
A preliminary version of this paper appears in Topics in Cryptology CT-RSA ’09, Lecture Notes
in Computer Science Vol. ?? , M. Fischlin ed., Springer-Verlag, 2009. This is the full version.

Key Insulation and Intrusion Resilience

Over a Public Channel

Mihir Bellare∗ Shanshan Duan† Adriana Palacio‡

Abstract

Key insulation (KI) and Intrusion resilience (IR) are methods to protect a user’s key against
exposure by utilizing periodic communications with an auxiliary helper. But existing work
assumes a secure channel between user and helper. If we want to realize KI or IR in practice
we must realize this secure channel. This paper looks at the question of how to do this when
the communication is over what we are more likely to have in practice, namely a public channel
such as the Internet or a wireless network. We explain why this problem is not trivial, introduce
models and definitions that capture the desired security in a public channel setting, and provide
a complete (and surprising) answer to the question of when KI and IR are possible over a public
channel. The information we provide is important to guide practitioners with regard to the
usage of KI and IR and also to guide future research in this area.

∗Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported in
part by NSF grant CNS 0524765 and CNS 0627779 and a gift from Intel corporation.

†Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-Mail: shduan@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/shduan. Supported
in part by the grants of the first author.

‡Computer Science Department, Bowdoin College, 8650 College Station, Brunswick, ME 04011-8486, USA. E-
Mail: apalacio@bowdoin.edu. URL: http://academic.bowdoin.edu/faculty/A/apalacio/.

Contents

1 Introduction 3
1.1 Background . 3
1.2 Realizing the secure channel . 3
1.3 Our model . 4
1.4 Our results . 4
1.5 Extensions . 6
1.6 Discussion . 6

2 Definitions 6

3 Key insulation in the secure-channel model 7

4 Key insulation in the public-channel model 8

5 Impossibility of public-channel KI under active attack 11

6 Possibility of public-channel KI under passive attack 12

7 Intrusion resilience in the secure-channel model 17

8 Intrusion resilience in the public-channel model 19

9 Possibility of public-channel IR under passive attack 20

References 26

2

1 Introduction

Key Insulation (KI) [15, 16] and Intrusion Resilience (IR) [13, 20] are technologies to protect against
key exposure. They have been extensively researched in the cryptographic community and we have
lots of schemes, variations and extensions [13, 14, 15, 16, 18, 19, 20]. However, all this work assumes
a secure communication channel between the parties. If we want to realize KI or IR in practice we
must realize this secure channel. How can this be done? Surprisingly, this fundamental question
has received no attention until now. We address it and turn up some surprising answers which have
important implications for the realizability of KI and IR in practice.

1.1 Background

An important threat to the security of cryptography-using applications is exposure of the secret key
due to viruses, worms or other break-ins allowed by operating-system holes. Forward security [1,
2, 7, 10] is one way to counter this, or at least mitigate the damage caused. Here the user has a
single, fixed public key pk whose lifetime is divided into stages 1, . . . , N . The secret (signing or
decryption) key evolves with time: at the start of stage i, the user computes its stage i secret key
uski as a function of its stage i − 1 secret key uski−1 and then discards the latter. The security
condition is that for j < i, a break-in during stage i (resulting in exposure of uski) does not allow
the adversary to compute uskj or compromise its uses. (Meaning that forgery of documents with
date j or decryption of ciphertexts sent in stage j remains hard.) Once uski is exposed, however,
uski+1, . . . ,uskN are automatically compromised (they can be computed from uski), and the best
the user can hope to do about this is detect the break-in and revoke the public key.

Key-insulated (KI) security as introduced by Dodis, Katz, Xu, and Yung [15, 16] and refined
by [4] attempts to provide both forward and backward security, meaning a break-in during stage i
leaves uskj uncompromised for all j 6= i. More generally, break-ins for all stages i ∈ I leave uskj
and its uses secure for all j ∈ [N] \ I, where [N] = {1, . . . , N}. To accomplish this, an auxiliary
party, called a helper, is introduced. The secret key uski of stage i is now computed by the user
not merely as a function of uski−1, but also of a key hski sent by the helper to the user at the
start of stage i. The advantage of this system (over a merely forward-secure one) is that the public
key is never revoked. Intrusion resilience (IR) [20, 13] is an extension where forward and backword
security are provided even if both user and helper are compromised as long as the compromise is
not simultaneous and, even in the latter case, forward security is assured. Further extensions and
variants include KI with parallel helpers [18] and KI (hierarchical) identity-based encryption [19].
Our discussion below will focus on the simpler KI case. We will discuss the extension to IR later.

KI security requires that the communication channel between user and helper is secure. Indeed,
if not, meaning if an adversary could obtain the helper keys hsk1, . . . ,hskN sent over the channel,
a single break-in in a stage i would allow it to compute all subsequent user secret keys by simply
using the key-update process of the user, and KI would end up providing no more than forward
security, which does not even need a helper. In previous works, this secure-channel assumption is
built into the model, which denies the adversary hskj unless it has broken in during stage j.

1.2 Realizing the secure channel

To deploy KI in practice we must have some way to realize the secure channel. In some settings
it may be possible to do this through physical means, but such settings are rare. The range of
application for KI would be greatly increased if the communication between user and helper could
flow over a public channel such as the Internet or a wireless network. This would allow the helper

3

to be, for example, a server on the Internet. Alternatively, the helper could be your cell phone with
the user being your laptop. (In this case, even though the devices may be in close proximity, the
communication would be over a public wireless phone network.)

While definitely important for applications, enabling KI over public channels looks at first to be
something trivial. This is because we would appear to know very well how to implement a secure
channel over a public one. After all, isn’t this the main task of basic cryptography? Specifically,
let us just use encryption and authentication, either under a symmetric key shared by the parties,
or under public keys.

However, we make the important observation that this standard solution runs into an inherent
problem here, where the name of the game is break-in and key exposure. Namely, if the adversary
breaks in during some stage i, one should realistically assume it exposes not just uski but also any
keys used to secure the channel. (Meaning either the shared key or the user’s decryption key.) This
renders the channel insecure from then on, and key-insulated security vanishes (more accurately,
one has only forward security) as explained above.

The above indicates that realizing KI over a public channel is nontrivial but not (yet) that it is
impossible. The reason is that we have not yet exploited the full power of the model. Specifically
there are two capabilities one can offer the parties. First, since we are already in a setting where
keys evolve, instead of trying to secure the channel with static keys, we could allow channel-securing
keys to evolve as well. Second, we could allow the update process to be an interactive protocol
rather than merely a single flow.

1.3 Our model

What the above reflects is that we need a new model to formally investigate the possibility of
KI over a public channel. Providing such a model is the first contribution to our paper. In our
model, the user in stage i has (in addition to uski) a stage i channel-securing key ucki, while the
helper has a corresponding hcki. At the start of stage i + 1, the parties engage in an arbitrary
interactive channel-update protocol. This protocol uses —and aims to get its security from— the
current channel keys ucki, hcki. Its goal is two-fold: to (securely) communicate hski+1 from helper
to user, and to “refresh” the channel keys, meaning deal the helper with a new key hcki+1 and
the user with a corresponding new key ucki+1. Once the protocol terminates, the user can update
uski to uski+1 using hski+1 as before, install ucki+1 as its new channel key, and discard both uski
and ucki. As an example, the protocol could begin with an authenticated session-key exchange
based on its current channel keys and then use the session key to securely transfer hski+1 and fresh
channel keys. But now, a break-in during period i exposes not only uski and hski but also ucki.
Actually we go further, allowing the adversary to even obtain the user coins underlying the stage
i channel-update protocol execution. This is realistic because the intruder could be on the system
when the protocol executes, but this added adversary capability will make our proofs harder. While
the core elements of the new model are natural and clear, there are subtle details. In Section 4, we
describe our model and provide a formal definition of KI security over a public channel.

1.4 Our results

Now that we have a model, we ask whether it is possible to design KI schemes secure in this public
channel model. Interestingly, the answer turns out to depend on whether the adversary is active
or merely passive. Specifically, the answer is “no” in the first case and “yes” in the second. Let us
now elaborate on these results.

4

Active security. The communication security model cryptographers prefer to consider is that
of an active adversary who has full control of the channel. It can not only see all transmissions,
but stop, inject or alter any transmission. This is the model adopted, for example, in the work
of Canetti and Krawczyk defining notions of secure channels [11, 12], and also in work on session-
key exchange [5, 11]. It would be desirable to achieve public-channel KI security in the face of
such an adversary. We show that this is impossible. That is, even in our above-described model,
which allows an interactive channel-update protocol and evolving channel-security keys, an active
adversary can always succeed in breaking the scheme. The reason is that after it breaks in, it obtains
the user’s channel-security key and can thus impersonate the user. We note that authentication
(such as an authenticated session-key exchange) does not prevent this since the adversary acquires
all the user’s credentials via the break-in. This negative result is particularly strong because our
public-channel KI model is as generous as one can get, while keeping in the spirit of KI.

There seem to be only two ways to circumvent the negative result. The first is to revoke the
public key upon break-in discovery, but if one is willing to do this, one may as well just use forward
security and avoid the helper altogether. Indeed, the whole point of the helper and KI is to never
have to revoke the public key. The other possibility is to use an out-of-band method to redistribute
channel-securing keys after break-in discovery such as a physically secure channel. But this is just
an assumed secure channel under another name, exactly what we are trying to avoid. In conclusion,
our result suggests that it would be inadvisable to implement any form of KI when the channel
may be open to active attack.

Passive security. On the positive side, we show that public-channel KI is possible against an
adversary that is allowed only a passive attack on the communication channel. (Meaning it can
eavesdrop, but not inject messages.) Our method is general, meaning it yields a compiler that can
take any KI scheme secure in the secure-channel model and turn it into a KI scheme secure in
our public-channel model under passive attack. The transformation is simple. Our channel-update
protocol begins with a secure key exchange (e.g., Diffie-Hellman) to get a session key under which
the helper encrypts the data it needs to transmit. The key exchange is not authenticated: this is
not necessary for security against passive attack and, given the above, would not help to achieve
security against active attack. We clarify that our choice of channel-update protocol is purely
illustrative. The reader can surely think of others that will work.

This positive result is significant for two reasons. First, it shows that KI is at least possible
over a channel where the adversary may be able to eavesdrop but finds it hard to inject or corrupt
transmissions. Second, the result shows that our new method, allowing an interactive channel-
update protocol, has borne fruit. Indeed, even KI under passive attack is not possible when the
communication consists of a single transmission from helper to user.

Although the protocol is simple, there are subtleties in the proof arising from the strength of
our model which allows the adversary to obtain the user coins from the channel-update protocol
execution in any stage in which it breaks in. A consequence of this is that the starting secure-
channel KI scheme needs to have optimal threshold, meaning be secure even if there are break ins
in all but one stage. Some early secure-channel KI encryption schemes [15] were threshold and did
not have this property, and, in this case, we cannot offer security over a public channel even in the
presence of a passive adversary. Luckily, secure-channel KI schemes with optimal threshold exist
for both encryption [4] and signatures [16].

Practical implications. Our results imply that KI will only work if one has a channel whose
physical properties preclude active attack. Anyone contemplating actual usage of KI needs to be
aware of this limitation and the need to be careful about the choice of channel.

