Side Channel Cube Attacks on Block Ciphers

Itai Dinur and Adi Shamir

Computer Science department
The Weizmann Institute
Rehobot 76100, Israel

Abstract. In this paper we formalize the notion of leakage attacks on it-
erated block ciphers, in which the attacker can find (via physical probing,
power measurement, or any other type of side channel) one bit of infor-
mation about the intermediate state of the encryption after each round.
Since bits computed during the early rounds can be typically represented
by low degree multivariate polynomials, cube attacks seem to be an ideal
generic key recovery technique in these situations. However, the original
cube attack requires extremely clean data, whereas the information pro-
vided by side channel attacks can be quite noisy. To address this problem,
we develop a new variant of cube attack which can tolerate considerable
levels of noise (affecting more than 11% of the leaked bits in practical
scenarios). Finally, we demonstrate our approach by describing efficient
leakage attacks on two of the best known block ciphers, AES (requiring
about 2% time for full key recovery) and SERPENT (requiring about
2'8 time for full key recovery).

1 Introduction

State of the art block ciphers such as AES [1] and Serpent [2] were specifically
designed to resist all the standard types of attacks such as differential and lin-
ear cryptanalysis (see [3] and [4]). These ciphers were extensively analyzed over
many years and are widely believed to be theoretically secure (i.e. there is no
cryptanalytic attack which can break them faster than exhaustive search). How-
ever, most of the practical implementations of these ciphers can be broken with
feasible complexity by side channel attacks, which exploit partial information
leaked during the encryption process. Typical examples of such side channels
include counting the time taken by the encryption subroutine, physical probing
of one of the wires in the processor, measuring the power consumption when
data is written into memory, picking up electromagnetic radiation generated by
the chip, etc. All these techniques violate the black box assumption about the
encryption process, and make the cryptanalysis much easier.

Many papers on side channel attacks such as [5] concentrate on the physical
phenomenon used to obtain this side information, and on countermeasures which
minimize this particular type of leakage. In this paper we ignore these issues, and
concentrate on generic techniques which can exploit any type of leaked informa-
tion, regardless of how it was obtained (similar but more abstract approaches



are described in [6] and [7]). We consider the class of iterated block ciphers, in
which the same physical hardware is used to sequentially execute all the rounds
during the encryption process, and thus we assume that the same kind of side
information is provided about the internal state after each one of the rounds.
For example, if the attacker uses a fine needle to physically probe the Isb of the
state register, it makes no sense to assume that he can get this information after
the fifth round, but not after the first or ninth round.

We call the mapping from full internal states to leaked bits the leakage func-
tion. The basic model of leakage attack assumes that the attacker has a large
number of (known or chosen) pairs of plaintexts and ciphertexts, and in addition
he is given the value of the same leakage function at the end of each one of the
rounds in each one of the encryptions. The simplest kind of leakage function is
the i-th state bit (for some constant ), but obvious generalizations can provide
more bits (e.g., a full byte, or the Isb’s of all the state words) or a more compli-
cated Boolean function of the internal state (e.g., the Hamming weight of one of
the state words, or whether it was zero).

The data model in leakage attacks is a combination of the parallel kind of
information available in block ciphers and the serial kind of information available
in stream ciphers, and resembles the capital letter I (see Fig 1). In standard
attacks on block ciphers, we usually assume that the attacker knows the initial
plaintext and the final ciphertext, but nothing in between. In the case of stream
ciphers, we usually assume that the attacker knows after each clock cycle one bit
of information about the internal state which is provided by the output function,
but does not know the initial state and there is no final state. Our data model
provides the attacker with both types of information simultaneously. Note that
the distinction between the various data models becomes fuzzy when we consider
stream ciphers such as LEX [8] which are based on the round function of some
block cipher, since in this case the leakage from the block cipher is similar to the
sequence of outputs of the stream cipher.

Since more data is available to the attacker, leakage attacks are potentially
easier than standard attacks. On the other hand, we cannot use many of our
standard tools such as differential and linear cryptanalysis, since we cannot par-
tially decrypt the (mostly unknown) state after a few rounds in order to exploit
a high probability distinguisher.

Our basic approach is to exploit the plaintext and the information leaked in
the first few rounds, and to ignore the ciphertext and the information leaked
during later rounds of the encryption process. In particular, any state bit after
the first round is a very simple function of a small number of plaintext and key
bits. This is good in the sense that it is easy to analyze the function, but bad in
the sense that it cannot provide any information about most of the key bits. As
we consider more advanced rounds, we get increasingly complicated functions,
but also the possibility of determining more key bits. As we shall see later, for
many block ciphers we can find some early round in which the avalanche of key
bits is complete, but the function is still a relatively low degree multivariate
polynomial. This situation is an ideal starting point for the recently proposed



cube attack [9], which is an improvement and generalization of several previous
algebraic attacks such as AIDA [10].

