
On Optimized FPGA Implementations of the
SHA-3 Candidate Grøstl?

Bernhard Jungk, Steffen Reith, and Jürgen Apfelbeck

Fachhochschule Wiesbaden University of Applied Sciences
{jungk|reith}@informatik.fh-wiesbaden.de

apfelbeck@ite.fh-wiesbaden.de

Abstract. Actual and future developments of the automotive market
(e.g. the AUTOSAR project or car2car communication systems) will
increase the need for a suitable cryptographic infrastructure in modern
vehicles. A core component for such a generic cryptographic core is a
secure cryptographic hash function, because these functions are the base
for a lot of applications like challenge-reponse authentication systems and
digital signature schemes. In the present paper we evaluate the SHA-3
candidate Grøstl with respect to area requirements, which play a very
important role for cost-sensitive markets.
The National Institute of Standards and Technology (NIST) has started
a competition for a new secure hash standard. In this context third party
implementations of all proposed hash functions are regarded as an im-
portant part of the competition. We chose to implement the Grøstl hash
function for FPGAs, for its resemblance to AES. More precisely we devel-
oped two optimized versions, one optimized for throughput, the other one
for area. Both implementations improve the results and estimates pre-
sented in the original submission to the competition. The performance of
both implementations may be improved further, thus Grøstl seems to be
a good candidate for implementations on medium sized FPGAs. Besides
that, it is shown that Grøstl needs a significant amount of resources,
which will hinder its use for automotive applications.

Key words: Cryptography, hashfunction, FPGA, automotive, car2car

1 Introduction

The National Institute of Standards and Technology (NIST) has started
a competition for a completely new hash function, very similar to the past
AES competition [1]. Again this competition requires third party imple-
mentations of all proposed candidates and both software and hardware
implementations are necessary to evaluate the overall performance of the
proposed hash functions.

? Research supported in part by BMBF grant 17N1308.



In our work we focus on FPGA implementations of the candidate
Grøstl [2]. The Grøstl hash function borrows many ideas from the Ri-
jndael/AES algorithm [3], which is one of the reasons, we chose this
particular SHA-3 candidate. FPGA implementations are important for
automotive applications, because they can offer better performance at a
lower cost in many areas, where software implementation would be too
slow and a custom ASIC chip would be too costly.

For this work two implementations were developed and evaluated.
The first implementation is a high-throughput implementation of Grøstl,
whereas the second one is an area optimized version. Our results show a
slight improvement (cf. Tab. 1) of the reported and estimated results in
[2].

2 Previous work

The Grøstl algorithm is described in detail in [2], where a reference soft-
ware implementation and some optimized versions can be found, which
will not be considered further in this paper. Additionally, some results and
estimates on FPGA implementations are given there, which are compara-
ble to our implementations. Beside these early results, we are not aware
of any other published implementation results, especially with respect to
area constraints.

One benefit of the Grøstl hash function is its similarity to AES, be-
cause extensive research has been done to improve the throughput and
reduce the required area of AES (e.g. [4,5,6]). This existing work can be
used to improve Grøstl, as we did in our area optimized version, which
is based on ideas presented in [5]. Further work on AES and Grøstl may
result in optimizations for both algorithms.

Many more optimizations are known for AES and some of them can be
expected to be applicable to Grøstl. Especially the AES S-Box optimiza-
tions may be applied unchanged [4]. Some architectural optimizations are
probably not directly applicable to Grøstl. For example, pipelined high-
throughput implementations of AES often use the less secure ECB mode,
which does not depend on the output of the procession of the previous
message block [7]. In contrast Grøstl is similar to the CBC mode, which
feeds the output back into the processing of the next message block, thus
limiting the usefulness of pipelining for Grøstl.



3 The Grøstl hash function

The Grøstl hash function uses a compression function f , which is executed
for each message block mi. Each message block mi is one part of the
original input message m and has l-bits. The value of l depends on the
desired hash length. The submission paper of Grøstl fixes l for 224 and
256 bit-sized hashes to l = 512 and for 386 and 512 bit hashes to l = 1024.