5

1.5 Extensions

The intrusion resilience (IR) setting of [20, 13] continues to make the secure-channel assumption,
and our results extend to it. However the model is considerably more complex due to the presence
of both refreshes and updates and again there are subtle details to be careful about in creating
the public channel analog. We recall the secure-channel IR model in Section 7 and then provide a
detailed description of our public-channel IR model in Section 8. When this is done, the negative
result, showing the impossibility of IR over a public channel in the presence of an active adversary,
carries over easily from the KI case. We need to extend the previous positive result, however. We are
able to show that secure key exchange can still be used for both refresh and update to transform any
secure-channel IR scheme into a public-channel IR scheme secure against passive adversaries. The
proof is, however, more complex than in the KI case and is given in Section 9. Similar extensions
hold for the many variant notions in this area, including strong KI security [15, 16] and KI with
parallel helpers [18].

1.6 Discussion

Cryptographic protocols commonly make the assumption that parties are connected by secure
channels. This abstraction would seem both natural and convenient; after all, isn’t this exactly
what standard cryptography (encryption and authentication) gives us? Yet there are settings where
secure channels are surprisingly difficult to realize. One example is secure computation, where a
secure channel between each pair of parties is a standard assumption [8]. Yet this channel is
astonishingly difficult to realize, at least in the public-key setting, due in part to the selective-
decryption problem [17]. Solutions were finally given by [9]. Our work provides another example.

2 Definitions

We let N = {1, 2, . . .} be the set of positive integers, and for N ∈ N we let [N] = {1, . . . , N}. The
empty string is denoted ε. The notation x

$← S denotes that x is selected randomly from set S.
Unless otherwise indicated, an algorithm may be randomized. An adversary is an algorithm. If
A is an algorithm, then the notation x

$← A(a1, a2, . . .) denotes that x is assigned the outcome of
the experiment of running A on inputs a1, a2, . . ., with fresh coins. If A is deterministic, we might
write x← A(a1, a2, . . .) instead.

Games. We will use code-based games [6] in definitions and some proofs. We recall some back-
ground here. A game —see Figure 1 for an example— has an Initialize procedure, procedures
to respond to adversary oracle queries, and a Finalize procedure. A game G is executed with an
adversary A as follows. First, Initialize executes and its outputs are the inputs to A. Then, A
executes, its oracle queries being answered by the corresponding procedures of G. When A termi-
nates, its output becomes the input to the Finalize procedure. The output of the latter, denoted
GA, is called the output of the game, and we let “GA ⇒ y” denote the event that this game output
takes value y. Variables not explicitly initialized or assigned are assumed to have value ⊥, except
for booleans which are assumed initialized to false.

Interactive algorithms. We will model each party in a two-party protocol as an interactive
algorithm. Such an algorithm I takes as input an incoming message Min, a current state St , and
a decision d which can be acc, rej or ⊥. Its output, denoted I(Min,St , d), is a triple (Mout,St ′, d′)
consisting of an outgoing message, an updated state, and an updated decision. We require that if
d 6= ⊥ then Mout = ⊥, St ′ = St , and d′ = d. Our convention is that the initial state provided to

6

an interactive algorithm is its local input and random coins. Given a pair of interactive algorithms
(I, J), we assume that the first move in the interaction always belongs to I. The first incoming
message for I is set to ε. An interactive algorithm terminates when its decision becomes acc or rej.
Once it terminates, it outputs ⊥ as its outgoing message in response to any incoming message and
its state and decision stay the same. The local output of an interactive algorithm is its final state.

Given a pair of interactive algorithms (I, J) with local inputs xI , xJ and coins ωI , ωJ respec-
tively, we define Run(I, xI , J, xJ ;ωI , ωJ) to be the quintuple (Conv,StI , dI ,StJ , dJ) consisting of
the conversation transcript (meaning the sequence of messages exchanged between the parties), I’s
local output, I’s decision, J ’s local output, and J ’s decision, respectively, after an interaction in
which I has local input xI and random coins ωI and J has local input xJ and random coins ωJ . We
let Run(I, xI , J, xJ) be the random variable whose value is Run(I, xI , J, xJ ;ωI , ωJ) when ωI , ωJ

are chosen at random.

3 Key insulation in the secure-channel model

We will take a modular approach to KI over a public channel, where a public-channel KI scheme
consists of a (standard) secure-channel KI scheme —meaning one in the model of an assumed-secure
channel— together with a channel-key-update protocol. We will then be able to give “compiler”
style results which transform any secure-channel KI scheme into a public-channel KI scheme for
suitable channel-key-update protocols. (Of course, this is only for passive adversaries since in
the active case we will show that KI over public channels is impossible.) To enable this we first
recall a definition of secure-channel KI. The latter has been defined for both encryption [15, 4]
and signatures [16]. For simplicity, we will treat the case of signatures. The case of encryption is
entirely analogous and all our results carry over. Our definition below differs from that of [16] in
some details, but this does not affect the results.

A key-updating signature scheme KUS = (KG,HKU,UKU, Sig,Ver) is specified by five algorithms
with the following functionality. The randomized key-generation algorithm KG returns (pk,usk0,
hsk), where pk is the user public key, usk0 is the stage 0 user secret key, and hsk is the master
helper key. The user is initialized with pk,usk0, while the helper is initialized with pk,hsk. At
the start of stage a ≥ 1, the helper applies the deterministic helper key-update algorithm HKU to
a,pk,hsk to obtain a stage a helper key hska, which is then assumed to be conveyed to the user
via a secure channel. The user receives hska from the helper and then applies the deterministic
user key-update algorithm UKU to a,pk,hska, uska−1 to obtain the stage a user secret key uska.
The user then discards (erases) uska−1. In stage a the user can apply the signing algorithm Sig to
a, its stage a secret key uska, and a message M ∈ {0, 1}∗ to obtain a pair (a, σ), consisting of the
stage number a and a signature σ. During stage a anyone can apply the deterministic verification
algorithm Ver to pk, a message M , and a pair (i, σ) to obtain either 1, indicating acceptance, or
0, indicating rejection. We require that if (i, σ), where 1 ≤ i ≤ a, was produced by applying the
signing algorithm to i,uski,M then Ver(pk,M, (i, σ)) = 1.

Security. Consider game KIS of Figure 1. The Initialize procedure provides adversary A with
input pk. A can call its Next oracle to move the system into the next stage. It may break in
during the current stage by calling its Expose oracle and getting back the user and helper keys
for that stage. A may obtain signatures for messages of its choice during the current stage by
calling its Sign oracle. To win, A must output a message M and a signature (j, σ) such that j is
an unexposed stage, Ver(pk,M, (j, σ)) = 1, and M was not queried to Sign during stage j. A’s

7

procedure Initialize

(pk, usk0,hsk) $← KG ; a← 0 ; S ← ∅ ; E ← ∅
Return pk

procedure Next()
a← a+ 1
hska ← HKU(a,pk,hsk)
uska ← UKU(a,pk,hska, uska−1)

procedure Expose()
E ← E ∪ {a}
Return (uska, hska)

procedure Sign(M)

(a, σ) $← Sig(a,uska,M)
S ← S ∪ {(a,M)}
Return (a, σ)

procedure Finalize(M, (j, σ))
Return (j 6∈ E ∧ (j,M) 6∈ S ∧ Ver(pk,M, (j, σ)) = 1)

Figure 1: Game KIS used to define KI signatures in the secure-channel model.

advantage is

Advki
KUS(A) = Pr

[
KISA ⇒ true

]
.

We adopt the convention that the running time of an adversary A is the execution time of the
entire game, including the time taken for initialization, the time taken by the oracles to compute
replies to the adversary’s queries, and the time taken for finalization.

The implicit secure-channel assumption. As discussed in Section 1, the secure-channel as-
sumption is implicit in the above model. This is due to the fact that A is not given hska for stages
a in which it did not make an Expose query. Also note that the assumption is necessary, for if A
had an additional oracle Get that returned hska, but the rest of the game was the same, it could
win via

Next() ; (hsk1, usk1)← Expose() ; Next()
hsk2 ← Get() ; usk2 ← UKU(2,pk, hsk2,usk1)
(2, σ)← Sig(2, usk2, 0) ; return (0, (2, σ))

4 Key insulation in the public-channel model

We saw above that a secure channel between helper and user is both assumed and necessary in the
existing notion of KI. Here we consider how the channel can be implemented. Let us first discuss
how key exposure implies failure of the obvious way to secure the channel.

Static keys won’t secure the channel. The obvious solution is to use standard cryptography.
Let the helper have a signing key sk whose corresponding verification key vk is held by the user,
and correspondingly, let the user have a decryption key dk whose corresponding encryption key ek
is held by the helper. (These keys are generated and distributed honestly and securely along with
usk0, hsk when the system is initialized. The cryptography could be symmetric or asymmetric.
In the first case, the signature is a MAC and encryption is symmetric, so that sk = vk and
dk = ek. In the second case, the signature and encryption are public-key based.) Now in stage
a, the helper sends (C, σ) to the user, where C is an encryption of hska under ek and σ is a
signature of C under sk. The user verifies the signature using vk and decrypts C using dk to
get hska. This, however, fails completely to provide security in the key-exposure setting, even for
an adversary that is merely passive with regard to channel access. (That is, it can eavesdrop the

8

communication but not send messages itself.) This is because one must realistically assume that a
break-in in a stage a exposes all information the user has, which includes not only uska but also
dk. Equipped with uska, dk via the break-in, the adversary can now obtain the stage a+ 1 channel
transmission (Ca+1, σa+1) via its channel access, decrypt Ca+1 using dk to get hska+1, and compute
uska+1 = UKU(a+ 1, pk,hska+1,uska). Continuing in this fashion, it can obtain uski for all i ≥ a.

Evolving channel-securing keys. The above is already something of which potential imple-
menters should be aware, but not yet enough to give up hope of obtaining KI, for there is an obvious
next step, which we take. Namely, let us allow the channel to be secured not under keys that are
static but which themselves evolve, so that a break-in exposes only the current keys. This section
introduces and formalizes a very general model to this end, where an interactive protocol (such as
a secure key exchange) may be used in each step to provide a secure channel and also update the
channel keys.

Public-channel key updating signature schemes. A public-channel key-updating signature
scheme is a triple PCKUS = (KUS,CKG, (U,H)), where KUS = (KG,HKU,UKU, Sig,Ver) is a key-
updating signature scheme, CKG is the channel-key-generation algorithm, and the channel-key-
update protocol (U,H) is a pair of interactive algorithms to be run by user and helper, respectively.
Let us now explain how the system runs.

Algorithm CKG returns (uck0, hck0), where uck0 is the stage 0 user channel key and hck0 is
the stage 0 helper channel key. When the user is initialized, in addition to the public key pk and
stage 0 user secret key usk0 produced by KG, the user is given uck0. When the helper is initialized,
in addition to pk and the master helper key hsk (also generated by KG), the helper is given hck0.

In any stage a (a ≥ 0), the user holds not only its stage a user secret key uska, but also a
stage a user channel key ucka. The helper holds hsk and a stage a helper channel key hcka. At
the start of stage a + 1, the helper computes hska+1 = HKU(a + 1, pk,hsk). The parties then
engage in the channel-key-update protocol (U,H). The local input of U is the stage a user secret
key uska, the stage a user channel key ucka and some random coins ωUa , while the local input of
H is the stage a + 1 helper key hska+1, the stage a helper channel key hcka and some random
coins ωHa . After the interaction, the expected local output of U is hska+1 plus the stage a + 1
user channel key ucka+1, while the expected local output of H is the stage a + 1 helper channel
key hcka+1. Once the protocol has completed, the user can update its key as before, namely
it computes uska+1 = UKU(a + 1,pk,hska+1, uska). It then discards not only uska but also its
previous channel key ucka. We require the natural correctness condition, namely that the stage
a + 1 helper key produced by U in the interaction in which U has input uska,ucka, ω

U
a and H has

input hska+1, hcka, ω
H
a , is hska+1 with probability one. In addition, we require that at the end of

the interaction, U’s decision dUa+1 and H’s decision dHa+1 are both acc.