Before analyzing advanced types of leakage attacks, we must first analyze the
performance of the simplest brute force key recovery attack. In the standard data
model, brute force attacks recover the correct key by exhaustively searching the
entire key space. However, when a single bit of information on an early encryption
or decryption round is available to the attacker, faster attacks may exist due to
an incomplete diffusion of the key into the state. For example, assume that the
leakage function is just the value of the first state bit of AES with a 128-bit key.
After one AES round, each one of the state bits depends on exactly 32 key bits
of the initial key and 1 key bit of the first round key. If the attacker knows these
leaked bits for 33 plaintexts, he can start by performing exhaustive search over
all the possible values of the 33 key bits, and expects to find one partial key
which is compatible with the data. He can then complete the attack in O(2%¢)
time by exhaustively searching only over the remaining bits of the initial key,
which is faster than a full exhaustive search but still impractical. If the attacker
was allowed to have four leaked bits from each state, he could repeat this process
and find the other three chunks of 32 key bits in O(23?) time, but this is not
allowed in our basic data model which assumes that only one bit of information
is available about each round in each encryption. To get a faster attack, the
cryptanalyst should analyze the state bit after the second round. It is a complex
function of all the 128 key bits, but its multivariate polynomial representation
has a relatively low degree. This is exactly the situation that cube attacks can
handle in a generic way, without having to tailor the attack to each particular
scenario.

The rest of this paper is organized as follows. In Section 2 we provide a brief
description of cube attacks. In Section 3 we explain the difficulty in applying the
original cube attack when the leaked data is even slightly noisy, and develop a
new type of robust cube attack which can overcome a large fraction of errors in
the leaked data. In Section 4 we describe the results we obtained when applying
the cube-based leakage attack to Serpent, and show that it is much faster than
the best known non-cube attack in the same data model. In Section 5 we perform
the same kind of analysis for AES, and in Section 6 we conclude and list some
open problems.

2 Cube Attacks

In this section we give a brief description of the original cube attack. For a more
detailed description, refer to [9].

Cube attacks are generic key derivation attacks which can be applied auto-
matically to any cryptosystem in which even a single bit of information can be
represented by a low degree multivariate polynomial in the key and plaintext
variables. An interesting property of cube attacks is that they can be applied
even when this polynomial is completely unknown (e.g., when the attacker probes
a random wire in a dense chip, and does not know which signal it carries) or



~ L

Fig. 1. The data model in leakage attacks (on the right) is a combination of the par-
allel kind of information available in block ciphers (on the left) and the serial kind of
information available in stream ciphers (in the middle)

cannot be explicitly computed due to its length (and thus cannot be provided
as input to other algebraic attacks such as XL [11] or Grobner bases [12]).

In almost any cryptographic scheme, each output bit can be described by a
multivariate master polynomial p(z1, .., Tpn, V1, .., Um) over GF(2) of secret vari-
ables x; (key bits), and public variables v; (plaintext bits in block ciphers and
MAC s, IV bits in stream ciphers). The cryptanalyst is allowed to tweak the mas-
ter polynomial by assigning chosen values for the public variables, which result
in derived polynomials, and his goal is to solve the resultant system of polyno-
mial equations in terms of their common secret variables. The cube attack is an
algorithm for solving such polynomials, as described next.

To simplify our notation, we now ignore the distinction between public and
private variables. Given a multivariate polynomial with n variables p(z1, .., z,)
over GF'(2) in algebraic normal form (ANF), and a term ¢; containing variables
from an index subset I that are multiplied together, the polynomial can be
written as the sum of terms which are supersets of I and terms that miss at
least one variable from I:

p(xlv "7xn) =1 “Ps(1) + q(‘rla "7xn)

ps(r) is called the superpoly of I in p. Note that the superpoly of I in p is a
polynomial that does not contain any common variable with ¢;, and each term
in g(x1,..,x,) does not contain at least one variable from I.

For example, consider the polynomial of degree 3 in 5 variables

p(@1, 72,23, T4, T5) = T120273 + T1T2T4 + T2T4T5 + T1T2 + T2 + T35 + X5 + 1
Let I = {1,2} be an index subset of size 2. We can represent p as:
p(1, T2, 3, 24, 25) = 122(23 + T4 + 1) + (22475 + 2375 + 22 + 25 + 1)
t[ = T1T2

Ps() = T3+ x4+ 1

q(x1, T2, T3, T4, T5) = ToTaxs + T325 + T2 + x5 + 1



The main observation of the cube attack is that the symbolic sum over GF(2)
of all the derived polynomials obtained from the master polynomial p(z1, .., z,)
by assigning all the possible 0/1 values to the subset of variables in the term
tr is exactly pg(r) which is the superpoly of t; in p(z1,..,2,). For example,
consider the sum of the four polynomials derived from the master polynomial
p(x1, 22, T3, T4, x5) defined above, by assigning all four possible values of z; and
xo (which appear in the term t; = xjx5). The result of this summation is the
superpoly of t1, pg(r) = (23 + 24 +1). A mazterm of p is a term ¢; such that the
superpoly of I in p is a linear polynomial which is not a constant.