The compression function f uses two transformations P and Q to
compute f(h,m) = P (h⊕m)⊕Q(m)⊕h, where h is either an initial value,
if it’s the first message block or the output of the previous computation
of f .

Both transformations P and Q are composed of four different sub-
transformations AddRoundConstant, SubBytes, ShiftBytes and MixBytes.
Each of the transformations P and Q perform these four sub-transfor-
mations sequentially for n rounds, where n = 10 for the 224 and 256 bit
hashes and n = 13 for 384 and 512 bits.

It is important to note, that the sub-transformations map each mes-
sage block to a matrix representation with eight rows and eight or sixteen
columns, depending on l. Each entry of this matrix is one byte of the mes-
sage block.

The AddRoundConstant transformation adds the current round to this
matrix (add means bitwise XOR). The P -instance of this transformation
adds the round to the very first byte, whereas theQ-instance adds 0xFF⊕
round to the first byte in the eighth row. The SubBytes transformation is a
non-linear transformation, which uses the exact same s-box as AES does.
The ShiftBytes transformation performs a cyclic left shift for each row.
The first to the seventh row are shifted 0 to 6 bytes to the left, whereas
the eighth row is shifted 7 bytes for l = 512, or 11 bytes for l = 1024. The
final MixBytes transformation performs a matrix multiplication

A← B ×A,

where A is the message block mapped to the matrix representation and
B is a circulant matrix B = circ(02, 02, 03, 04, 05, 03, 05, 07). circ uses the
given row to fill the matrix B, by rotating the round to the right each
further row, beginning at the first row of B with the original argument
to circ.

After all rounds are completed and all message blocks are processed,
the compression function outputs the compressed result x. This result is
used by the output transformation Ω, which first computes P (x)⊕x and
then truncates the result to the desired hash size, which results in the
final hash value.



Another important function of Grøstl is the padding function which
takes a message m of arbitrary length as input and outputs a padded
message m′ which is a multiple of l.

4 Implementations

We have developed two implementations of the Grøstl hash function. The
first implementation is optimized for throughput, whereas the second is an
area optimized version. Currently, both implementations are implemented
with only 512 bits internal state, thus they are only able to compute 224
or 256 bit sized hashes. Our choice matches perfectly to applications in
the automotive environment, because of strong resource restrictions in
this market.

The most fundamental difference between both implementations is the
computation of each Grøstl round. The high-throughput implementation
computes the sub-transformations of P and Q completely in parallel, thus
requiring only one clock cycle per round. The area-optimized divides the
internal state in eight smaller sub-states. For each sub-state the sub-
transformations of P and Q need only one clock cycle, thus the number
of clock cycles for one Grøstl round is increased by a factor of eight.

Both implementations share a common design (Fig. 1). At a first
glance, the design is a straight forward implementation of the Grøstl algo-
rithm, but there are some important changes, which reduce the required
area in both implementations.

The padding function receives all message blocks and passes them to
the compression function f , padding the message blocks as necessary at

message block

block length

message block

padded block 1

padded block 2

padded block 3

zero block

p
a
d

A
d
d
R

o
u
n
d
C

o
n
s
ta

n
t

A
d
d
R

o
u
n
d
C

o
n
s
ta

n
t

S
u
b
B

y
te

s

S
h
if
tB

y
te

s

M
ix

B
y
te

s

S
u
b
B

y
te

s

S
h
if
tB

y
te

s

M
ix

B
y
te

s

h

h
 (

p
re

v
io

u
s
)

IV

h
a
s
h

f

P

Q

Fig. 1. The overall design of both implementations.



A
d
d
R
o
u
n
d
C
o
n
s
ta
n
t

S
u
b
B
y
te
s

M
ix
B
y
te
s

Fig. 2. The I/O register implementation for the Grøstl round.

first. The compression function takes each message block and applies the
P and Q transformations in parallel. Depending on the current round,
the sub-transformations are applied to either the input message block
or the output of the previous round. When the last round is complete,
a new value for h is computed and fed back into P combined with the
next message block. After the last message block is transformed, Ω is
computed and the hash value is placed in an output register.