Security. We proceed to formalize two notions of security for public-channel key-updating sig-
nature schemes: key insulation under active and passive attacks. We first provide definitions and
then explanations. Let PCKUS = ((KG,HKU,UKU, Sig,Ver),CKG, (U,H)) be a public-channel key-
updating signature scheme. We consider an adversary A interacting with the games of Figure 2.
The Initialize procedure gives A input pk. In an active attack, A is provided with oracles Next,
Expose, SendU, SendH, and Sign, while in a passive attack it is provided with oracles Next,
Expose, Conv, and Sign. It may query the oracles adaptively, in any order it wants, with the
following restriction: In the case of an active adversary, as soon as SendU returns dUa+1 = acc
and SendH returns dHa+1 = acc, A makes a query to oracle Next. In the case of a passive adver-
sary, every query to oracle Conv is immediately followed by a query to oracle Next. Eventually,
A outputs a message M and a signature (j, σ) and halts. An active (resp., passive) adversary

9

procedure Initialize

(pk,usk0,hsk) $← KG

(uck0,hck0) $← CKG

hsk1 ← HKU(1,pk,hsk)
ωU

0
$← COINS ; ωH

0
$← COINS

StU
1 ← (usk0,uck0, ω

U
0)

StH
1 ← (hsk1,hck0, ω

H
0)

a← 0 ; S ← ∅ ; E ← ∅
Return pk

procedure Next()
a← a+ 1
If (dU

a = acc) then
(hska,ucka)← StU

a

uska ← UKU(a,pk,hska,uska−1)
ωU

a
$← COINS

StU
a+1 ← (uska,ucka, ω

U
a)

If (dH
a = acc) then

hcka ← StH
a

hska+1 ← HKU(a+ 1,pk,hsk)
ωH

a
$← COINS

StH
a+1 ← (hska+1,hcka, ω

H
a)

procedure Expose()
E ← E ∪ {a}
Return (uska,hska,ucka, ω

U
a)

procedure SendU(Min)
Mout ← ⊥
If (dU

a = rej) then dU
a+1 ← rej

If (dU
a+1 = ⊥) then

(Mout,StU
a+1,d

U
a+1)← U(Min,StU

a+1,d
U
a)

Return (Mout,d
U
a+1)

procedure SendH(Min)
Mout ← ⊥
If (dH

a = rej) then dH
a+1 ← rej

If (dH
a+1 = ⊥) then

(Mout,StH
a+1,d

H
a+1)← H(Min,StH

a+1,d
H
a)

Return (Mout,d
H
a+1)

procedure Sign(M)
(a, σ) $← Sig(a,uska,M)
S ← S ∪ {(a,M)}
Return (a, σ)

procedure Finalize(M, (j, σ))
Return (j 6∈ E ∧ (j,M) 6∈ S∧

Ver(pk,M, (j, σ)) = 1)
procedure Conv()
If (dU

a+1 = ⊥ ∧ dH
a+1 = ⊥) then

(Conv,StU
a+1,d

U
a+1,StH

a+1,d
H
a+1) $← Run(U,StU

a+1,H,StH
a+1)

Return (Conv,dU
a+1,d

H
a+1)

Figure 2: Games used to define public-channel key insulation under active and passive attack.
Game PCKI-aa includes all of the procedures except Conv, while game PCKI-pa includes all except
SendU and SendH.

10

is said to win if game PCKI-aa (resp., PCKI-pa) returns true, meaning j is an unexposed stage,
Ver(pk,M, (j, σ)) = 1, and M was not queried to oracle Sign during stage j. For atk ∈ {aa, pa},
A’s atk-advantage is

Advpcki-atk
PCKUS (A) = Pr

[
PCKI-atkA ⇒ true

]
.

Again, we adopt the convention that the running time of an adversary A is the execution time
of the entire game, including the time taken for initialization, the time taken by the oracles to
compute replies to the adversary’s queries, and the time taken for finalization.

Explanation. An active adversary has full control over the communication between the helper
and the user. It can deliver messages out of order, modify messages or inject messages of its own
choosing. This is modeled by providing the adversary access to oracles SendU and SendH, which
represent the user and helper, respectively, running the channel-key-update protocol. Once this
protocol terminates, the adversary is required to call its Next oracle to move the system into the
next stage. This models the user updating his keys as soon as he obtains the helper secret key
for the next stage. As in the case of key insulation in the secure-channel model, the adversary
may break in during the current stage by calling its Expose oracle, but here it gets back the user
secret key, the helper key, the user channel key, and the user’s coins, for that stage. As before, the
adversary may obtain signatures for messages of its choice during the current stage by calling its
Sign oracle. To win, it must output a valid forgery for an unexposed stage.

A passive adversary cannot modify or inject messages, but it can eavesdrop on the communica-
tion channel, obtaining transcripts of conversations between the user and the helper. We model this
by providing the adversary access to oracle Conv which runs the channel-key-update protocol and
returns the conversation transcript and the decisions of U and H. In all other respects, a passive
adversary is like an active adversary: as soon as the channel-key-update protocol terminates, the
adversary is required to call its Next oracle to move the system into the next stage, the adversary
can break in during the current stage, it can obtain signatures for messages of its choice during the
current stage, and its goal is to produce a valid forgery for an unexposed stage.

5 Impossibility of public-channel KI under active attack

We show that the notion of public-channel key insulation under active attack is unachievable,
meaning all public-channel key-updating signature schemes are vulnerable to an active attack. The
precise statement of our result is the following.

Theorem 5.1 Let PCKUS = ((KG,HKU,UKU, Sig,Ver),CKG, (U,H)) be a public-channel key-
updating signature scheme. Let tKG, tHKU, tUKU, tSig, tVer, and tCKG denote the running times
of the corresponding algorithms, and t(U,H) denote the running time of protocol (U,H). Let m be
the maximum number of moves in this protocol. Then there exists an adversary A against PCKUS
that makes one query to oracle Next, one Expose query, at most dm/2e SendU queries, at most
2dm/2e SendH queries, and no Sign queries, such that

Advpcki-aa
PCKUS(A) = 1 .

Furthermore, the running time of A is tKG + tCKG + 2tHKU + 2tUKU + 2t(U,H) + tSig.

The proof of the above theorem is simple, as is not uncommon for impossibility results, where the
key insights are in the development of the model and the question posed.

Proof: A is defined in Figure 3.

11

Adversary A(pk)
Min ← ε ; decU1 ← ⊥ ; decH1 ← ⊥
While (decU1 = ⊥ ∨ decH1 = ⊥) do

(Mout,decU1) $← SendU(Min) ; (Min, decH1) $← SendH(Mout)
Next() ; (usk1,hsk1, uck1)← Expose()
StU2 ← uck1 ; Min ← ε ; decU2 ← ⊥ ; decH2 ← ⊥
While (decU2 = ⊥ ∨ decH2 = ⊥) do

Mout ← ⊥
If (decU1 = rej) then decU2 = rej

If (decU2 = ⊥) then (Mout,decU2 , St
U
2) $← U(Min,StU2 , decU1)

(Min,decH1) $← SendH(Mout)

(hsk2,uck2)← StU2 ; usk2 ← UKU(2,pk, hsk2,usk1) ; (2, σ) $← Sig(2, usk2, 0)
Return 0, (2, σ)

Figure 3: Adversary A for the proof of Theorem 5.1.

First A simulates the execution of the channel-key-update protocol using oracles SendU and
SendH by delivering messages faithfully between them, starting with message ε delivered to
SendU. Then A makes a query to oracle Next which results in the computation of the stage
1 user secret key usk1. It then makes a query to Expose obtaining (usk1,hsk1, uck1, ω

U
1). Setting

StU2 = (usk1,uck1, ω
U
1), A then plays the role of the user in an interaction with oracle SendH, by

computing U itself. At the end of the interaction, A obtains hsk2,uck2. It can then compute usk2

by applying the user key-update algorithm UKU. Finally, it computes a valid signature (2, σ) for
message 0 by applying the signing algorithm Sig with user secret key usk2, and it outputs a forgery
0, (2, σ). A clearly satisfies the claims in the theorem.

6 Possibility of public-channel KI under passive attack

Given a KI signature scheme in the secure-channel model, we show in this section how to transform
it into a KI signature scheme secure against passive attack in the public-channel model. We first
discuss the primitives we use, namely an arbitrary secret-key-exchange protocol and an arbitrary
one-time symmetric encryption scheme.

Secret-key-exchange (SKE) Protocol. An SKE protocol with key length k is a pair of
interactive algorithms (I, J) each of which has local output a k bit string. We require that

Pr
[

(Conv,KI ,d
I ,KJ , d

J) $← Run(I, ε, J, ε) : (KI = KJ) ∧ (dI = dJ = acc)
]

= 1 ,

meaning the parties agree on a common key. For security we require that the common key be
computationally indistinguishable from random. This is captured by defining the ske-advantage of
an adversary A as

Advske
(I,J)(A) = 2 · Pr

[
SKEA(I,J) ⇒ true

]
− 1 ,

where game SKE(I,J) is defined in Figure 4.
One example of a suitable SKE protocol is a Diffie-Hellman key exchange. (The DH key needs

to be suitably hashed to a k bit string.) Another possibility, based on any asymmetric encryption

12

procedure Initialize

b
$← {0, 1}

procedure Conv()

(Conv,K1, d
I ,K1, d

J) $← Run(I, ε, J, ε)

K0
$← {0, 1}k

Return (Conv,dI ,dJ ,Kb)

procedure Finalize(d)
Return (b = d)

procedure Initialize

K
$← {0, 1}k

b
$← {0, 1}

procedure LR(M0,M1)

C
$← SEnc(K,Mb)

Return C

procedure Finalize(d)
Return (b = d)

Figure 4: Game SKE(I,J) on the left is used to define security of SKE protocol (I, J) and game
INDCPASE on the right is used to define security of symmetric encryption scheme SE = (SEnc, SDec).
In both cases, the key length is k.

scheme (AKg,AEnc,ADec), works as follows. I picks a public/secret key pair (pk, sk) by running
AKg and sends pk to J. The latter selects a random k-bit string K, encrypts it under pk using
AEnc and sends the ciphertext to I. I decrypts the ciphertext with sk using ADec to obtain K.

Symmetric encryption. A symmetric encryption scheme SE = (SEnc, SDec) with key length
k consists of two algorithms. The encryption algorithm SEnc takes a k bit key K and plaintext
M ∈ {0, 1}∗ to return a ciphertext C. The decryption algorithm SDec takes K and C to return
either a plaintext M or the symbol ⊥. We require

Pr
[
K

$← {0, 1}k : SDec(K,SEnc(K,M)) = M
]

= 1

for all M ∈ {0, 1}∗. We also require standard IND-CPA security except that it need only be
one-time. This is captured by letting

Advind-cpa
SE (A) = 2 · Pr

[
INDCPAASE ⇒ true

]
− 1 ,

where game INDCPASE is in Figure 4 and A is required to make only one LR query (this is how the
one-time requirement is captured), consisting of a pair of equal-length messages.