The cube attack has two phases: the preprocessing phase, and the online
phase. The preprocessing phase is not key-dependant and is performed once per
cryptosystem. In this phase, the attacker finds sufficiently many maxterms of
the master polynomial. For each maxterm, he computes the coefficients of the
secret variables in the symbolic representation of the linear superpoly. The main
challenge of the attacker in the preprocessing phase is to find sufficiently many
maxterms with linearly independent superpolys. The attacker randomly chooses
a subset I of public variables and uses efficient linearity tests to check whether
its superpoly is linear. In case the subset [ is too small, the superpoly is likely
to be nonlinear and the attacker adds a public variable to I and repeats the
process. In case I is too large, the sum will be a constant function, and in this
case he drops one of the public variables from I and repeats the process. The
correct choice of I is the borderline between these cases, and if it does not exist
the attacker retries with a different initial /. Once sufficiently many maxterms
with linearly independent superpolys are found, the preprocessing is finished.

During the online phase, the secret variables are fixed. The attacker evalu-
ates each linear superpoly by summing over the values of the cryptosystem for
every possible assignment to its maxterm. The secret key can then be recovered
by simple linear algebra techniques. When the polynomial is assumed to be d-
random (i.e., each term has degree at most d and each term of degree exactly
d occurs with probability 0.5), it was shown in [9] that almost any choice of
d — 1 secret variables is a maxterm, and the superpolys of these maxterms are
independent random linear combinations of the other variables even when the
superpolys are computed from subcubes with large intersections. Consequently,
cube attacks can break with high probability any scheme represented by a d-
random polynomial in n input variables over GF(2) in about n2¢~1 + n? bit
operations.

3 Error Correction

The 0/1 value of the leaked information is usually obtained by the attacker
through an indirect measurement of an analog value such as power consump-
tion, and is likely to contain errors due to noise and quantization problems.
For example, the Hamming weight of a byte written into a register is typically
calculated based on the power consumption of the chip. This measurement can
be influenced by other sources of power consumption, and therefore it is not



completely accurate. If the attacker wants to determine whether this Hamming
weight is larger than or equal to its expected value of 4, then a measurement of
2 or 6 are likely to provide a reliable answer, but a measurement of 4 is too close
to the discretization threshold and thus too susceptible to random noise.

In our leakage attacks, we assume that only one bit of information about the
Hamming weight at each round is available to the cryptanalyst. The most robust
bit is the msb of the Hamming weight, but in the context of cube attacks its
multivariate polynomial representation has the highest possible degree. On the
other hand, the Isb of the Hamming weight can be represented by a polynomial
of degree 1 (it is just the XOR of all the bits of the word), but it is very sensitive
to noise. A good compromise might be to consider the two least significant bits
of the Hamming weight, using the values of 00 and 10 as reliable representations
for 0 and 1, and the values of 01 and 11 as uncertain discretization buffer zones.

A more realistic model of leakage attacks is thus a model in which each
leaked bit has three possible values: 0, 1, and L, where a | indicates a problem-
atic measurement which cannot be relied upon. This model is closely related to
erasure codes (see [13], for example), in which the recipient of some communi-
cation knows which of the received bits are correct and which bits might have
been flipped, and uses an appropriate error correcting code in order to overcome
the noise.

The original cube attack is extremely sensitive to errors, since it typically
sums (modulo 2) millions of 0/1 measurements in order to get the right hand
side of a single linear equation, and repeats the summation over multiple overlap-
ping subcubes in order to determine all the equations. In fact, even a negligible
fraction of 1 measurements can foil the original cube attack since it makes the
numeric values of all the subcube sums simultaneously unknown with probability
which is exponentially close to 1.

Our main observation is that cube attacks have a natural error correction
mechanism, which is based on the fact that if we collect more measurements, we
can get additional linear equations by summing over a larger number of possible
subcubes. On the other hand, the larger number of measurements introduces
more | values, and thus we have to analyze which of the two opposing effects is
stronger.

Let us denote by € the fraction of the L values among all the measurements
which are available to the attacker. We now describe a modified cube attack
which can handle such errors, and compute the maximal e for which it can
recover the key when we assume that the errors are uniformly distributed and
that the leakage function is a d-random multivariate polynomial. The attacker
chooses a big Boolean cube defined by assigning all the possible 0/1 values to
k > d + lgn public variables, and performs preprocessing by computing all the
coefficients of all the ( dfl) linear equations which are defined by summing over
all the possible subcubes of dimension d—1 in the big cube of dimension k. During
the online phase, the attacker obtains 2* leaked bits, one for each assignment of
0/1 values to the public variables of the big cube. Out of the 2¥ values, € - 2%
values are L due to uncertainty in the measurement of the leakage function. The



attacker assigns a new variable z; to each one of these unknown values, and sums
both the known 0/1 values and the unknown z; variables over each one of the
( dﬁ 1) overlapping subcubes of the big cube. The result of each summation is the
sum of a subset of the z;’s, plus 0 or 1 (which represents the numeric sum of the
known measurements). The attacker equates each linear combination of the z;’s
to the corresponding linear combination of key variables k; calculated during
preprocessing, and obtains a system of (dﬁl) linear equations in the € - 2% +n
variables z; and k;. Since the equations are random looking, the attacker needs
slightly more than e-2¥ +n equations to solve the system. To make this possible,

the number of subcubes (dfl) should be larger than e-2* 4+n. Note that (dfl) <

1 1
V0.5 11k V0.5 -k
The number of equations is equal to the number of variables when k &~ 2(d — 1)

S ok X . 1
(assuming n < €-2"). The attacker can thus find the key when at most TEED

fraction of the leaked bits are L, and the best choice for the dimension k of the
big cube in this case is about 2(d — 1).

