On a Conditional Collision Attack on NaSHA-512

S. Markovski ${ }^{[1]}$, A. Mileva ${ }^{[2]}$, V. Dimitrova ${ }^{[1]}$ and D. Gligoroski ${ }^{[3]}$
${ }^{[1]}$ University "Ss Cyril and Methodius", Faculty of Sciences, Institute of Informatics, P. O. Box 162, Skopje, Republic of Macedonia (\{smile,vesnap\}@ii.edu.mk)
${ }^{[2]}$ University "Goce Delčev" , Faculty of Informatics, Štip, Republic of Macedonia (aleksandra.mileva@ugd.edu.mk)
${ }^{[3]}$ NTNU, Department of Telematics
Trondheim, Norway (danilog@item.ntnu.no)

Abstract

A collision attack on NaSHA-512 was proposed by L. Ji et al. The claimed complexity of the attack is 2^{192}. The proposed attack is realized by using a suitable differential pattern. In this note we show that the correct result that can be inferred from their differential pattern is in fact a conditional one. It can be stated correctly as follows: A collision attack on NaSHA-512 of complexity $k=1,2, \ldots, 2^{320}$ can be performed with an unknown probability of success p_{k}, where $0 \leq p_{1} \leq p_{2} \leq p_{2^{320}} \leq 1$. Consequently, the attack proposed by L. Ji et al. can be considered only as a direction how a possible collision attack on NaSHA- 512 could be realized. The birthday attack remains the best possible attack on NaSHA-512.

1 Introduction

Recently, a collision attack on NaSHA-512 hash function was proposed by L. Ji, X. Liangyu and G. Xu [1]. NaSHA(m,k,r) is a new family of hash
functions [2] proposed for SHA-3, and the attack is on its 512-bit hash version. The attackers claim that their attack is of complexity 2^{192}, but they do not give a profound analysis of their estimation. Here we show that if a collision attack on NaSHA-512 of complexity 2^{192} can be performed, then a system E of three quasigroup equations with five unknowns will have a solution. There are no theoretical results for solvability of quasigroup equations, so no one can check if that system E of quasigroup equations has a solution, especially having in mind that the quasigroups are of order 2^{64}. On the other side, in the set of quasigroups of order 4 , we have examples of systems of equations of kind similar as E with empty set of solutions, that can be effectively checked. Hence, the attack proposed in [1] can be taken only as conditional one.

In order to make this note readable, we use the same notation, as well as the citations, from [1]. So, we recommend to the reader to follow both [1] and this note.

2 Short description of NaSHA-(512,2,6)

We give a short description of NaSHA- $(512,2,6)$ at first.
Let denote the 1024 -bit initial chaining value of NaSHA- $(512,2,6)$ by $H=H_{1}\left\|H_{2}\right\| \ldots \| H_{16}$ and let denote a 1024 -bit message block by $M=$ $M_{1}\left\|M_{2}\right\| \ldots \| M_{16}$, where H_{i} and M_{i} are 64 -bits words. Then, the state of the compression function is defined to be the 2048-bit word

$$
S=M_{1}\left\|H_{1}\right\| M_{2}\left\|H_{2}\right\| \ldots\left\|M_{16}\right\| H_{16}
$$

represented as 3264 -bit words $S=S_{1}\left\|S_{2}\right\| \ldots \| S_{32}$. Then NaSHA transform the word S into the word $S^{\prime}=\mathcal{M} \mathcal{T}\left(\operatorname{LinTr} r_{512}^{32}(S)\right)$, where $\operatorname{LinTr}_{512}$ and $\mathcal{M} \mathcal{T}$ are defined as

$$
\begin{aligned}
\operatorname{LinTr}_{512}\left(S_{1}\left\|S_{2}\right\| \ldots\left\|S_{31}\right\| S_{32}\right) & =\left(S_{7} \oplus S_{15} \oplus S_{25} \oplus S_{32}\right)\left\|S_{1}\right\| S_{2}\|\ldots\| S_{31}, \\
\mathcal{M T} & =\rho\left(\mathcal{R A}_{l_{1}}\right) \circ \mathcal{A}_{l_{2}} .
\end{aligned}
$$