Construction. Let KUS = (KG,HKU,UKU, Sig,Ver) be a key-updating signature scheme. We
transform it into a public-channel key-updating signature scheme PCKUS = (KUS,CKG, (U,H)),
where CKG always returns (ε, ε), by defining the channel-key-update protocol (U,H) in terms of
any secret-key-exchange protocol (I, J) and symmetric encryption scheme SE = (SEnc,SDec), both
with the same key length k, as follows. The parties first run the secret-key-exchange protocol, with
U playing the role of I and H playing the role of J, to agree on a common key K. The helper then
encrypts hski under K using SEnc to obtain a ciphertext C which it sends to the user. The latter
decrypts C under K using SDec to obtain hski.

We clarify that this particular channel-update protocol is chosen for illustrative purposes. Many
others are possible, as the reader will probably see. However, it does include several different
instantiations, arising from the different available choices of SKE protocols mentioned above.

Security of our construction. We prove that if the given key-updating signature scheme
is KI in the secure-channel model and the secret-key-exchange protocol as well as the symmetric
encryption scheme are secure, then the public-channel key-updating signature scheme obtained
using our construction is KI under passive attack in the public-channel model.

13

Theorem 6.1 Let KUS = (KG,HKU,UKU,Sig,Ver) be a key-updating signature scheme. Let
PCKUS = ((KG,HKU,UKU,Sig,Ver),CKG, (U,H)) be the public-channel key-updating signature
scheme constructed from KUS, secret-key-exchange protocol (I, J) and symmetric encryption scheme
SE = (SEnc, SDec) as described above. Let tKG, tHKU, tUKU, tSig, tVer, and tCKG denote the running
times of the corresponding algorithms, and t(U,H) denote the running time of protocol (U,H). Let
A be an adversary against PCKUS, making q queries to oracles Conv and Next, qE queries to
Expose, and qS queries to Sign. Then there exist adversaries E, B, S such that

Advpcki-pa
PCKUS(A) ≤ q ·Advske

(I,J)(E) + q ·Advind-cpa
SE (B) + q ·Advki

KUS(S) . (1)

Furthermore, the running times of E, B are both tKG+tCKG+qN ·tHKU+qN ·tUKU+qS ·tSig+q ·t(U,H),
and the running time of S is tCKG +O(q + qS + qE) + q · t(U,H). Also S makes q − 1 queries to its
Expose oracle and q queries to its Next oracle.

Proof overview. The proof that our construction achieves public-channel KI security under
passive attack seems easy at first, but there are subtle difficulties arising from the fact that our
model allows the adversary to obtain the user coins from the channel-update protocol execution
in any stage in which it breaks in. This means that the adversary obtains the session key, and
can check whether the ciphertext transmitted by the helper decrypts to the helper secret key for
the stages in question, a value it also has from its break-in. Of course, in the real protocol, this
will always be true. But the natural simulation is to consider a protocol in which, rather than
encrypting the helper key under the session key yielded by the session-key exchange protocol, the
helper encrypts a constant under a new, random key. The security of the session-key exchange
protocol and the encryption scheme should imply that this makes no difference. However, the
adversary can in fact detect the difference between the simulation and the real game because, as we
said above, it can obtain the real session key and decrypt the ciphertext under it. To get around
this, we guess a stage in which the adversary does not break in, and switch to the simulated key
and message only in this stage, using the real key and real message in other stages. But to do
this, our simulation needs to know the real message, which is the helper secret key, and the only
way to get this is to break in. Luckily, it can do so by consequence of the assumed security of
the underlying secure-channel KI scheme, but the result is a discrepancy in resources: even if the
adversary against the public channel protocol does very few break-ins, the adversary against the
secure-channel protocol breaks-in to N − 1 out of N stages. Therefore, it is required that the
given secure-channel scheme be secure against N − 1 break-ins. Luckily, we have such schemes.
For signatures, the schemes of [16] have the desired property. For encryption, some of the original
schemes of [15] are threshold and don’t have the property, but the scheme of [4] does.

Proof: We use games G0, G1, G2, G3, G4 defined in Figure 5. We assume, without loss of generality,
that A never asks an oracle query twice and its output (j, (M,σ)) always satisfies 1 ≤ j ≤ q. We
assume that A always makes exactly (as opposed to at most) q Conv oracle queries. Game G0 is
simply game PCKI-pa of Figure 2 for the case where the channel-key-update protocol is the one we
have defined, and so we have

Advpcki-pa
PCKUS(A) = Pr

[
GA

0 ⇒ true
]
. (2)

Games G0 and G1 are identical except for the boxed code in Finalize, and on the other hand
G0 does not use g anywhere and thus the events GA

0 ⇒ true and g = j are independent and the
probability of the latter is 1/q. Hence,

Pr
[

GA
1 ⇒ true

]
= Pr

[
GA

0 ⇒ true ∧ g = j
]

14

procedure Initialize

(pk,usk0,hsk) $← KG

(uck0,hck0) $← CKG

hsk1 ← HKU(1,pk,hsk)
ωU

0
$← COINS; ωH

0
$← COINS

StU
1 ← (usk0,uck0, ω

U
0)

StH
1 ← (hsk1,hck0, ω

H
0)

a← 0 ; S ← ∅ ; E ← ∅
g

$← {1, . . . , q}
Return pk

procedure Next()
a← a+ 1
If (dU

a = acc) then
(hska,ucka)← StU

a

uska ← UKU(a,pk,hska,uska−1)
ωU

a
$← COINS

StU
a+1 ← (uska,ucka, ω

U
a)

If (dH
a = acc) then

hcka ← StH
a

hska+1 ← HKU(a+ 1,pk,hsk)
ωH

a
$← COINS

StH
a+1 ← (hska+1,hcka, ω

H
a)

procedure Sign(M)
(a, σ) $← Sig(a,uska,M)
S ← S ∪ {(a,M)}
Return (a, σ)

procedure Expose() // G0, G1, G2 , G3 , G4

E ← E ∪ {a}
x← (uska,hska, ε, ω

U
a)

If (a = g) then x←⊥
Return x

procedure Conv() // G0, G1, G2

If (dI
a+1 = ⊥ ∧ dJ

a+1 = ⊥) then
Parse ωH

a as ωJ
a ||r

(Conv,K1,d
I
a+1,K1,d

J
a+1)← Run(I, ε, J, ε, ;ωU

a , ω
J
a)

C ← SEnc(K1,hska+1; r)
StU

a+1 ← (hska+1, ε) ; StH
a+1 ← ε

Return (Conv ‖ C, dI
a+1,d

J
a+1)

procedure Conv() // G3

If (dI
a+1 = ⊥ ∧ dJ

a+1 = ⊥) then
Parse ωH

a as ωJ
a ||r

(Conv,K1,d
I
a+1,K1,d

J
a+1)← Run(I, ε, J, ε, ;ωU

a , ω
J
a)

C ← SEnc(K1,hska+1; r)
If (a+ 1 = g) then
K0

$← {0, 1}k ; C $← SEnc(K0,hska+1)
StU

a+1 ← (hska+1, ε) ; StH
a+1 ← ε

Return (Conv ‖ C, dI
a+1,d

J
a+1)

procedure Conv() // G4

If (dI
a+1 = ⊥ ∧ dJ

a+1 = ⊥) then
Parse ωH

a as ωJ
a ||r

(Conv,K1,d
I
a+1,K1,d

J
a+1)← Run(I, ε, J, ε, ;ωU

a , ω
J
a)

C ← SEnc(K1,hska+1; r)
If (a+ 1 = g) then
K0

$← {0, 1}k ; C $← SEnc(K0, 0|hska+1|)
StU

a+1 ← (hska+1, ε) ; StH
a+1 ← ε

Return (Conv ‖ C, dI
a+1,d

J
a+1)

procedure Finalize(M, (j, σ)) // G0, G1 , G2 , G3 , G4

Return (g = j ∧ j 6∈ E ∧ (j,M) 6∈ S ∧ Ver(pk,M, (j, σ)) = 1)

Figure 5: Games G0,G1,G2,G3,G4 used for the proof of Theorem 6.1. The boxed code in Finalize
is omitted in G0 but present for the other games. The boxed code in Expose is omitted in G0, G1

but present for the other games.

= Pr
[

GA
0 ⇒ true

]
· Pr [g = j]

= Pr
[

GA
0 ⇒ true

]
· 1
q
. (3)

The difference between G2 and G1 is that the former includes the boxed code in Expose. However,
any execution of G2 with A in which the outcome is true must have g = j and j 6∈ E, so the boxed

15

code would not have been executed. This means that

Pr
[

GA
2 ⇒ true

]
= Pr

[
GA

1 ⇒ true
]
. (4)

From equations (2), (3) and (4), we have

Advpcki-pa
PCKUS(A) = q · Pr

[
GA

1 ⇒ true
]

= q · Pr
[

GA
2 ⇒ true

]
. (5)

We will build E, B, S so that

Pr
[

GA
2 ⇒ true

]
− Pr

[
GA

3 ⇒ true
]
≤ Advske

(I,J)(E) (6)

Pr
[

GA
3 ⇒ true

]
− Pr

[
GA

4 ⇒ true
]
≤ Advind-cpa

SE (B) (7)

Pr
[

GA
4 ⇒ true

]
≤ Advki

KUS(S) . (8)

Assuming this for now, we show how to conclude. By adding equations (6), (7) and (8), we have

Pr
[

GA
2 ⇒ true

]
≤ Advske

(I,J)(E) + Advind-cpa
SE (B) + Advki

KUS(S) . (9)

From equations (9) and (5), we have equation (1).

We now show how to build adversary E against game SKE(I,J). Adversary E begins by executing
the code of the Initialize procedure of G2, thereby defining for itself all the variables there. It then
starts running A on input pk, which is one of the variables it just defined. It answers A’s queries
to its Next, Expose and Sign oracles exactly as G2 does, and answers queries to the Conv oracle
via the following procedure:

procedure Conv()
If (dIa+1 = ⊥ ∧ dJa+1 = ⊥) then

Parse ωHa as ωJa ||r
(Conv,K1, d

I
a+1,K1, d

J
a+1)← Run(I, ε, J, ε;ωUa , ω

J
a) ; C ← SEnc(K1,hska+1; r)

If (a+ 1 = g) then (Conv,dIa+1,d
J
a+1,Kb)

$← Conv() ; C $← SEnc(Kb, hska+1)
Return (Conv ‖ C,dIa+1, d

J
a+1)

In the 4th line of the code above, E invokes its own Conv oracle. Finally, A outputs (j, (M,σ)).
Adversary E outputs 1 if g = j ∧ j 6∈ E ∧ (j,M) 6∈ S ∧ Ver(pk,M, (j, σ)) = 1, and otherwise it
outputs 0. We have

Pr
[
SKEEI,J ⇒ true | b = 1

]
= Pr

[
GA

2 ⇒ true
]

Pr
[
SKEEI,J ⇒ true | b = 0

]
= Pr

[
GA

3 ⇒ true
]

Subtracting, we get equation (6).