. . — _ . 1 ia hi
In feasible attacks k& = 2(d — 1) < 50, and thus TS is bigger than

7~ (.11. Consequently, the attacker can find the complete key even when

-2’“, hence we cannot correct more than fraction of errors.

Vi
11% of the leaked bits are too noisy to measure accurately. Since d occurs in
the denominator, lower degree polynomials can be solved with an even larger
fraction of errors. For example, when the leakage is the Hamming weight of
a byte, we can consider the boolean function that is equal to 1 if and only if
the Hamming weight is greater than or equal to 2. Given that the degree of this
function (in terms of the key and plaintext bits) is no more than d = 26 and that
the measured byte is uniformly distributed, we set the buffer zone of L values to
include any byte with Hamming weight 2. Since the buffer zone contains only %
= 10.9% < 11% of the 256 possible values of the measured byte, our modified
cube attack should be able to handle this case. This should be contrasted with
the extreme sensitivity of the original cube attack, in which even a single | value
made it impossible to compute the right hand sides of all the linear equations
whose subcubes contained this error.

When the leakage function is not assumed to be d-random, the error cor-
rection technique remains the same, but the number of required equations and
the maximal fraction of errors that we can correct may vary depending on the
structure of the linear equations, the size and overlap of the various subcubes,
etc.

We implemented the attack on d-random polynomials to verify that there are
no hidden properties that may foil the attack (such as unexpected linear depen-
dencies between the generated linear equations), and our simulations behaved
exactly as expected.

Note that there are many other possible variants of the cube attack which
may overcome even more errors when more data is given (for example, the at-
tacker can try to use only subcubes which contain a relatively small subset of
errors). However, when the equations are random looking and the errors are
randomly distributed, these approaches do not look promising.



4 Serpent

Serpent [2] is a block cipher designed by Ross Anderson, Eli Biham, and Lars
Knudsen. It was submitted as a proposal for the Advanced Encryption Standard,
and was chosen as one of its five finalists. Serpent is considered to be the AES
submission which has the largest security margin, as the best known attack can
break only 12 out of its 32 rounds.

Serpent is a substitution-permutation network operating on a block of four
32-bit words, and supports key sizes of 128, 192 or 256 bits. The cipher has
32 rounds, where in each round one of eight possible 4-bit to 4-bit S-boxes is
applied 32 times in parallel. Serpent was designed so that all its operations can be
executed in parallel, using four 32-bit words to represent the 128 1-bit slices. The
best attack on round-reduced variants of Serpent is a differential-linear attack
on 10 rounds with a 128-bit key and on 12 rounds with a 256-bit key [14]. Other
known attacks include the boomerang [15] and rectangle [16] attacks, which are
extensions of differential cryptanalyses. All these attacks cannot be naturally
combined with side channel attacks that leak only one state bit in each round.

We first present the best known non-cube leakage attack on Serpent, which
was described to us in a private communication with Orr Dunkelman and Nathan
Keller (in their forthcoming paper [17], they consider a different situation where
the attacker has a much smaller number of available plaintexts; it appears that
in this case, even attacking variants with a very small number of rounds is quite
complicated). We then present our side channel cube leakage attack which is far
more general and much more efficient.

4.1 A Side Channel Linear Attack on Serpent

We assume that we have one known state bit after rounds 1 and 2 of Serpent
with index at most 31 (i.e. it has the smallest index among the four bits that
are inserted to the first Sbox). Each one of these bits has the property that the
inverse linear transformation of Serpent diffuses it to at most three bits. Initially,
we use the known bit at the end of the first round to guess and verify all the 12
key bits that it depends on. Then, we consider a 1-round linear approximation in
the second round (ending with the single bit we know at the output of the second
round), which influences 6 Sboxes (the least number of Sboxes) in the previous
round. Then we guess all the 24 key bits of the first round needed to compute the
linear approximation and check whether it holds. The bias of the approximation
is about 22(273)3 = 277, so this phase requires 2!7 known plaintexts and its
complexity is about 24°. We then consider more linear approximations that allow
us to guess more key bits, and recover most of the key. The total complexity of
the attack is about 22427 = 24! which can probably be improved (for example,
we may already know from the first phase some of the bits that we guess for
the linear approximation), but it seems unlikely that improvements will make
it faster than the cube attack (described next). Moreover, this attack is specific
to the case when the index of the leaked state bit (which is not necessarily



controlled by the attacker) happens to be at most 31, and for other leaked bits
the complexity is considerably higher.