The definition of $\rho\left(\mathcal{R} \mathcal{A}_{l_{1}}\right)$ is irrelevant for the attack, and the transformation $\mathcal{A}_{l_{2}}$ is defined iteratively by

$$
\mathcal{A}_{l_{2}}\left(x_{1}, \ldots, x_{32}\right)=\left(z_{1}, \ldots, z_{32}\right) \Leftrightarrow z_{j}=\left\{\begin{array}{l}
\left(l_{2}+x_{1}\right) * x_{1}, j=1 \tag{1}\\
\left(z_{j-1}+x_{j}\right) * x_{j}, 2 \leq j \leq 32
\end{array}\right.
$$

Here, l_{2} is a constant, \oplus denotes the bitwise xoring, + denotes the addition modulo 2^{64} and $*$ denotes a quasigroup operation defined by an extended Feistel network $F_{A, B, C}$ as $x * y=F_{A, B, C}(x \oplus y) \oplus y$. If there is another message block for processing, every second 64 -bit word from S^{\prime} goes as chaining value in the next iteration. If the processed block is the last one, every forth 64 -bit word from S^{\prime} goes as hash result.

The extended Feistel network $F_{A, B, C}$ is a permutation of the set $\{0,1\}^{64}$ and is defined in NASHA by

$$
F_{A, B, C}(L \| R)=(R \oplus A) \|\left(L \oplus B \oplus f_{a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, \alpha, \beta, \gamma}(R \oplus C)\right)
$$

where $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}$ are 8 -bit words, α, β, γ are 16 -bit words, A, B, C are 32 -bit words, L, R are 32 -bit variables and f is a suitably defined function. So, the quasigroup operation $*$ in NaSHA used in transformation $\mathcal{A}_{l_{2}}$ depends on 15 parameters $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, \alpha, \beta, \gamma, A, B, C$. These parameters and the constant l_{2} are different in every iteration of the compression function and depend on the processed message block. They are obtained from the equalities:

$$
\begin{gathered}
l_{2}=S_{3}+S_{4}, \\
a_{1}\left\|b_{1}\right\| c_{1}\left\|a_{2}\right\| b_{2}\left\|c_{2}\right\| a_{3} \| b_{3}=S_{5}+S_{6}, \quad c_{3}=a_{1}, \\
\alpha\|\beta\| \gamma \| \alpha_{2}=S_{7}+S_{8}, \\
A\left\|B=S_{11}+S_{12}, \quad C\right\| A_{2}=S_{13}+S_{14},
\end{gathered}
$$

the values α_{2} and A_{2} are irrelevant for the attack.

3 Setting the attack parameters

The attack is based on a differential pattern obtained by using the difference $0 x 00000000$ FFFFFFFF, where $0=0000, F=1111$. Several very clever observations are obtained.

1) Let x be any 64 -bit word. Denote by $(x)_{i}$ the i-th bit of x and construct a new 64 -bit word a by $(a)_{64 \ldots 33}=\neg(x)_{64 \ldots 33},(a)_{32}=1$ and $(a)_{31 \ldots 1}=0$. Note thata $a=a(x)$ is a function of x. Define a difference $\Delta x=0 \times 00000000$ FFFFFFFF. Then for the word $x^{\prime}=x \oplus \Delta x$ the following equality is true:

$$
(a+x) * x=\left(a+x^{\prime}\right) * x^{\prime},
$$

where \oplus denotes the 64 -bit XOR, + denotes the addition modulo 2^{64} and * denotes the quasigroup operation defined by an extended Feistel network $F_{A, B, C}$. Here A, B, C are parameters that are computed from the input message and the chaining values.
2) If the parameters $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, \alpha, \beta, \gamma$ are known, i.e., the function f is defined, then the parameters A, B, C can be chosen such that the following equalities hold true:

$$
(a+x) * x=a=\left(a+x^{\prime}\right) * x^{\prime} .
$$

3) The initial chaining value of NaSHA is $H=H_{1}\left\|H_{2}\right\| \ldots \| H_{16}$ and let take an input message $M=M_{1}\left\|M_{2}\right\| \ldots \| M_{16}$, where H_{i} and M_{i} are 64 -bits words. Only the words M_{i} can be chosen in a suitable way a collision attack to be realized. The idea of the attack is to find two different 1024-bits input messages M and M^{\prime} such that

$$
\begin{aligned}
& \mathcal{A}_{l_{2}}\left(\operatorname{LinTr} r_{512}^{32}\left(M_{1}\left\|H_{1}\right\| M_{2}\left\|H_{2}\right\| \ldots\left\|M_{16}\right\| H_{16}\right)\right)= \\
& =\mathcal{A}_{l_{2}^{\prime}}^{\prime}\left(\operatorname{LinTr}_{512}^{32}\left(\left(M_{1}^{\prime}\left\|H_{1}\right\| M_{2}^{\prime}\left\|H_{2}\right\| \ldots\left\|M_{16}^{\prime}\right\| H_{16}\right)\right) .\right.
\end{aligned}
$$

The values of l_{2} and l_{2}^{\prime} are defined after $\operatorname{LinTr} r_{512}^{32}$ is applied.
4) Let denote

$$
\begin{aligned}
& \operatorname{LinTr}_{512}^{32}\left(M_{1}\left\|H_{1}\right\| M_{2}\left\|H_{2}\right\| \ldots\left\|M_{16}\right\| H_{16}\right)=S_{1}\left\|S_{2}\right\| \ldots \| S_{32}, \\
& \operatorname{LinTr}_{512}^{32}\left(M_{1}^{\prime}\left\|H_{1}\right\| M_{2}^{\prime}\left\|H_{2}\right\| \ldots\left\|M_{16}^{\prime}\right\| H_{16}\right)=S_{1}^{\prime}\left\|S_{2}^{\prime}\right\| \ldots \| S_{32}^{\prime} .
\end{aligned}
$$

Then, M (as well as M^{\prime}) can be recovered from $S_{1}\left\|S_{2}\right\| \ldots \| S_{32}$ by using $\operatorname{LinTr} r_{512}^{-1}$. Recall that now in NaSHA l_{2} and l_{2}^{\prime} are defined by $l_{2}=S_{3}+$ $S_{4}, l_{2}^{\prime}=S_{3}^{\prime}+S_{4}^{\prime}$.