Next, we show how to build adversary B against game INDCPASE. Adversary B begins by executing
the code of the Initialize procedure of G3, thereby defining for itself all the variables there. It
then starts running A on input pk. It answers A’s queries to its Next, Expose and Sign oracles
exactly as G3 does, and answers queries to the Conv oracle via the following procedure:

procedure Conv()
If (dIa+1 = ⊥ ∧ dJa+1 = ⊥) then

16

Parse ωHa as ωJa ||r
(Conv,K1, d

I
a+1,K1,d

J
a+1)← Run(I, ε, J, ε;ωUa , ω

J
a) ; C ← SEnc(K1,hska+1; r)

If (a+ 1 = g) then C
$← LR(hska+1, 0|hska+1|)

Return (Conv ‖ C,dIa+1,d
J
a+1)

In the 4th line of the code above, B queries its LR oracle. Finally, A outputs (j, (M,σ)). Adversary
B outputs 1 if g = j ∧ j 6∈ E ∧ (j,M) 6∈ S ∧ Ver(pk,M, (j, σ)) = 1, and otherwise it outputs 0. We
have

Pr
[
INDCPABSE ⇒ true | b = 0

]
= Pr

[
GA

3 ⇒ true
]

Pr
[
INDCPABSE ⇒ true | b = 1

]
= Pr

[
GA

4 ⇒ true
]

Subtracting, we get equation (7).

Finally, we show how adversary S works against game KIS. S is given input pk. It selects ωU0 , ω
H
0 ∈

COINS and g ∈ {1, . . . , q} independently at random, sets a = 0, and starts running A on input pk.
S answers A’s queries to the Conv oracle via the following procedure:

procedure Conv()
If (dIa+1 = ⊥ ∧ dJa+1 = ⊥) then

Parse ωHa as ωJa ||r
(Conv,K1, d

I
a+1,K1,d

J
a+1)← Run(I, ε, J, ε;ωUa , ω

J
a)

Next()

If (a+ 1 = g) then K0
$← {0, 1}k ; C $← SEnc(K0, 0|hska+1|)

else (uska+1,hska+1)← Expose() ; C ← SEnc(K1,hska+1; r)
Return (Conv ‖ C,dIa+1,d

J
a+1)

In the 4th line of the code above, S queries its Next oracle, and in the 6th line, it queries its Expose
oracle. S answers A’s queries to the Next oracle by incrementing a and selecting ωUa , ω

H
a ∈ COINS

independently at random. It answers A’s queries to its Expose and Sign oracles via its own
corresponding oracles (setting ucka = ε). Finally, A outputs (j, (M,σ)) and S returns this same
output. From the above, we know that if A wins game G4, the event of g = j must happen. In
addition, S never queries its own Expose oracle in stage g. Thus S can output the same signature
(g, (M,σ)) as A and win the game KIS. So we have equation (8).

7 Intrusion resilience in the secure-channel model

In an intrusion-resilient signature scheme both the user’s and the helper’s secret keys evolve with
time. In addition, these schemes include a refresh procedure for helper and user such that if a
refresh is run between the compromise of the user or helper and the compromise of the other, then
the system remains secure, except for the current stage. In our security definition below, we denote
the number of refreshes per stage by RN . Our definition differs from that of [20] in some details,
but this does not affect the results.

A signer-base key-updating signature scheme SBKUS = (KG,HKU,UKU,HKR,UKR,Sig,Ver) is
specified by seven algorithms with the following functionality. The randomized key-generation
algorithm KG returns (pk,usk0.0,hsk0.0), where pk is the user public key, usk0.0 is the stage 0 user
secret key, and hsk0.0 is the stage 0 helper key. The user is initialized with pk,usk0.0, while the

17

procedure Initialize

(pk,usk0.0,hsk0.0) $← KG

a← 0 ; r ← 0 ; S ← ∅
Return pk

procedure Next()
a← a+ 1
(hska.0,hskua) $← HKU(a,pk,hsk(a−1).r)
uska.0

$← UKU(a,pk,hskua,usk(a−1).r)
(hska.1,hskra.1) $← HKR(a,pk,hska.0)
uska.1

$← UKR(a,pk,hskra.1,uska.0)
r ← 1

procedure Finalize(M, (j, σ))
If ((j,M) ∈ S ∨ Ver(pk,M, (j, σ)) = 0) then

Return false

If ∃s(1 ≤ s ≤ RN ∧ ExpU j.s) then Return false

If ∃i∃s(1 ≤ i < j ∧ 1 ≤ s ≤ RN ∧
ExpU i.s ∧ ExpH i.s) then Return false

Return true

procedure Refresh()
r ← r + 1
(hska.r,hskra.r) $← HKR(a,pk,hska.(r−1))
uska.r

$← UKR(a,pk,hskra.r,uska.(r−1))

procedure Expose(Type)
If (Type = “U”) then

ExpUa.r ← true ; Return uska.r

If (Type = “H”) then
ExpHa.r ← true ; Return hska.r

If (Type = “P”) then
If (ExpU (a−1).RN) then

ExpUa.1 ← true ; Return (hskua,hskra.1)
If (Type = “R”) then

If (ExpUa.(r−1)) then
ExpUa.r ← true ; Return hskra.r

Return ⊥

procedure Sign(M)
(a, σ) $← Sig(a,uska.r,M)
S ← S ∪ {(a,M)}
Return (a, σ)

Figure 6: Game IRS used to define IR signatures in the secure-channel model.

helper is initialized with pk, hsk0.0. At the start of stage a ≥ 1, if r refreshes have been made since
the last update, where 0 ≤ r ≤ RN , the helper applies the randomized helper key-update algorithm
HKU to a,pk,hsk(a−1).r to obtain a stage a helper key hska.0 and a stage a helper update key hskua.
The helper discards (erases) hsk(a−1).r. Then it applies the randomized helper key-refresh algorithm
HKR to a,pk,hska.0 to obtain a stage a helper key hska.1 and a stage a helper refresh key hskra.1. It
discards hska.0. The helper update key hskua and the helper refresh key hskra.1 are then assumed
to be conveyed to the user via a secure channel. The user receives hskua and hskra.1 from the
helper, and applies the randomized user key-update algorithm UKU to a,pk, hskua,usk(a−1).r to
obtain a stage a user secret key uska.0. The user then discards usk(a−1).r. Then the user applies
the randomized user key-refresh algorithm UKR to a,pk,hskra.1,uska.0 to obtain a stage a user
secret key uska.1. The user then discards uska.0. In stage a, if r refreshes have been made, where
1 ≤ r < RN , the helper can apply the helper key-refresh algorithm HKR to a,pk,hska.r to obtain
a stage a helper key hska.(r+1) and a stage a helper refresh key hskra.(r+1). It then discards hska.r.
The helper refresh key hskra.(r+1) is assumed to be conveyed to the user via a secure channel.
The user receives hskra.(r+1) from the helper, and applies the user key-refresh algorithm UKR to
a,pk,hskra.(r+1), uska.r to obtain a stage a user secret key uska.(r+1). The user then discards uska.r.
In stage a, if r refreshes have been made, where 1 ≤ r ≤ RN , the user can apply the randomized
signing algorithm Sig to a, stage a secret key uska.r, and a message M ∈ {0, 1}∗ to obtain a pair
(a, σ), consisting of the stage number a and a signature σ. During stage a anyone can apply the
deterministic verification algorithm Ver to pk, a message M , and a pair (i, σ) to obtain either 1,
indicating acceptance, or 0, indicating rejection. We require that if (i, σ), where 1 ≤ i ≤ a, was
produced by applying the signing algorithm to i,uski.r,M then Ver(pk,M, (i, σ)) = 1.

18

Security. Consider game IRS of Figure 6. The Initialize procedure provides adversary A with
input pk. A can call its Next oracle to move the system into the next stage. It can call its Refresh
oracle to refresh the helper and user’s secret keys. It may break in during the current stage by
calling its Expose oracle. Four types of Expose queries are allowed. Query “U” returns the user
secret key for the current stage. Query “H” returns the helper key for that stage. Query “P”
returns the helper update and helper refresh keys for the current stage. Query “R” returns the
helper refresh key for that stage. A may obtain signatures for messages of its choice during the
current stage by calling its Sign oracle.

For any stage a and any refresh number r, 1 ≤ r ≤ RN , user secret key uska.r is said to be
exposed if ExpUa.r = true. Helper key hska.r is said to be exposed if ExpHa.r = true. Signer-base
key-updating signature scheme SBKUS is said to be a-compromised if uska.r is exposed for some r,
1 ≤ r ≤ RN , or there exists i < a such that uski.r and hski.r are exposed for some r, 1 ≤ r ≤ RN .

To win, A must output a message M and a signature (j, σ) such that M was not queried to
Sign during stage j, Ver(pk,M, (j, σ)) = 1, and the scheme is not j-compromised. A’s advantage
is

Advir
SBKUS(A) = Pr

[
IRSA ⇒ true

]
.

We adopt the convention that the running time of an adversary A is the execution time of the
entire game, including the time taken for initialization, the time taken by the oracles to compute
replies to the adversary’s queries, and the time taken for finalization.

8 Intrusion resilience in the public-channel model

Public-channel signer-base key updating signature schemes. A public-channel signer-
base key-updating signature scheme is a tuple PCSBKUS = (SBKUS,CKG, (UU,HU), (UR,HR)),
where SBKUS = (KG,HKU,UKU,HKR,UKR,Sig,Ver) is a signer-base key-updating signature
scheme, CKG is the channel-key-generation algorithm, and the channel-key-update protocol
(UU,HU) and channel-key-refresh protocol (UR,HR) are each pairs of interactive algorithms to
be run by user and helper, respectively. Let RN denote the number of refreshes per stage in
SBKUS. We now explain how the system runs.

Algorithm CKG returns the stage 0 user channel key uck0.0 and the stage 0 helper channel key
hck0.0. When the user is initialized, in addition to the public key pk and stage 0 user secret key
usk0.0 produced by KG, the user is given uck0.0. When the helper is initialized, in addition to pk
and the stage 0 helper key hsk0.0 (also generated by KG), the helper is given hck0.0.