4.2 Side Channel Cube Attacks on Serpent

Serpent achieves complete diffusion after 3 rounds, and thus it is not possible
to recover the full key given just a single state bit after rounds 1 and 2. Using
cubes of dimension 24, we were able to get constant superpolys for any single
state bit after 4 Serpent rounds. However, it seems that cubes of a much bigger
dimension are required in order to get maxterms for any single state bit after 4
or more rounds. This is not surprising considering the fact that every one of the
output bits of Serpent Sboxes can be described as a polynomial of degree 3 in its
inputs, and so the degree of the state bit polynomials after 4 rounds of Serpent
can theoretically be close to 3* = 81.

Since complete key recovery given a single state bit after rounds 1 or 2 is
impossible, and key recovery attacks seem infeasible for 4 rounds and beyond,
we concentrate on key recovery attacks given a single state bit at the end of
round 3. Our computations show that the degree of any such polynomial in
the plaintext and key bits after 3 encryption rounds is at least 10, and thus it
requires an infeasible amount of space to even write down these polynomials in
an explicit form (a random polynomial of degree 10 in 128 variables has about
(11208) ~ 248 terms). Consequently, we cannot use the standard algebraic attacks
to solve a system of such polynomial equations, but we can easily handle them
with a cube attack.

During the preprocessing phase of the cube attack, we were able to find 128
maxterms with linearly independent superpolys given just the first bit of the 3rd
round encryption of Serpent. This suffices in order to recover all the 128 key bits
with trivial complexity, using Gauss elimination. All of the maxterms correspond
to surprisingly small cubes of dimension 11, which are listed in Table 1. Each of
the maxterms passed at least 100 linearity tests, and thus the maxterm equations
are likely to be correct for most keys. During the online phase of the cube attack,
the attacker has to find the right hand sides of the linear equations defined by
these maxterms by summing over cubes of dimension 11, and thus the complexity
of the attack is about 128 -2'! = 218, This is much faster than the linear attack
described in the previous subsection and has the additional advantage that the
choice of the state bit makes almost no difference for the success of the attack,
and in fact the attack can be applied even when the attacker does not know
which state bit he is getting. Note that the public plaintext variables of the
cubes we found and the secret key variables in the resultant linear equations are
far from random looking: Variables that appear together as inputs to the first
Sbox layer (i.e. their indexes have the same values modulo 32) tend to appear
together in the maxterms and also in the linear equations.



5 AES

AES [1] is the Advanced Encryption Standard adopted by NIST following a
5-year competition. The cipher was developed and submitted by Joan Daemen
and Vincent Rijmen, and was originally called Rijndael. AES is a substitution-
permutation network that supports key sizes of 128, 192 or 256 bits, operating
on a block of 128 bits. AES has 10, 12 or 14 rounds (depending on the size
of the key), where in each round, the 128-bit state block is viewed as a 4 x 4
array of 8-bit bytes and undergoes a series of linear and non-linear operations
over the field GF(2%). Currently there is no known algorithm that breaks AES
faster than exhaustive search. The best known attack on AES [18] is a variant
of the original square attack that was published with the cipher. In this paper
we concentrate on side channel attacks on AES with a 128-bit key, although our
observations easily extend to AES with a key of 192 or 256 bits.

5.1 A Side Channel Cube Attack on AES

AES reaches complete diffusion after 2 rounds, so a key recovery attack given
any single bit at the end of the first round is impossible. Assuming that the
leakage function is a single state bit at the end of the second round, we use the
known structure of AES to intelligently search for maxterms: After 1 round, the
16 bytes of the AES state can be split into four 4-byte groups that are not mixed
with each other. In the second round, these groups are mixed, but only linearly.
Thus, if we sum the leaked state bits on a cube defined by plaintext bits that are
not all from the same group, we will get a constant value. In addition, according
to the square property of AES, if we sum on a cube that contains a A-set (as
defined in [1]) in which at least one byte is active, we will also get a constant
value. Based on these observation, we were able to find after a short search
maxterms for the polynomial defined by any state bit at the end of the second
round by choosing cubes of dimensions 27 and 28, containing plaintext indexes
from the same group, but not containing any A-set. Since these relatively low
degree polynomials contain all the 128 bits from the initial key, we can use the
cube attack to recover all of the 128 key bits of AES, given an arbitrary single
bit at the end of the second AES round with complexity of about 128228 = 235,
However, in this case we also found a non-cube attack which has roughly the
same complexity, as described next.

5.2 A non-cube Attack on AES

The attack is based on the square property that states that a A-set in which
only one byte is active, will result in a complete column of active bytes after
1 round, while the other bytes remain constant. We use the extension of the
Square attack by one round in the beginning: We guess 4 bytes of the initial key,
and choose a set of 256 plaintexts that results in a A-set at the output of the
first round with a single active Sbox. The key byte indexes that are guessed and
the plaintext values are chosen such that a correct guess of the key will result in



a constant leakage function value after 2 rounds. An incorrect guess of the 4 key
bytes is likely to be eliminated quickly, and we remain with the correct guess
for these 4 key bytes after about 232 operations. This process can be repeated
for 3 of the four 4-byte sets of the initial key. The remaining 4 key bytes can be
recovered by exhaustive search. The total complexity of the attack is about 236.