4 Collision attacks on NaSHA

5) Take an arbitrary 64 -bits word x and the differential

$$
\Delta x=0 \mathrm{x} 00000000 \mathrm{FFFFFFFF} .
$$

Note that x can be chosen at 2^{64} manners.
6) Suppose that the input messages M and M^{\prime} satisfy the conditions $M_{1}=M_{1}^{\prime}, M_{2}=M_{2}^{\prime}, M_{3}=M_{3}^{\prime} \oplus \Delta x, M_{4}=M_{4}^{\prime}, M_{5}=M_{5}^{\prime} \oplus \Delta x, M_{6}=$ $M_{6}^{\prime} \oplus \Delta x, M_{7}=M_{7}^{\prime} \oplus \Delta x, M_{8}=M_{8}^{\prime}, M_{9}=M_{9}^{\prime} \oplus \Delta x, M_{10}=M_{10}^{\prime} \oplus \Delta x, M_{11}=$ $M_{11}^{\prime} \oplus \Delta x, M_{12}=M_{12}^{\prime}, M_{13}=M_{13}^{\prime}, M_{14}=M_{14}^{\prime}, M_{15}=M_{15}^{\prime} \oplus \Delta x, M_{16}=$
$M_{16}^{\prime} \oplus \Delta x$. Then we have that $S_{9}=S_{9}^{\prime} \oplus \Delta x, S_{10}=S_{10}^{\prime} \oplus \Delta x, S_{17}=S_{17}^{\prime} \oplus$ $\Delta x, S_{18}=S_{18}^{\prime} \oplus \Delta x, S_{19}=S_{19}^{\prime} \oplus \Delta x, S_{20}=S_{20}^{\prime} \oplus \Delta x, S_{21}=S_{21}^{\prime} \oplus \Delta x, S_{29}=$ $S_{29}^{\prime} \oplus \Delta x, S_{31}=S_{31}^{\prime} \oplus \Delta x$.
7) Now choose the values for the words S_{i} and S_{i}^{\prime} in a suitable manner. By using LinTr r_{512}^{-1} corresponding messages M and M^{\prime} will be obtained.
7.1) Take $S_{9}=x^{\prime}=x \oplus \Delta x, S_{10}=S_{17}=S_{18}=S_{19}=S_{20}=S_{21}=$ $S_{29}=S_{30}=S_{31}=x$ and $S_{9}^{\prime}=x, S_{10}^{\prime}=S_{17}^{\prime}=S_{18}^{\prime}=S_{19}^{\prime}=S_{20}^{\prime}=S_{21}^{\prime}=$ $S_{29}^{\prime}=S_{31}^{\prime}=x^{\prime}=x \oplus \Delta x$.
7.2) Take $S_{5}=S_{5}^{\prime}=y_{5}, S_{6}=S_{6}^{\prime}=y_{6}, S_{7}=S_{7}^{\prime}=y_{7}, S_{8}=S_{8}^{\prime}=$ $y_{8}, S_{11}=S_{11}^{\prime}=y_{11}, S_{14}=S_{14}^{\prime}=y_{14}$, where y_{i} are unknown (free) words.
7.3) By using the equality (1) of [1], the words $S_{1}, S_{2}, S_{3}, S_{4}, S_{12}, S_{13}, S_{15}$, $S_{16}, S_{22}, S_{23}, S_{24}, S_{25}, S_{26}, S_{27}, S_{28}, S_{32}$ can be expressed by the initial chaining value H, the word x and the unknown words $y_{5}, y_{6}, y_{7}, y_{8}, y_{11}, y_{14}$. Hence, they are functions of $x, y_{5}, y_{6}, y_{7}, y_{8}, y_{11}, y_{14}$.
7.4) The parameters $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, \alpha, \beta, \gamma, A, B, C$ and the constants l_{2}, l_{2}^{\prime} now can be expressed as functions of $x, y_{5}, y_{6}, y_{7}, y_{8}, y_{11}, y_{14}$ as well:

$$
\begin{gathered}
l_{2}=l_{2}^{\prime}=S_{3}\left(x, y_{5}, y_{6}, y_{7}, y_{8}, y_{11}, y_{14}\right)+S_{4}\left(x, y_{5}, y_{6}, y_{7}, y_{8}, y_{11}, y_{14}\right) \\
a_{1}\left\|b_{1}\right\| c_{1}\left\|a_{2}\right\| b_{2}\left\|c_{2}\right\| a_{3} \| b_{3}=y_{5}+y_{6} \\
\alpha\|\beta\| \gamma \| \alpha_{2}=y_{7}+y_{8} \\
A \| B=y_{11}+S_{12}\left(x, y_{7}, y_{8}\right) \\
C \| A_{2}=S_{13}\left(x, y_{6}\right)+y_{14}
\end{gathered}
$$