In any stage a ≥ 0, if r refreshes have been made since the last update, where 0 ≤ r ≤ RN ,
the user holds a stage a user secret key uska.r and a stage a user channel key ucka.r. The helper
holds a stage a helper key hska.r and a stage a helper channel key hcka.r. At the start of stage
a+ 1, the helper computes (hsk(a+1).0, hskua+1) $← HKU(a+ 1, pk, hska.r), discards (erases) hska.r,

computes (hsk(a+1).1,hskr(a+1).1) $← HKR(a + 1,pk,hsk(a+1).0), and discards hsk(a+1).0. Then the
parties engage in the channel-key-update protocol (UU,HU). The local input of UU is the stage
a user secret key uska.r, the stage a user channel key ucka.r, and some random coins ωUa.r; while
the local input of HU is the stage a+ 1 helper update key hskua+1, the stage a+ 1 helper refresh
key hskr(a+1).1, the stage a helper channel key hcka.r, and some random coins ωHa.r. After the
interaction, the expected local output of UU is hskua+1, hskr(a+1).1, plus the stage a + 1 user
channel key uck(a+1).1; while the expected local output of HU is the stage a + 1 helper channel
key hck(a+1).1. Once the protocol has completed, the user immediately updates its secret key by

19

computing usk(a+1).0
$← UKU(a+1, pk,hskua+1,uska.r), discarding uska.r, computing usk(a+1).1

$←
UKR(a+1, pk,hskr(a+1).1,usk(a+1).0), and discarding usk(a+1).0. The user also discards its previous
channel key ucka.r. The helper discards its previous channel key hcka.r as well. We require the
natural correctness condition, namely that the stage a + 1 helper update key and the stage a + 1
helper refresh key produced by UU in the interaction in which UU has input uska.r, ucka.r, ω

U
a.r

and HU has input hskua+1,hskr(a+1).1,hcka.r, ω
H
a.r, are, respectively, hskua+1 and hskr(a+1).1 with

probability one. In addition, we require that at the end of the interaction, UU’s decision dU(a+1).1

and HU’s decision dH(a+1).1 are both acc.
In stage a, if r refreshes have been made, where 1 ≤ r ≤ RN , the helper can compute

(hska.(r+1),hskra.(r+1))
$← HKR(a,pk,hska.r) and discard hska.r. Then the parties engage in the

channel-key-refresh protocol (UR,HR). The local input of UR is the stage a user secret key uska.r,
the stage a user channel key ucka.r, and some random coins ωUa.r; while the local input of HR is
the stage a helper refresh key hskra.(r+1), the stage a helper channel key hcka.r, and some random
coins ωHa.r. After the interaction, the expected local output of UR is hskra.(r+1) plus the stage a
user channel key ucka.(r+1); while the expected local output of HR is the stage a helper channel
key hcka.(r+1). Once the protocol has completed, the user updates its secret key by computing

uska.(r+1)
$← UKR(a,pk, hskra.(r+1),uska.r), and discarding uska.r. The user also discards its previ-

ous channel key ucka.r. The helper discards its previous channel key hcka.r as well. We require the
natural correctness condition, namely that the stage a+1 helper refresh key produced by UR in the
interaction in which UR has input uska.r, ucka.r, ω

U
a.r and HR has input hskra.(r+1), hcka.r, ω

H
a.r, is

hskra.(r+1) with probability one. In addition, we require that at the end of the interaction, UR’s de-
cision dUa.(r+1) and HU’s decision dHa.(r+1) are both acc. Security. We proceed to formalize a notion

of security for public-channel signer-base key-updating signature schemes: intrusion resilience under
passive attacks. We first provide a definition and then explanations. Let PCSBKUS = ((KG,HKU,
UKU,HKR,UKR,Sig,Ver),CKG, (UU,HU), (UR,HR)) be a public-channel signer-base key-updating
signature scheme. We consider an adversary A interacting with the game of Figure 7.

The Initialize procedure gives A input pk. A is provided with oracles Next, Refresh, Expose,
UConv, RConv, and Sign. It may query the oracles adaptively, in any order it wants, with the
following restrictions: every query to oracle UConv is immediately followed by a query to oracle
Next, every query to oracle RConv is immediately followed by a query to oracle Refresh, and in
every stage the adversary makes exactly RN Refresh queries. Eventually, A outputs a message M
and a signature (j, σ) and halts. A passive adversary is said to win if game PCIR-pa returns true,
meaning M was not queried to Sign during stage j, Ver(pk,M, (j, σ)) = 1, no Expose queries of
type “U” were made during stage j, and during all previous stages i, 1 ≤ i < j, no Expose queries
of type “U” and type “H” were made without a refresh in between them. A’s pa-advantage is

Advpcir-pa
PCSBKUS(A) = Pr

[
PCIR-paA ⇒ true

]
.

Again, we adopt the convention that the running time of an adversary A is the execution time
of the entire game, including the time taken for initialization, the time taken by the oracles to
compute replies to the adversary’s queries, and the time taken for finalization.

9 Possibility of public-channel IR under passive attack

Given a signer-base key-updating signature scheme in the secure-channel model, we show in
this section how to transform it into a signer-base key-updating signature scheme secure against
passive attack in the public-channel model, by using secret-key-exchange protocols and symmetric

20

procedure Initialize

(pk,usk0.0,hsk0.0)
$← KG

(uck0.0, hck0.0)
$← CKG

(hsk1.0, hsku1)← HKU(1,pk, hsk0.0)

(hsk1.1, hskr1.1)← HKR(1, pk,hsk1.0)

ωU
0.0

$← COINS ; ωH
0.0

$← COINS

StU
1.1 ← (usk0.0,uck0.0, ωU

0.0)

StH
1.1 ← (hsku1, hskr1.1,hck0.0, ωH

0.0)

a← 0 ; r ← 0 ; S ← ∅
Return pk

procedure Refresh()

r ← r + 1

If (dU
a.r = acc) then

(hskra.r,ucka.r)← StU
a.r ; ωU

a.r
$← COINS

uska.r ← UKR(a, pk, hskra.r,uska.(r−1))

If (r = RN) then

StU
(a+1).1 ← (uska.r, ucka.r, ωU

a.r)

Else

StU
a.(r+1) ← (uska.r, ucka.r, ωU

a.r)

If (dH
a.r = acc) then

hcka.r ← StH
a.r ; ωH

a.r
$← COINS

If (r = RN) then

(hsk(a+1).0, hskua+1)
$← HKU(a+ 1, pk,hska.r)

(hsk(a+1).1, hskr(a+1).1)
$← HKR(a+ 1,pk, hsk(a+1).0)

StH
(a+1).1 ← (hskua+1,hskr(a+1).1, hcka.r, ωH

a.r)

Else

(hska.(r+1), hskra.(r+1))
$← HKR(a, pk, hska.r)

StH
a.(r+1) ← (hskra.(r+1), hcka.r, ωH

a.r)

procedure Sign(M)

(a, σ)
$← Sig(a,uska.r,M)

S ← S ∪ {(a,M)}
Return (a, σ)

procedure Next()

a← a+ 1

If (dU
a.1 = acc) then

(hskua, hskra.1, ucka.1)← StU
a.1 ; ωU

a.1
$← COINS

uska.0 ← UKU(a,pk, hskua, usk(a−1).r)

uska.1 ← UKR(a, pk, hskra.1, uska.0)

StU
a.2 ← (uska.1, ucka.1, ωU

a.1)

If (dH
a.1 = acc) then

hcka.1 ← StH
a.1 ; ωH

a.1
$← COINS

(hska.2, hskra.2)
$← HKR(a,pk, hska.1)

StH
a.2 ← (hskra.2,hcka.1, ωH

a.1)

r ← 1

procedure Expose(Type)

If (Type = “U”) then

ExpUa.r ← true

Return (uska.r, hskua, hskra.r,ucka.r, ωU
a.r)

If (Type = “H”) then

ExpHa.r ← true

If (r 6= 1 ∧ ExpUa.(r−1)) then ExpUa.r ← true

If (r = 1 ∧ ExpU(a−1).RN) then ExpUa.r ← true

Return (hska.r, hskua, hskra.r, hcka.r, ωH
a.r)

Return ⊥

procedure Finalize(M, (j, σ))

If ((j,M) ∈ S ∨ Ver(pk,M, (j, σ)) = 0) then

Return false

If ∃s(1 ≤ s ≤ RN ∧ ExpUj.s) then Return false

If ∃i∃s(1 ≤ i < j ∧ 1 ≤ s ≤ RN ∧
ExpUi.s ∧ ExpHi.s) then Return false

Return true

procedure UConv()

If (dU
(a+1).1

= ⊥ ∧ dH
(a+1).1

= ⊥) then

(Conv,StU
(a+1).1, d

U
(a+1).1

,StH
(a+1).1, d

H
(a+1).1

)
$← Run(UU,StU

(a+1).1,HU,StH
(a+1).1)

Return (Conv, dU
(a+1).1

, dH
(a+1).1

)

procedure RConv()

If (dU
a.(r+1)

= ⊥ ∧ dH
a.(r+1)

= ⊥) then

(Conv,StU
a.(r+1),d

U
a.(r+1)

,StH
a.(r+1), d

H
a.(r+1)

)
$← Run(UR,StU

a.(r+1),HR,StH
a.(r+1))

Return (Conv, dU
a.(r+1)

, dH
a.(r+1)

)

Figure 7: Game PCIR-pa used to define public-channel intrusion resilience under passive attack.

encryption schemes.

Construction. Let SBKUS = (KG,HKU,UKU,HKR,UKR,Sig,Ver) be a signer-base key-updating
signature scheme. We transform it into a public-channel signer-base key-updating signature scheme
PCSBKUS = (SBKUS,CKG, (UU,HU), (UR,HR)), where CKG always returns (ε, ε), by defining both
the channel-key-update protocol (UU,HU) and the channel-key-refresh protocol (UR,HR) in terms

21

of any secret-key-exchange protocol (I, J) and symmetric encryption scheme SE = (SEnc,SDec), the
protocol and the encryption with the same key length k, as follows. During each update (resp.,
refresh), the parties first run the secret-key-exchange protocol, with U playing the role of I and
H playing the role of J, to agree on a common key K. The helper then encrypts (hskui, hskri.1)
(resp., hskri.r) under K using SEnc to obtain a ciphertext C which it sends to the user. The latter
decrypts C under K using SDec to obtain (hskui,hskri.1) (resp., hskri.r).

Security of our construction. We prove that if the given signer-base key-updating signature
scheme is intrusion-resilience in the secure-channel model and the secret-key-exchange protocol
as well as the symmetric encryption scheme are secure, then the public-channel signer-base key-
updating signature scheme obtained using our construction is IR under passive attack in the public-
channel model.

Theorem 9.1 Let SBKUS = (KG,HKU,UKU,HKR,UKR,Sig,Ver) be a signer-base key-updating
signature scheme. Let PCSBKUS = (SBKUS,CKG, (UU,HU), (UR,HR)) be the public-channel
signer-base key-updating signature scheme constructed from SBKUS, secret-key-exchange proto-
col (I, J) and symmetric encryption scheme SE = (SEnc, SDec) as described above. Let tKG, tHKU,
tUKU, tHKR, tUKR, tSig, tVer, and tCKG denote the running times of the corresponding algorithms, and
t(UU,HU), t(UR,HR) denote the running times of protocols (UU,HU) and (UR,HR) respectively. Let A
be an adversary against PCSBKUS, making qU queries to oracle UConv and Next, qR queries to
RConv and Refresh, qE queries to Expose, qS queries to Sign. Then there exist adversaries E,
B, S such that

Advpcir-pa
PCSBKUS(A) ≤ qU ·Advske

(I,J)(E) + qU ·Advind-cpa
SE (B) + qU ·Advir

SBKUS(S) . (10)

Furthermore, the running times of E, B are both tKG + tCKG + qU · (tHKU + tUKU) + qR · (tHKR +
tUKR) + qS · tSig + qU · t(UU,HU) + qR · t(UR,HR) and the running time of S is tCKG +O(qU + qR + qS +
qE) + qU · t(UU,HU) + qR · t(UR,HR). Also S makes 3qE + qU + qR− 5 queries to its Expose oracle, qU
queries to its Next oracle and qR queries to its Refresh oracle.