The design includes some optimizations, which were discovered by
examination of the Grøstl hash function. One idea is to reuse the P -
instance used for the compression function for the single invocation of P
in Ω. The necessary changes are a result of the different input to P . Ω
computes P (h)⊕h. This obviously differs from the usual computation of
P (h⊕m)⊕Q(m)⊕ h.

Reuse will be simplified greatly, if we arrange the input message block
m, so that the computation of h⊕m results in h. Thus, the input message
block m has to be all-zero for this last invocation of P . We achieve this by
changing the padding function to output an all-zero message block at the
right point in time. Now, reusing the logic used to compute one Grøstl
round for the computation of P in Ω is easy, because we don’t have to
change anything else.

We could additionally change Q to output an all-zero output, too, but
this change does not reduce the area compared to our approach, using 256
additional XORs, because both approaches require the same number of
LUTs [8].

The high-throughput implementation takes a lot of chip area. For
many mass market applications the size of the chip is more important
than the maximum throughput. The obvious strategy to reduce the area
requirement is to reduce the amount of parallelization, which in turn
reduces the required copies of the S-Box in SubBytes and the matrix
multiplication in MixBytes.



Our approach is similar to the compact AES implementation proposed
in [5]. The implementation splits a Grøstl round in eight sub-rounds, each
computed in one clock cycle, thus one Grøstl round now takes about eight
times longer than before. One of the ideas presented in [5] is an optimiza-
tion of the input and output registers needed for the Grøstl round.

They describe two ideas, the first is based on distributed RAM re-
sources and the other uses shift registers. We adapted the approach with
distributed RAM resources. The main idea is to use the distributed RAM
as 8 bits wide and 8 bits deep dual-ported RAM. Eight of these RAMs
together have the necessary size to hold the internal state of the Grøstl
compression function. Two of these memory banks are required, one im-
plements the input register, the other one the output register. The input
and output registers are swapped after each round.

The ShiftBytes transformation makes it necessary to tap the bytes
out of the input memory. This is achieved by using a counter for the
sub-rounds and eight additions depending on the memory the input is
read from. The output is written into each individual memories at the
same position, thus the explicit ShiftBytes transformation is unnecessary
(Fig. 2).

A similar idea may be adapted for the storage of h, but the different
access pattern on h makes it unnecessary to use two identical memories.
Instead we use only one memory bank. The computation of the output
of the compression function P (h⊕m)⊕Q(m)⊕ h reads the old value of
h and writes the new value to the RAM at the same time. The dual-port
RAM allows us to achieve an read-modify-write cycle in only one clock
cycle using a pipelined RAM [9], thus the processing is not slowed down.

5 Evaluation

To our best knowledge we are not aware of other FPGA implementation
results for Grøstl beside those already mentioned in [2]. The presented
results are similar to our high-throughput implementation. Our area op-
timized result is the first effort of an area optimized implementation of
Grøstl with actual published results, because in [2] only estimates are
mentioned, which are based on the results of implementing the Whirlpool
hash function [10].

To achieve a fair comparison to the previous results, we used the same
Xilinx Spartan 3 FPGA. Table 1 shows the various implementation results
for an Xilinx Spartan 3 FPGA. Our high-throughput implementation
slightly beats the original result, but overall our implementation seems to



be rather similar. The area optimized versions targeting the Spartan 3 and
Virtex 2P are each more compact than the estimate. The area optimized
version fits on an fairly small Spartan 3 (XC3S400) and it is probably
possible to further optimize the implementation to fit on the next smaller
Spartan 3. This situation is similar for the Virtex 2P implementation.