Based on the square properties for 2 and 3 rounds, the attack can be naturally
extended to cases where the leakage function is a single bit at the end of either
the third or the fourth round. The complexity of the attacks on 3 and 4 rounds
is higher and they require more memory, but they are still completely feasible.



Table 1. Maxterms for 3-round Serpent given the first state bit. Equations are given
in the working key bits that are inserted to the first Sbox layer.

Maxterm Equation Cube Indexes Maxterm Equation Cube Indexes
T+x0 {3,8,21,35,46,78,85,96,99,104,117} x16+x48 {10,25,42,57,62,80,94,106,112,121,126}
x0+x96 {7,13,32,34,45,64,66,77,98,103,109} 1+x16+x112 {6,24,25,38,48,56,57,80,102,120,121}
x32 {7,13,34,45,64,66,77,96,98,103,109} 1+x48 {3,10,13,16,35,45,80,94,99,106,109}
x64 {0,2,8,34,36,40,68,96,98,100,104 } 14+x80 {10,11,16,17,48,49,74,75,106,107,113}
x1+x33 {2,3,23,34,35,65,87,97,98,99,119 x17+x49 {3,14,22,35,54,78,81,99,110,113,118}
x1+x97 {18,19,20,33,51,52,65,82,114,115,116} x17+x113 {0,22,32,49,54,63,81,86,95,96,127}
1+x33 {1,18,19,20,50,51,52,65,82,115,116} x49 {0,32,54,63,81,86,95,96,113,118,127}
1+x65 {1,18,19,20,33,50,51,52,82,115,116} 1+x81 {0,17,22,32,49,54,63,86,95,96,127}
T+x2 5,16,37,48,58,76,90,98,101,112,122} x18+x50 {10,20,31,42,52,82,95,106,114,116,127}
x2+x34 4,13,21,36,45,66,85,98,100,109,117 1+x50+x114 {10,18,20,42,52,63,82,95,106,116,127}
1+x2+x98 4,13,21,34,36,45,66,85,100,109,117 x82 {10,18,20,31,42,52,95,106,114,116,127}
x66 4,13,21,34,36,45,85,98,100,109,117 1+x114 {13,18,45,53,55,77,85,87,109,117,119}
1+x3 {2,6,13,34,38,45,66,74,99,102,109} 1+x19+x115 {18,21,39,50,51,53,71,83,103,114,117}
x3+x35 {0,22,30,62,64,67,86,96,99,118,126} x51 {3,4,24,56,67,68,83,99,100,115,120}
1+x35+x99 {0,3,22,30,62,64,67,86,96,118,126} 1+x51+x115 {18,19,21,39,50,53,71,83,103,114,117}
x67 {3,26,27,30,62,90,91,99,122,123,126} x83 {18,21,39,50,51,53,71,103,114,115,117}
T+x4 {10,13,15,42,45,74,77,79,100,106,111} T+x20+x116 {12,17,24,44,49,52,56,84,88,108,113}
%36 {0,16,21,32,48,53,68,80,96,100,117} x52 6,14,38,46,53,84,85,102,110,116,117
14-x36+x100 0,2,4,8,34,40,64,68,96,98,104 } 1+x52+x116 12,17,20,44,49,56,84,88,108,113,120
1+x68 0,2,4,8,34,36,40,64,96,98,104} 1+x84 12,17,20,44,49,52,56,88,108,113,120
x5+x37 {10,20,31,42,52,69,95,101,106,116,127} 1+x21+x117 10,17,49,53,54,74,85,86,106,113,118
14+x54x101 {2,7,20,34,37,39,52,66,69,103,116} 1+x53 {6,10,21,27,38,59,74,85,102,106,123}
x37 {10,20,31,42,69,74,84,101,106,116,127} 14+x53+x117 {10,17,21,22,49,54,74,85,86,106,113}
1+x69 {5,10,13,16,37,42,45,48,77,106,112} x85 {4,13,21,34,36,45,66,98,100,109,117}
T+x6 {14,28,29,41,46,60,93,102,110,124,125} x22+x118 {10,17,49,53,54,74,85,86,106,113,117 }
X6+x102 {1,15,16,38,48,65,70,79,97,111,112} T+xb4 {10,17,21,22,49,74,85,86,106,113,117}
x38 {16,24,25,48,56,70,89,102,112,120,121} 14+x54+x118 {0,3,22,30,62,64,67,86,96,99,126 }
T+x70 {6,18,23,31,38,50,55,63,82,119,127} 1+x36 {10,17,22,49,53,54,74,85,106,113,117}
1+x7 {13,32,34,45,64,66,77,96,98,103,109} x23+x55 {10,16,31,42,48,63,74,87,112,119,127}
x7+x39 {18,19,21,50,53,71,83,103,114,115,117} x55 {3,22,35,40,54,61,72,87,99,118,119}
x71 {18,21,39,50,51,53,83,103,114,115,117} T+x55+x119 {16,23,31,42,48,63,74,87,106,112,127}