Proof: We use games G0, G1, G2, G3, G4 defined in Figure 8. We assume, without loss of generality,
that A never asks an oracle query twice and its output (j, (M,σ)) always satisfies 1 ≤ j ≤ qU . We
assume that A always makes exactly (as opposed to at most) qU UConv oracle queries. Game G0

is simply the game PCIR-pa for the case where the channel-key-update protocol and channel-key-
refresh protocol are what we have defined and so we have

Advpcir-pa
PCSBKUS(A) = Pr

[
GA

0 ⇒ true
]
. (11)

Games G0 and G1 are identical except for the boxed code in Finalize, and on the other hand
G0 does not use g anywhere and thus the events GA

0 ⇒ true and g = j are independent and the
probability of the latter is 1/qU . Hence,

Pr
[

GA
1 ⇒ true

]
= Pr

[
GA

0 ⇒ true ∧ g = j
]

= Pr
[

GA
0 ⇒ true

]
· Pr [g = j]

= Pr
[

GA
0 ⇒ true

]
· 1
qU

. (12)

The difference between G2 and G1 is that the former includes the boxed code in Expose. However,
any execution of G2 with A in which the outcome is true must have g = j, ∀s1 ≤ s ≤ RN,ExpUg.s 6=

22

true and ∀i∀s, 1 ≤ i < g ∧ 1 ≤ s ≤ RN,ExpU i.s 6= true∨ExpH i.s 6= true (we refer to such a forgery
satisfying these requirements later as a successful one). So the boxed code would not have been
executed. This means that

Pr
[

GA
2 ⇒ true

]
= Pr

[
GA

1 ⇒ true
]
. (13)

From equations (11), (12) and (13), we have

Advpcir-pa
PCKUS(A) = qU · Pr

[
GA

1 ⇒ true
]

= qU · Pr
[

GA
2 ⇒ true

]
. (14)

We will build E, B, S so that

Pr
[

GA
2 ⇒ true

]
− Pr

[
GA

3 ⇒ true
]
≤ Advske

(I,J)(E) (15)

Pr
[

GA
3 ⇒ true

]
− Pr

[
GA

4 ⇒ true
]
≤ Advind-cpa

SE (B) (16)

Pr
[

GA
4 ⇒ true

]
≤ Advir

SBKUS(S) . (17)

Assuming this for now, we show how to conclude. By adding equations (15), (16) and (17), we
have

Pr
[

GA
2 ⇒ true

]
≤ Advske

(I,J)(E) + Advind-cpa
SE (B) + Advir

SBKUS(S) . (18)

From equations (18) and (14), we have equation (10).

We now show how to build adversary E against game SKE(I,J). Adversary E begins by executing
the code of the Initialize procedure of G2, thereby defining for itself all the variables there. It then
starts running A on input pk, which is one of the variables it just defined. It answers A’s queries
to its Next, Refresh, Expose and Sign oracles exactly as G2 does, and answers queries to the
UConv and RConv oracles via the following procedures:

procedure UConv()
If (dI(a+1).1 = ⊥ ∧ dJ(a+1).1 = ⊥) then

Parse ωHa.RN as ωJa.RN ‖ r
(Conv,K1, d

I
(a+1).1,K1, d

J
(a+1).1) $← Run(I, ε, J, ε, ;ωUa.RN , ω

J
a.RN)

C ← SEnc(K1, (hskua+1,hskr(a+1).1); r)
If (a+ 1 = g ∧ ExpUa.RN) then

(Conv, dI , dJ ,Kb)
$← Conv() ; C $← SEnc(Kb, (hskua+1,hskr(a+1).1))

Return (Conv ‖ C,dI(a+1).1,d
J
(a+1).1)

procedure RConv()
If (dIa.(r+1) = ⊥ ∧ dJa.(r+1) = ⊥) then

Parse ωHa.r as ωJa.r ‖ r
(Conv,K1, d

I
a.(r+1),K1,d

J
a.(r+1))

$← Run(I, ε, J, ε;ωUa.r, ω
J
a.r)

C ← SEnc(K1, hskra.(r+1); r)
If (a = g ∧ (∃s, 1 ≤ s ≤ RN,ExpUa.s)) then

(Conv, dI , dJ ,Kb)
$← Conv() ; C $← SEnc(Kb,hskra.(r+1))

Return (Conv ‖ C,dIa.(r+1),d
J
a.(r+1))

23

In the 6th line of each procedure above, E invokes its own Conv oracle. Finally, A outputs
(j, (M,σ)). Adversary E outputs 1 if (j, (M,σ)) is successful and otherwise it outputs 0. We have

Pr
[
SKEEI,J ⇒ true | b = 1

]
= Pr

[
GA

2 ⇒ true
]

Pr
[
SKEEI,J ⇒ true | b = 0

]
= Pr

[
GA

3 ⇒ true
]

Subtracting, we get equation (15).

Next, we show how to build adversary B against game INDCPASE. Adversary B begins by executing
the code of the Initialize procedure of G3, thereby defining for itself all the variables there. It
then starts running A on input pk. It answers A’s queries to its Next, Refresh, Expose and
Sign oracles exactly as G3 does, and answers queries to the UConv and RConv oracles via the
following procedures:

procedure UConv()
If (dI(a+1).1 = ⊥ ∧ dJ(a+1).1 = ⊥) then

Parse ωHa.RN as ωJa.RN ‖ r
(Conv,K1,d

I
(a+1).1,K1,d

J
(a+1).1) $← Run(I, ε, J, ε, ;ωUa.RN , ω

J
a.RN)

C ← SEnc(K1, (hskua+1,hskr(a+1).1); r)

If (a+ 1 = g ∧ ExpUa.RN) then C
$← LR((hskua+1, hskr(a+1).1), 0|hskua+1,hskr(a+1).1|)

Return (Conv ‖ C,dI(a+1).1, d
J
(a+1).1)

procedure RConv()
If (dIa.(r+1) = ⊥ ∧ dJa.(r+1) = ⊥) then

Parse ωHa.r as ωJa.r ‖ r
(Conv,K1,d

I
a.(r+1),K1, d

J
a.(r+1))

$← Run(I, ε, J, ε;ωUa.r, ω
J
a.r)

C ← SEnc(K1, hskra.(r+1); r)

If (a = g ∧ (∃s, 1 ≤ s ≤ RN,ExpUa.s)) then C
$← LR(hskra.(r+1), 0|hskra.(r+1)|)

Return (Conv ‖ C,dIa.(r+1),d
J
a.(r+1))

In the 5th line of each procedures above, B queries its LR oracle. Finally, A outputs (j, (M,σ)).
Adversary B outputs 1 if the forgery is a successful one, and otherwise it outputs 0. We have

Pr
[
INDCPABSE ⇒ true | b = 0

]
= Pr

[
GA

3 ⇒ true
]

Pr
[
INDCPABSE ⇒ true | b = 1

]
= Pr

[
GA

4 ⇒ true
]

Subtracting, we get equation (16).

Finally, we show how adversary S works against game IRS. Given input pk, S begins by executing
the code of Initialize procedure of G4, defining all the variables there. It then starts running A
on input pk. It answers A’s queries to the UConv, RConv and Expose oracles via the following
procedures:

procedure Expose(Type)
If (Type = “U”) then

ExpUa.r ← true

24

If (a = g)∨(a < g ∧ ExpHa.r) then Return ⊥
uska.r ← Expose(“U”) ; hskua ← Expose(“P”) ; hskra.r ← Expose(“R”) ; ucka.r ← ε

Return (uska.r,hskua, hskra.r, ucka.r, ω
U
a.r)

If (Type = “H”) then
ExpHa.r ← true

If (r 6= 1 ∧ ExpUa.r−1) then ExpUa.r ← true

If (r = 1 ∧ ExpUa−1.RN) then ExpUa.r ← true

If (a ≤ g ∧ ExpUa.r) then Return ⊥
hska.r ← Expose(“H”) ; hskua ← Expose(“P”) ; hskra.r ← Expose(“R”) ; hcka.r ← ε

Return (hska.r,hskua, hskra.r, hcka.r, ω
H
a.r)

Return ⊥

In the 4th and 11th lines of the code above, S queries its Expose oracle.

procedure UConv()
If (dIa+1 = ⊥ ∧ dJa+1 = ⊥) then

Parse ωHa.RN as ωJa.RN ‖ r
(Conv,K1, d

I
a+1,K1,d

J
a+1)← Run(I, ε, J, ε;ωUa , ω

J
a)

Next()

If (a+ 1 = g ∧ ExpUa.RN) then K0
$← {0, 1}k ; C $← SEnc(K0, 0|(hskua+1,hskr(a+1).1)|)

else (hskua+1,hskr(a+1).1)← Expose(“P”) ; C ← SEnc(K1, (hskua+1,hskr(a+1).1); r)
Return (Conv ‖ C,dIa+1,d

J
a+1)

In the 4th line of the code above, S queries its Next oracle, and in the 6th line of the code above,
S queries its Expose oracle.

procedure RConv()
If (dIa.(r+1) = ⊥ ∧ dJa.(r+1) = ⊥) then

Parse ωHa.r as ωJa.r ‖ r
(Conv,K1, d

I
a.(r+1),K1, d

J
a.(r+1))

$← Run(I, ε, J, ε;ωUa.r, ω
J
a.r)

Refresh()

If (a = g ∧ (∃s, 1 ≤ s ≤ RN,ExpUa.s)) then K0
$← {0, 1}k ; C $← SEnc(K0, 0|hskra.(r+1)|)

else hskra.(r+1) ← Expose(“R”) ; C ← SEnc(K1,hskra.(r+1); r)
Return (Conv ‖ C,dIa.(r+1),d

J
a.(r+1))

In the 4th line of the code above, S queries its Refresh oracle, and in the 6th line of the code
above, S queries its Expose oracle. In addition, S answers A’s queries to the Next oracle by
incrementing a and selecting ωUa.1, ω

H
a.1 ∈ COINS independently at random. Similarly, S answers A’s

queries to the Refresh oracle by incrementing r and selecting ωUa.r, ω
H
a.r ∈ COINS independently

at random.It answers A’s queries to the Sign oracle via its own corresponding oracles. Finally, A
outputs (j, (M,σ)) and S returns this same output. From the above, we know that if A wins game
G4, the event of g = j must happen. In addition, S never queries its own Expose oracle which
makes its forgery unsuccessful. Thus S can output the same signature (g, (M,σ)) as A and win the
game IRS. So we have equation (17).

25

References

[1] R. Anderson, Two Remarks on Public-Key Cryptology. Manuscript, 2000, and Invited Lecture at
the Fourth Annual Conference on Computer and Communications Security, Zurich, Switzerland, April
1997.

[2] M. Bellare and S. Miner. A forward-secure digital signature scheme. Advances in Cryptology –
CRYPTO ’99, Lecture Notes in Computer Science Vol. 1666, M. Wiener ed., Springer-Verlag, 1999.

[3] M. Bellare, S. Duan and A. Palacio. Key Insulation and Intrusion Resilience Over a Public
Channel. Topics in Cryptology – CT-RSA ’09, Lecture Notes in Computer Science Vol. ?? , M. Fischlin
ed., Springer-Verlag, 2009.

[4] M. Bellare and A. Palacio. Protecting against Key Exposure: Strongly Key-Insulated Encryption
with Optimal Threshold. Applicable Algebra in Engineering, Communication and Computing, Vol. 16,
No. 6, Springer-Verlag, 2006, pp. 379–396.

[5] M. Bellare and P. Rogaway. Entity Authentication and key distribution. Advances in Cryptology
– CRYPTO ’93, Lecture Notes in Computer Science Vol. 773, D. Stinson ed., Springer-Verlag, 1993.

[6] M. Bellare and P. Rogaway. The Security of Triple Encryption and a Framework for Code-
Based Game-Playing Proofs. Advances in Cryptology – EUROCRYPT ’06, Lecture Notes in Computer
Science Vol. 4004, S. Vaudenay ed., Springer-Verlag, 2006

[7] M. Bellare and B. Yee. Forward-Security in Private-Key Cryptography. Topics in Cryptology –
CT-RSA ’03, Lecture Notes in Computer Science Vol. 2612, M. Joye ed., Springer-Verlag, 2003.