7.5) The parameters A, B, C of $F_{A, B, C}$ have to be determined in such a way the equality $(a+x) * x=a$ to be satisfied. For that aim at first fixed values to $y_{5}, y_{6}, y_{7}, y_{8}$ have to be given, and after that the values for y_{11} and y_{14} can be computed. Note that now $S_{11}=y_{11}$ and $S_{14}=y_{14}$ are functions of $x, y_{5}, y_{6}, y_{7}, y_{8}$.
8) Note that after the values of y_{5}, y_{6}, y_{7} and y_{8} are chosen, all the words S_{i} and S_{i}^{\prime} are determined. We have to check if the equalities

$$
\mathcal{A}_{l_{2}}\left(S_{1}\left\|S_{2}\right\| \ldots \| S_{32}\right)=\mathcal{A}_{l_{2}^{\prime}}\left(S_{1}^{\prime}\left\|S_{2}^{\prime}\right\| \ldots \| S_{32}^{\prime}\right)=z_{1}\left\|z_{2}\right\| \ldots \| z_{32}
$$

hold for some z_{i}.
The differential pattern of the attack is defined in such a way that

$$
z_{8}\left\|z_{9}\right\| z_{10}=a\|a\| a
$$

$$
\begin{aligned}
z_{16}\|\ldots\| z_{21} & =a\|a\| a\|a\|| | a \|, \\
z_{28}\|\ldots\| z_{31} & =a\|a\| a \| a .
\end{aligned}
$$

Then only the values of $z_{1}, \ldots, z_{7}, z_{11}, \ldots, z_{15}, z_{22}, \ldots, z_{27}$ and z_{32} have to be found.
8.1) We can compute $z_{1}=\left(l_{2}+S_{1}\right) * S_{1}, z_{2}=\left(z_{1}+S_{2}\right) * S_{2}, z_{3}=$ $\left(z_{2}+S_{3}\right) * S_{3}, \ldots, z_{7}=\left(z_{6}+S_{7}\right) * S_{7}$. Note that z_{1}, \ldots, z_{7} are functions of $x, y_{5}, y_{6}, y_{7}, y_{8}$.

Now, the equality $z_{8}=a$, i.e., $\left(z_{7}+S_{8}\right) * S_{8}=a$, has to be satisfied, in order the transformations $\mathcal{A}_{l_{2}}$ and $\mathcal{A}_{l_{2}^{\prime}}$ to be fulfilled.
8.2) If $z_{8}=a$ holds true, we can compute $z_{11}=\left(a+S_{11}\right) * S_{11}, z_{12}=$ $\left(z_{11}+S_{12}\right) * S_{12}, \ldots, z_{15}=\left(z_{14}+S_{15}\right) * S_{15}$. Note that z_{11}, \ldots, z_{15} are functions of $x, y_{5}, y_{6}, y_{7}, y_{8}$.

Now, the equality $z_{16}=a$, i.e., $\left(z_{15}+S_{16}\right) * S_{16}=a$, has to be satisfied, in order the transformations $\mathcal{A}_{l_{2}}$ and $\mathcal{A}_{l_{2}^{\prime}}$ to be fulfilled.
8.3) If $z_{8}=a$ and $z_{16}=a$ hold true, we can compute $z_{22}=\left(a+S_{22}\right) *$ $S_{22}, z_{23}=\left(z_{22}+S_{232}\right) * S_{23}, \ldots, z_{27}=\left(z_{26}+S_{27}\right) * S_{27}$. Note that z_{22}, \ldots, z_{27} are functions of $x, y_{5}, y_{6}, y_{7}, y_{8}$.

Now, the equality $z_{28}=a$, i.e., $\left(z_{27}+S_{28}\right) * S_{28}=a$, has to be satisfied, in order the transformations $\mathcal{A}_{l_{2}}$ and $\mathcal{A}_{l_{2}^{\prime}}$ to be fulfilled.
8.4) If $z_{8}=a, z_{16}=a$ and $z_{28}=a$ hold true, we can compute $z_{32}=$ $\left(a+S_{32}\right) * S_{3} 2$.