1+x103 {7,13,32,34,45,64,66,77,96,98,109} x87 {10,16,23,31,42,48,63,74,112,119,127}
*x8+x104 {21,31,40,53,54,72,86,95,117,118,127} T+x24 7.9,16,29,39,48,103,105,112,120,125
1+4x40 {3,8,14,21,46,53,67,72,78,99,117} x24+x120 12,17,20,44,49,56,84,88,108,113,116
14x72 {3,8,22,28,35,40,54,60,92,99,118} x56 12,17,20,44,49,52,84,88,108,113,120
14+x72+x104 {3,22,23,35,40,54,55,87,93,99,118} x88 24,25,26,28,57,58,60,89,120,122,124
1+x9 {1,10,33,42,47,65,74,79,105,106,111} x25+x57 {16,24,38,48,56,70,89,102,112,120,121}
1+x41 {3,9,21,53,59,67,73,91,99,117,123} 1+x57 {22,24,25,41,56,73,86,89,105,118,120}
1+x73 {3,9,21,41,53,59,67,91,99,117,123} 1+x57+x121 {16,24,25,38,48,56,70,89,102,112,120}
1+x105 {1,9,10,15,33,42,47,65,74,79,106 } x89 {16,24,38,48,56,57,70,102,112,120,121}
x10+x42 {12,17,43,44,49,74,75,106,107,108,113} x26+x122 {0,9,23,32,41,55,58,73,90,96,119}
1+x42+x106 {10,11,12,17,44,49,74,75,107,108,113} x58 0,9,23,32,41,55,73,90,96,119,122
T+x74 {16,23,31,42,48,63,87,106,112,119,127} 1T+x58+x122 2,5,16,26,37,48,76,90,98,101,112
1+x106 {6,10,13,34,38,45,66,67,98,102,109} 1+x90 0,9,23,32,41,55,58,73,96,119,122
1+x11+x107 {10,12,17,42,43,44,49,74,75,108,113} x27+x59 {3,26,30,62,67,90,91,99,122,123,126 }
1+x43 11,17,22,26,58,75,81,86,113,118,122 x59 {20,31,52,54,63,86,91,116,118,123,127}
T+x43+x107 10,11,12,17,44,49,74,75,106,108,113 T+x59+x123 {3,26,27,30,62,67,90,91,99,122,126}
%75 10,12,17,42,43,44,49,74,107,108,113 %91 {3,26,27,30,62,67,90,99,122,123,126}
1+x12 {5,16,26,37,48,58,66,90,101,108,112} x28+x60 {17,30,32,49,62,64,92,96,113,124,126}
x12+x108 5,7,9,39,41,44,69,76,101,103,105 14+x60 {6,25,26,28,38,57,58,89,92,102,122}
1+x44 5,7,9,12,39,41,69,76,101,103,105 14+x92 {17,30,32,49,60,62,64,96,113,124,126}
x76 {12,20,27,28,59,84,92,108,116,123,124} 1+x28+x124 {17,30,32,49,60,62,64,92,96,113,126 }
x13+x45 {2,12,20,34,52,61,77,98,108,109,116} x29+x61 0,8,9,32,40,41,64,93,104,105,125
x134+x109 {4,10,15,42,45,47,74,77,79,100,106 } x29+x125 0,6,18,32,38,50,61,93,96,102,114
x45 {14,20,46,52,60,77,92,109,110,116,124} T+x61 0,6,18,29,32,38,50,93,06,102,114
1+x77 {4,10,15,42,45,47,74,79,100,106,109} 1+x93 {0,6,18,29,32,38,50,61,96,102,114
x14 {3,27,35,56,64,78,88,99,110,120,123} 14+x30 {4,9,32,36,41,64,73,96,100,105,126 }
x14+x46 {15,16,20,47,52,78,80,110,111,112,116} 14+x30+x126 {12,17,24,44,49,56,62,88,94,108,113
x14+x110 {0,19,23,32,46,51,55,78,87,96,115} x62 {9,22,24,41,56,73,86,94,118,120,126
1+x78 {0,14,19,32,46,51,55,87,96,115,119} 1+x94 {9,22,24,41,56,62,73,86,118,120,126
x15+x111 {3,10,20,35,42,47,52,67,79,106,116} x31+x63 {10,18,20,42,50,52,82,95,106,116,127}
x47 {10,16,42,48,63,79,95,106,111,112,127} T+x31+x127 | {10,18,20,42,52,63,82,95,106,114,116}
1+x47+x111 {9,10,15,33,42,65,74,79,97,105,106 } x63 {1,12,17,33,44,49,65,95,108,113,127}
1+x79 {1,9,10,15,33,42,47,65,74,105,106 } %95 {10,18,20,42,52,63,82,106,114,116,1277}




6 Conclusions and Open Problems

In this paper we demonstrated that cube attacks are ideal tools in leakage at-
tacks, due to a combination of several factors:

1. Cube attacks can be naturally applied to situations in which only a single bit
of information in each encryption is available to the cryptanalyst. Almost all
the other cryptanalytic techniques require knowledge of big chunks of data
in order to partially encrypt or decrypt them.