Variant FPGA Slices Frequency Throughput
(MHz) (MBit/s)

throughput (ours) Spartan 3 6136 88.3 4520

throughput [2] Spartan 3 6582 86.7 4439

area (ours) Spartan 3 2486 63.2 404

area (ours) Virtex 2P 2754 81.5 512

area estimate [2] Virtex 2P 3000-4000 75-125 400

Tab. 1. Comparison of implementation results for 224 and 256 bit hashes using an
Xilinx Virtex 2P (xc2vp100-5ff1704) and an Xilinx Spartan 3 (xc3s5000-5fg676).

6 Conclusion and Further Work

Our current work focuses on a FPGA implementation of the proposed
Grøstl hash algorithm. The high-speed implementation described in this
paper computes each round of the compression function in parallel, which
results in a fast, but area consuming FPGA implementation. The size-
optimized implementation needs less than the half area, but in turn it
is eight times slower. Overall the Grøstl hash function fits on medium
sized FPGAs like the Spartan 3 XC3S400 and it’s likely that this can
be improved further. However, our implementation does not fit on any
of the older and smaller Spartan 2 FPGAs and it seems unlikely, that
Grøstl may be efficiently implemented on any, but the largest Spartan 2
versions.

Both implementations may be improved in many ways. For exam-
ple the implementation of the S-Box may be improved [4], thus reduc-
ing the required area of both implementations. Pipelining of the high-
throughput version may increase the throughput by some degree, but the
benefit would be rather small, due to inherent data dependencies. Fur-
thermore, it is possible, that other ideas from AES may apply to Grøstl,
too (e.g. [11,12]). Thus one possible direction of further work, would be to
review successful optimizations of AES for their applicability to Grøstl.
At the moment the area requirements of both implementations are signifi-



cant with respect to automotive applications. Hence our further work will
focus on area optimization, rather than improvements of the throughput.

References

1. Kayser, R.F.: Announcing Request for Candidate Algorithm Nominations for a
New Cryptographic Hash Algorithm (SHA-3) Family. In: Federal Register. Vol-
ume 72. National Institute of Standards and Technology (November 2007) 62212–
62220

2. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(2008)

3. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. Submission to NIST (1999)
4. Canright, D.: A Very Compact S-Box for AES. In: Proceedings of 7th International

Workshop on Cryptographic Hardware and Embedded Systems (CHES), Springer-
Verlag (2005) 441–455

5. Chodowiec, P., Gaj, K.: Very compact FPGA implementation of the AES algo-
rithm. In: Proceedings of 5th International Workshop on Cryptographic Hardware
and Embedded Systems (CHES), Springer-Verlag (2003) 319–333

6. Pramstaller, N., Mangard, S., Dominikus, S., Wolkerstorfer, J.: Efficient AES
Implementations on ASICs and FPGAs. In: Advanced Encryption Standard –
AES. Springer-Verlag (2005) 98–112

7. McLoone, M., McCanny, J.: High Performance Single-Chip FPGA Rijndael Algo-
rithm Implementations. In: Proceedings of 3rd International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES), London, UK, Springer-Verlag
(2001) 65–76

8. Xilinx: Spartan-3 Generation FPGA User Guide. (2009)
9. Alfke, P.: Creative Uses of Block RAM. Xilinx. (2008)

10. Pramstaller, N., Rechberger, C., Rijmen, V.: A compact FPGA implementation of
the hash function Whirlpool. In: FPGA ’06: Proceedings of the 2006 ACM/SIGDA
14th international symposium on Field programmable gate arrays, ACM (2006)
159–166

11. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A Systematic Evaluation
of Compact Hardware Implementations for the Rijndael S-Box. In: Topics in
Cryptology - CT-RSA 2005. Volume 3376 of Lecture Notes in Computer Science.,
Springer-Verlag (2005) 232–333

12. Nikova, S., Rijmen, V., Schläffer, M.: Using Normal Bases for Compact Hardware
Implementations of the AES S-Box. In: Security and Cryptography for Networks.
Volume 5229 of Lecture Notes in Computer Science., Springer-Verlag (2008) 236–
245