[8] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation. Proceedings of the 30th Annual Symposium on the Theory
of Computing, ACM, 1998.

[9] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively Secure Multi-Party Computa-
tion. Proceedings of the 28th Annual Symposium on the Theory of Computing, ACM, 1996.

[10] R. Canetti, S. Halevi and J. Katz. A Forward-Secure Public-Key Encryption Scheme. Advances
in Cryptology – EUROCRYPT ’03, Lecture Notes in Computer Science Vol. 2656, E. Biham ed.,
Springer-Verlag, 2003.

[11] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. Advances in Cryptology – EUROCRYPT ’01, Lecture Notes in Computer Science
Vol. 2045, B. Pfitzmann ed., Springer-Verlag, 2001.

[12] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure
Channels. Advances in Cryptology – EUROCRYPT ’02, Lecture Notes in Computer Science Vol. 2332,
L. Knudsen ed., Springer-Verlag, 2002.

[13] Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung. Intrusion-Resilient Public-Key En-
cryption. Topics in Cryptology – CT-RSA ’03, Lecture Notes in Computer Science Vol. 2612, M. Joye
ed., Springer-Verlag, 2003.

[14] Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung. A Generic Construction for Intrusion-
Resilient Public-Key Encryption. Topics in Cryptology – CT-RSA ’04, Lecture Notes in Computer
Science Vol. 2964, T. Okamoto ed., Springer-Verlag, 2004.

[15] Y. Dodis, J. Katz, S. Xu and M. Yung. Key-Insulated Public Key Cryptosystems. Advances
in Cryptology – EUROCRYPT ’02, Lecture Notes in Computer Science Vol. 2332, L. Knudsen ed.,
Springer-Verlag, 2002.

[16] Y. Dodis, J. Katz, S. Xu and M. Yung. Strong Key-Insulated Signature Schemes. Public-Key
Cryptography ’03, Lecture Notes in Computer Science Vol. 2567, Y. Desmdedt ed., Springer-Verlag,
2003.

26

[17] C. Dwork, M. Naor, O. Reingold and L. Stockmeyer. Magic Functions. Proceedings of the
40th Symposium on Foundations of Computer Science, IEEE, 1999.

[18] G. Hanaoka, Y. Hanaoka and H. Imai. Parallel Key-Insulated Public Key Encryption. Public-Key
Cryptography ’06, Lecture Notes in Computer Science Vol. 3958, M. Yung, Y. Dodis, A. Kiayias and
T. Malkin ed., Springer-Verlag, 2006.

[19] Y. Hanaoka, G. Hanaoka, J. Shikata, H. Imai. Identity-based Heirarchical Strongly Key-
Insulated Encryption and its Application. Advances in Cryptology – ASIACRYPT ’05, Lecture Notes
in Computer Science Vol. 3788, B. Roy ed., Springer-Verlag, 2005.

[20] G. Itkis and L. Reyzin. SiBIR: Signer-Base -Resilient Signatures. Advances in Cryptology –
CRYPTO ’02, Lecture Notes in Computer Science Vol. 2442, M. Yung ed., Springer-Verlag, 2002.

27

procedure Initialize

(pk, usk0.0, hsk0.0)
$← KG

(uck0.0, hck0.0)
$← CKG

(hsk1.0, hsku1)
$← HKU(1, pk, hsk0.0)

(hsk1.1, hskr1.1)
$← HKR(1, pk,hsk1.0)

ωU
0.0

$← COINS ; ωH
0.0

$← COINS

StU
1.1 ← (usk0.0,uck0.0, ωU

0.0)

StH
1.1 ← (hsku1, hskr1.1,hck0.0, ωH

0.0)

a← 0 ; r ← 0 ; S ← ∅
g

$← {1, . . . , qU}
Return pk

procedure Refresh()

r ← r + 1

If (dU
a.r = acc) then

(hskra.r,ucka.r)← StU
a.r ; ωU

a.r
$← COINS

uska.r ← UKR(a, pk, hskra.r,uska.(r−1))

If (r = RN) then

StU
(a+1).1 ← (uska.r, ucka.r, ωU

a.r)

Else

StU
a.(r+1) ← (uska.r, ucka.r, ωU

a.r)

If (dH
a.r = acc) then

hcka.r ← StH
a.r ; ωH

a.r
$← COINS

If (r = RN) then

(hsk(a+1).0, hskua+1)
$← HKU(a+ 1, pk,hska.r)

(hsk(a+1).1, hskr(a+1).1)
$← HKR(a+ 1,pk, hsk(a+1).0)

StH
(a+1).1 ← (hskua+1,hskr(a+1).1, hcka.r, ωH

a.r)

Else

(hska.(r+1), hskra.(r+1))
$← HKR(a, pk, hska.r)

StH
a.(r+1) ← (hskra.(r+1), hcka.r, ωH

a.r)

procedure Sign(M)

(a, σ)
$← Sig(a,uska.r,M)

S ← S ∪ {(a,M)}
Return (a, σ)

procedure Expose(Type) // G0, G1, G2 , G3 , G4

x←⊥
If (Type = “U”) then

ExpUa.r ← true

x← (uska.r, hskua, hskra.r, ucka.r, ωU
a.r)

If (a = g)∨(a < g ∧ ExpHa.r) then x←⊥
If (Type = “H”) then

ExpHa.r ← true

x← (hska.r, hskua, hskra.r, hcka.r, ωH
a.r)

If (r 6= 1 ∧ ExpUa.r−1) then ExpUa.r ← true

If (r = 1 ∧ ExpUa−1.RN) then ExpUa.r ← true

If (a ≤ g ∧ ExpUa.r) then x←⊥
Return x

procedure Next()

a← a+ 1

If (dU
a.1 = acc) then

(hskua, hskra.1,ucka.1)← StU
a.1 ; ωU

a.1
$← COINS

uska.0 ← UKU(a, pk, hskua, usk(a−1).r)

uska.1 ← UKR(a, pk, hskra.1,uska.0)

StU
a.2 ← (uska.1, ucka.1, ωU

a.1)

If (dH
a.1 = acc) then

hcka.1 ← StH
a.1 ; ωH

a.1
$← COINS

(hska.2, hskra.2)
$← HKR(a, pk, hska.1)

StH
a.2 ← (hskra.2, hcka.1, ωH

a.1)

r ← 1

procedure Finalize(M, (j, σ)) // G0, G1 , G2 , G3 , G4

If ((j,M) ∈ S ∨ Ver(pk,M, (j, σ)) = 0) then Return 0

If ∃s(1 ≤ s ≤ RN ∧ ExpUj.s) then Return 0

If ∃i∃s(1 ≤ i < j ∧ 1 ≤ s ≤ RNi ∧ ExpUi.s ∧
ExpHi.s) then Return 0

Return g = j∧ 1

procedure UConv() // G0,G1,G2

If (dI
(a+1).1

= ⊥ ∧ dJ
(a+1).1

= ⊥) then

Parse ωH
a.RN as ωJ

a.RN ‖ r
(Conv,K1,dI

(a+1).1
,K1,dJ

(a+1).1
)

$← Run(I, ε, J, ε;ωU
a.RN , ω

J
a.RN)

C ← SEnc(K1, (hskua+1, hskr(a+1).1); r)

StU
(a+1).1 ← (hskua+1, hskr(a+1).1, ε) ; StH

(a+1).1 ← ε

Return (Conv ‖ C,dI
(a+1).1

, dJ
(a+1).1

)

procedure RConv() // G0,G1,G2

If (dI
a.(r+1)

= ⊥ ∧ dJ
a.(r+1)

= ⊥) then

Parse ωH
a.r as ωJ

a.r ‖ r
(Conv,K1,dI

a.(r+1)
,K1,dJ

a.(r+1)
)

$← Run(I, ε, J, ε;ωU
a.r, ω

J
a.r)

C ← SEnc(K1, hskra.(r+1); r)

StU
a.(r+1) ← (hskra.(r+1), ε) ; StH

a.(r+1) ← ε

Return (Conv ‖ C,dI
a.(r+1)

, dJ
a.(r+1)

)

Figure 8: Games used to used to prove security of public-channel intrusion resilience.

28

procedure UConv() // G3

If (dI
(a+1).1 = ⊥ ∧ dJ

(a+1).1 = ⊥) then
Parse ωH

a.RN as ωJ
a.RN ‖ r

(Conv,K1,d
I
(a+1).1,K1,d

J
(a+1).1) $← Run(I, ε, J, ε, ;ωU

a.RN , ω
J
a.RN)

C ← SEnc(K1, (hskua+1,hskr(a+1).1); r)
If (a+ 1 = g ∧ ExpUa.RN) then
K0

$← {0, 1}k ; C $← SEnc(K0, (hskua+1,hskr(a+1).1))
StU

(a+1).1 ← (hskua+1,hskr(a+1).1, ε) ; StH
(a+1).1 ← ε

Return (Conv ‖ C,dI
(a+1).1,d

J
(a+1).1)

procedure RConv() // G3

If (dI
a.(r+1) = ⊥ ∧ dJ

a.(r+1) = ⊥) then
Parse ωH

a.r as ωJ
a.r ‖ r

(Conv,K1,d
I
a.(r+1),K1,d

J
a.(r+1))

$← Run(I, ε, J, ε;ωU
a.r, ω

J
a.r)

C ← SEnc(K1,hskra.(r+1); r)
If (a = g ∧ (∃s, 1 ≤ s ≤ RN,ExpUa.s)) then
K0

$← {0, 1}k ; C $← SEnc(K0,hskra.(r+1))
StU

a.(r+1) ← (hskra.(r+1), ε) ; StH
a.(r+1) ← ε

Return (Conv ‖ C,dI
a.(r+1),d

J
a.(r+1))

procedure UConv() // G4

If (dI
(a+1).1 = ⊥ ∧ dJ

(a+1).1 = ⊥) then
Parse ωH

a.RN as ωJ
a.RN ‖ r

(Conv,K1,d
I
(a+1).1,K1,d

J
(a+1).1) $← Run(I, ε, J, ε, ;ωU

a.RN , ω
J
a.RN)

C ← SEnc(K1, (hskua+1,hskr(a+1).1); r)
If (a+ 1 = g ∧ ExpUa.RN) then
K0

$← {0, 1}k ; C $← SEnc(K0, 0|hskua+1,hskr(a+1).1|)
StU

(a+1).1 ← (hskua+1,hskr(a+1).1, ε) ; StH
(a+1).1 ← ε

Return (Conv ‖ C,dI
(a+1).1,d

J
(a+1).1)

procedure RConv() // G4

If (dI
a.(r+1) = ⊥ ∧ dJ

a.(r+1) = ⊥) then
Parse ωH

a.r as ωJ
a.r ‖ r

(Conv,K1,d
I
a.(r+1),K1,d

J
a.(r+1))

$← Run(I, ε, J, ε;ωU
a.r, ω

J
a.r)

C ← SEnc(K1,hskra.(r+1); r)
If (a = g ∧ (∃s, 1 ≤ s ≤ RN,ExpUa.s)) then
K0

$← {0, 1}k ; C $← SEnc(K0, 0|hskra.(r+1)|)
StU

a.(r+1) ← (hskra.(r+1), ε) ; StH
a.(r+1) ← ε

Return (Conv ‖ C,dI
a.(r+1),d

J
a.(r+1))

Figure 9: Procedures UConv(), RConv() of games G3 and G4.

29