2. Leaked bits from early rounds of the block cipher are typically represented
by polynomials of very moderate degree, and thus a cube attack can exploit
them even when it cannot be applied to the full block cipher due to its very
high degree.

3. New side channel attacks are found every few months, but each type of
leaked information requires specific analysis. Cube attacks are generic tools
which can be automatically applied to any new kind of leakage as soon as it
is suggested.

4. In many cases, it is difficult to relate the signal extracted by the side chan-
nel attack to the underlying mathematical computation. For example, the
EM radiation picked up by a small antenna may be a combination of the
contributions from several nearby wires, and the total power consumption
of the chip may be a very complex function of several computations which
are carried out in parallel. Cube attacks do not require any knowledge of
the physical implementation or understanding of how the measured signal
is generated: If the signal is a low degree polynomial, the cube attack will
detect it and extract the key in an automatic way.

5. Many chips use secret countermeasures against side channel attacks. For
example, the bus between the ALU and memory may be protected from
probing attacks by scrambling the data and address lines with a chip-specific
key. If the simple bus encryption scheme can be described by a low degree
polynomial, the cube attack can be applied even when the details of the
countermeasures are unknown to the attacker.

There are many problems left open in this area. Here are some of them:

1. How to find the best maxterms of a blackbox multivariate polynomial, and
how to convincingly estimate their asymptotic degrees when finding them
explicitly is infeasible.

2. How to exploit the structure of a given S-P network in order to concentrate
on the most promising types of maxterms in leakage attacks.

3. How to overcome even more noise in the leaked bits by using improved cube
attacks.

4. What are the best cube and non-cube leakage attacks against all the major
block ciphers.



References

10.

11.

12.

13.

14.

15.

16.

Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. Technical Evaluation,
CD-1: Documentation, 1998.

. Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A proposal for the ad-

vanced encryption standard. In in First Advanced Encryption Standard (AES)
Conference, 1998.

Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems. In
CRYPTO ’90: Proceedings of the 10th Annual International Cryptology Conference
on Advances in Cryptology, pages 2-21, London, UK, 1991. Springer-Verlag.
Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In EUROCRYPT
’93: Workshop on the theory and application of cryptographic techniques on Ad-
vances in cryptology, pages 386-397, Secaucus, NJ, USA, 1994. Springer-Verlag
New York, Inc.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: the case of AES. In Topics in Cryptology - CT-RSA 2006, The Cryptogra-
phers Track at the RSA Conference 2006, pages 1-20. Springer-Verlag, 2006.
Silvio Micali and Leonid Reyzin. Physically observable cryptography. In TCC
2004, LNCS, pages 278-296. Springer, 2004.

M. Yung F.-X. Standaert, T.G. Malkin. A unified framework for the analysis of
side-channel key recovery attacks. In EUROCRYPT ’09: Proceedings of the Inter-
national Conference on the Theory and Application of Cryptographic Techniques,
pages 443-461. Springer-Verlag, 2009.

Alex Biryukov. Design of a new stream cipher-LEX. In New Stream Cipher
Designs: The eSTREAM Finalists. pages 48-56, 2008.

Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In
EUROCRYPT ’09: Proceedings of the International Conference on the Theory and
Application of Cryptographic Techniques. Springer-Verlag, 2009.

Michael Vielhaber. Breaking ONE.FIVIUM by AIDA an algebraic IV differential
attack. Cryptology ePrint Archive, Report 2007/413, 2007.

Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient
Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations.
2000.

Jean Charles Faugere. A new efficient algorithm for computing grébner bases
without reduction to zero (£5). In ISSAC ’02: Proceedings of the 2002 international
symposium on Symbolic and algebraic computation, pages 75-83, New York, NY,
USA, 2002. ACM.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman. Efficient
erasure correcting codes. Information Theory, IEEE Transactions on, 47(2):569—
584, 2001.

Orr Dunkelman, Sebastiaan Indesteege, and Nathan Keller. A differential-linear
attack on 12-round serpent. In INDOCRYPT ’08: Proceedings of the 9th Interna-
tional Conference on Cryptology in India, pages 308-321, Berlin, Heidelberg, 2008.
Springer-Verlag.

John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang attacks
against reduced-round mars and serpent. In FSE ’00: Proceedings of the 7th Inter-
national Workshop on Fast Software Encryption, pages 75—-93, London, UK, 2001.
Springer-Verlag.

Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack - rectangling
the serpent. In FUROCRYPT ’01: Proceedings of the International Conference on



17.

18.

the Theory and Application of Cryptographic Techniques, pages 340-357, London,
UK, 2001. Springer-Verlag.

Orr Dunkelman and Nathan Keller. Low data complexity attacks on reduced-round
AES (in preparation).

Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. Improved cryptanalysis of rijndael. In FSE ’00:
Proceedings of the 7th International Workshop on Fast Software Encryption, pages
213-230, London, UK, 2001. Springer-Verlag.