5 Solvability of quasigroup equations

In order the above attack to be successful, for some values of the variables $x, y_{5}, y_{6}, y_{7}, y_{8}$ the following equalities have to be satisfied: $z_{8}=a, z_{16}=a$ and $z_{28}=a$. Then we have that the next proposition is true:

Proposition 1 If there is a collision on NaSHA-512 obtained by the attack as explained in 1) - 8), then the system E of three quasigroup equations with fife variables

$$
\left\{\begin{array}{l}
\left(z_{7}\left(x, y_{5}, y_{6}, y_{7}, y_{8}\right)+S_{8}\left(x, y_{5}, y_{6}, y_{7}, y_{8}\right)\right) * S_{8}\left(x, y_{5}, y_{6}, y_{7}, y_{8}\right)=a(x) \\
\left(z_{15}\left(x, y_{5}, y_{6}, y_{7}, y_{8}\right)+S_{16}\left(x, y_{5}, y_{6}, y_{7}, y_{8}\right)\right) * S_{16}\left(x, y_{5}, y_{6}, y_{7}, y_{8}\right)=a(x) \\
\left(z_{27}\left(x, y_{5}, y_{6}, y_{7}, y_{8}\right)+S_{28}\left(x, y_{5}, y_{6}, y_{7}, y_{8}\right)\right) * S_{28}\left(x, y_{5}, y_{6}, y_{7}, y_{8}\right)=a(x)
\end{array}\right.
$$

has a solution, where z_{i} are obtained iteratively as in 8).

There are not known any results for solving systems of quasigroup equations, except checking all possible solutions. So, for the system E we have to make 2^{320} checks to find a solution, if any. Of course, it can not be realized, at least with today computing power. Next we give two examples of systems of quasigroup equations in the set of quasigroups of order 4 that have empty set of solutions.

Example 1 The system of two quasigroup equations with 3 unknowns x, y, a :

$$
\begin{aligned}
& ((1+x+y) *(1+y)+2+x+y) * y=a \\
& ((3+x+y) * y+x+y) *(x+y+1)=a
\end{aligned}
$$

has no solution in the quasigroup

$*$	0	1	2	3
0	0	2	1	3
1	3	0	2	1
2	1	3	0	2
3	2	1	3	0

Example 2 The system of three quasigroup equations with 5 unknowns x, y, z, u, a :

$$
\begin{aligned}
& r(x, y, z, u):=\{\{[(1+x+y+z) *(2+x+z+u)+3+x+u] *(1+y)+ \\
&2+z+u\} *(1+z)\} * u=a, \\
& s(x, y, z, u):=\{\{[(3+x+y) *(z+u)+1+x+y+z] *(x+z)+ \\
&1+x+z+u\}*(1+x+y)+1+x+u\} *(y+z)=a, \\
& t(x, y, z, u):=\{\{[(1+y+u) *(y+z)+z+u] *(x+z+u)+ \\
&2+y+z\} * z+z+1\} *(3+y+u)=a
\end{aligned}
$$

has no solution in the quasigroup

$*$	0	1	2	3
0	0	1	2	3
1	3	2	1	0
2	2	3	0	1
3	1	0	3	2

6 Conclusion

The attack given in [1] is a very sophisticated one and a lot of effort is given to be realized. Nevertheless, it is not a valuable attack on NaSHA-512. We do not know if the system of quasigroup equations $E: z_{8}=a, z_{16}=a, z_{28}=a$ with fife unknowns has a solution in a quasigroup of order 2^{64}. The attacker are stating that there is a collision of NaSHA-512 of complexity 2^{192}, but one can state that there is a collision of complexity 2^{64} as well. The proper statement that can be inferred from the attack designed as in [1] is the following: For each $k=1,2, \ldots, 2^{320}$ there is a collision attack on NaSHA-512 of complexity k that can be realized with probability p_{k}. The Probabilities p_{k} are not known and $0 \leq p_{1} \leq p_{2} \leq \cdots \leq$ $p_{2320} \leq 1$.

Still, the best attack on NaSHA-512 is the birthday attack.

References

[1] L. Ji, X. Liangyu and G. Xu, Collison attack on NaSHA-512 http://eprint.iacr.org/2008/519
[2] Smile Markovski and Aleksandra Mileva, Algorithm Specications of NaSHA, 2008
http://inf.ugd.edu.mk/images/stories/file/Mileva/Nasha.htm

