

<<<
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Figure 5. The Threefish MIX-operation.

Subkeys are derived from the cipher key and tweak
through a simple key schedule, which also features 64-bit
modulo addition. The number of rounds is 72 for Three-
fish block sizes of 256 and 512 bits, while Threefish-1024
has 80 rounds.

3In addition to the plaintext and key, a tweakable block cipher has
another input (the tweak), which provides an additional degree of free-
dom.



Area Latency Block size Clock freq. Throughput Energy Energy/bit
Implementation GEs cycles bits MHz Mbit/s mW/MHz nJ/bit
ARIRANG-256 23,732 44 512 61.30 713.3 1.67 0.14
BLAKE-32 25,569 1,038 512 31.25 15.4 2.66 5.39
Grøstl-256 14,622 196 512 55.87 145.9 2.21 0.85
Skein-256-256 12,890 1,034 256 80.00 19.8 1.62 6.54

Table 1. Implementation results.

6.2 Implementation

We have implemented a fully autonomous version of
Skein-256-256 in Verilog. It consists of a 64-bit datapath
with a temporary 64-bit register, a register file with a ca-
pacity of 16 words, a control FSM, and a 32-bit AMBA
APB interface. The 64-bit adder has been implemented in
a generic fashion with Verilog’s native ’+’ operator in or-
der to allow the synthesizer the greatest flexibility for opti-
mization. A Threefish MIX operation can be processed in
five clock cycles. For a complete 256-bit message block,
1,021 clock cycles are required.

7 Practical Results

The four hash function designs have been implemented
with the Cadence PKS shell with enabled low-power op-
tion4 targeting a 0.35 µm standard-cell library from austri-
amicrosystems. Power simulation has been performed us-
ing Synopsys NanoSim, which is a so-called “near Spice”
transistor-level simulator.

Table 1 lists the most important characteristics of the
four hardware implementations. Silicon area is given in
gate equivalents (GEs), in this case the total area (ex-
cluding pads) divided by the size of a 2-input NAND cell
(NAND20). Latency gives the number of clock cycles re-
quired for processing a single message block. Block size
lists the size of such a message block. The stated clock
frequency is the maximal value for a supply voltage of
3.3 V under typical operating conditions. Throughput is
given as maximum sustainable throughput for this clock
frequency (any one-time setup and finalization cost for the
hashing operation is ignored). The energy consumption is
given in mW/MHz to facilitate comparison. Additionally,
the energy per hashed message bit is stated.

The ARIRANG implementation is rather large, but
boasts by far the highest throughput, mainly due to its
small number of processing cycles per block. Addition-
ally, its energy consumption is rather small. On the other
hand, the Skein module is the smallest and requires the
least energy. Despite the high clock frequency of 80 Mhz,
the throughput is comparatively low. The Grøstl im-
plementation achieves relatively good values in all cate-
gories. Our BLAKE implementation compares rather un-
favorably, having the worst values for all characteristics.

4The low-power option enables the automatic insertion of clock-
gating cells and the inclusion of sleep logic.

8 Conclusions

We have evaluated four candidate algorithms for the
SHA-3 competition towards the goal of compact hardware
implementation. Skein allowed for the smallest imple-
mentation with the lowest energy consumption, but with a
comparatively low throughput. At a similarly low energy
consumption, the ARIRANG implementation achieved a
35-times higher throughput, but required twice the silicon
area. The Grøstl implementation offered a well-rounded
result, being nearly as small as Skein, with a relatively
high throughput and a moderate energy consumption.
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