A note on Agrawal conjecture

Roman Popovych

Abstract. We prove that Lenstra proposition suggesting existence of many counterexamples to Agrawal conjecture is true in a more general case. At the same time we obtain a strictly ascending chain of subgroups of the group $(Z_p[X]/(C_r(X)))^*$ and state the modified conjecture that the set {*X*-1, *X*+2} generate big enough subgroup of this group.

1 Introduction

Prime numbers are of fundamental importance in mathematics in general: there are few better known or more easily understood problems in pure mathematics than the question of rapidly determining whether a given number is prime or composite. Efficient primality tests are also useful in practice: a number of cryptographic protocols need big prime numbers.

In 2002 M.Agrawal, N.Kayal and N.Saxena [1] presented a deterministic polynomial-time algorithm AKS that determines whether an input number is prime or composite. It was proved [4] that AKS algorithm runs in $O^{((\log n)^{7.5})}$ time. H.Lenstra and C.Pomerance [4] gave a significantly modified version of AKS with $O^{((\log n)^6)}$ running time.

In the paper we do not consider randomozed primality proving algorithm which was introduced by P.Berrizbeitia and investigated by Q.Cheng, D.Bernstein, P.Mihailescu-R.Avanzi [2].

The note concerns Agrawal conjecture. The conjecture was given in [2] and verified for r < 100 and $n < 10^{10}$ in [3].

Conjecture. If *r* is a prime number that does not divide *n* and if $(X-1)^n \equiv X^n - 1 \pmod{n}$, $X^r - 1$, then either *n* is prime or $n^2 \equiv 1 \pmod{r}$.

If Agrawal conjecture were true, this would improve the polynomial time complexity of the AKS primality testing algorithm from $O^{\sim}((\log n)^6)$ to $O^{\sim}((\log n)^3)$.

H.Lenstra and C.Pomerance [4] gave a heuristic argument which suggests that the above conjecture is false. However, M.Agrawal, N. Kayal and N. Saxena [1] pointed out that some variant of the conjecture may still be true (for example, if we force $r>\log n$).

In this paper we prove that proposition (H.Lenstra) from [4] suggesting existence of many counterexamples to the Agrawal conjecture is true in a more general case. We also give some modified conjecture and arguments that this conjecture may be true.

Date: December 30, 2008

2 Preliminaries

 Z_n denotes a ring of numbers modulo *n*. Recall that if *p* is prime and h(X) is a polynomial of degree *d* and irreducible in Z_p then $Z_p[X]/(h(X))$ is a finite field of order p^d . We will use the notation $f(X)=g(X) \pmod{n, h(X)}$ to represent the equation f(X)=g(X) in the ring $Z_n[X]/(h(X))$.

We use the symbol $O^{(t(n))}$ for $O(t(n) \cdot poly(\log t(n)))$ where t(n) is any function of n. We use log for base 2 logarithm.

N and *Z* denote the set of natural numbers and integers respectively. (a,b) denotes the greatest common divisor of integers *a* and *b*. Given $r \in N$, $a \in Z$ with (a,r)=1 the order of *a* modulo *r* is the smallest number *k* such that $a^k=1 \pmod{r}$. It is denoted $O_r(a)$. For $r \in N$, $\varphi(r)$ is Euler's totient function giving the number of numbers less than *r* that are relatively prime to *r*. It is easy to see that $O_r(a) | \varphi(r)$ for any *a*, (a,r)=1.

 $(u_1,..., u_k)$ denotes the group generated by elements $u_1,..., u_k$. A^* denotes the group of units of the ring A.

AKS algorithm basis consists in the following reasoning [1]. Let *n* is arbitrary integer for which it is necessary to determine whether it is prime or composite. For this purpose we verify the equalities $(X+a)^n \equiv X^n + a$ in the ring $Z_n[X]/(X^r-1)$ for numbers l=1,...,a. We choose as power *r* of the polynomial X^r -1 the smallest *r*, that satisfies the condition $O_r(n) > \log^2 n$. The number of equalities is equal to $l = \lfloor \sqrt{\varphi(r)} \log n \rfloor$.

Then we consider the subgroup A of the group Z_r^* , generated by elements n and p. Assume that |A|=t.

We also consider the subgroup G of the group $U=(Z_p[X]/(h(X)))^*$ (p is prime divisor of n, h(X) is irreducible over Z_p divisor of X^r -1), generated by the set of elements X+a, a=0,...,l.

As $t < \varphi(r)$, l < t, then creating products of at most l+1 polynomials of the form X+a and proving that they are different in U, we obtain the lower bound $|G| \ge 2^{l+1}$ (note that it is possible to obtain more accurate bound).

If *p* is not a power of *n*, then one can also obtain an upper bound for *|G|*. For this goal we consider the set $I = \{(n/p)^i p^j | 0 \le i, j \le \lfloor \sqrt{t} \rfloor\}$. *I* consists of $(\lfloor \sqrt{t} \rfloor + 1)^2 > t$ different numbers. As |G| = t then at least two numbers in *I* coincide modulo *r*: $\alpha = \beta \mod r$. Then $(X+a)^{\alpha} = X^{\alpha} + a = X^{\beta} + a = (X+a)^{\beta}$. Hence, $(X+a)^{\alpha - \beta} = 1$ and *|G|* divides $\alpha - \beta$. So $|G| < \alpha < (\frac{n}{p} \cdot p)^{\lfloor \sqrt{t} \rfloor} \le n^{\lfloor \sqrt{t} \rfloor}$

As $t > \log^2 n$ then $|G| \ge 2^{l+1} \ge 2^{\lfloor \sqrt{l} \log n \rfloor + 1} > n^{\lfloor \sqrt{l} \rfloor}$ and we come to contradiction.

So the idea of AKS algorithm proof consists in the following: to show that the set of elements *X*+*a* generates "big enough" subgroup in the group $(Z_p[X]/(h(X)))^*$.

From this point of view it is possible to interpret the Agrawal conjecture in the following way. If the identity $(X-1)^n \equiv X^n - 1 \pmod{n}$, $X^r - 1$ holds then the set that consists of unique element X-1 generates big enough subgroup.

In this paper we generalize H.Lenstra proposition which indicates that the set $\{X-1\}$ very likely does not generate big enough subgroup. At the same time we obtain a chain of subgroups $(X) \subset (X+1) \subset (X-1) \subset (X-1, X+2)$ and state the conjecture that the set $\{X-1, X+2\}$ generate big subgroup. The goal of future work is to clear up this question: what minimal set of elements one have to take to generate big enough subgroup. Primality proving algorithm running time depends on a number of elements of the set.

We will need the following simple fact.

Lemma 2.1. (1) $n - p^i$ for any integer *i* is divided by p - 1 if and only if p - 1 | n - 1.

(2) $n - p^i$ for any integer *i* is divided by p+1 if and only if p+1 | n+1.

Proof. (1) The equality $n-p^i = (n-1)-(p^i-1)$ holds. Since $p-1|p^i-1$, $n-p^i$ is divided by p-1 if and only if p-1|n-1.

(2) The equality $n - p^i = (n+1) - (p^i+1)$ holds. Since $p+1|p^i+1$, $n - p^i$ is divided by p+1 if and only if p+1|n+1.

3 Suggesting existence of counterexamples

Proposition 3.1. Let $p_1,...,p_k$ be k pairwise distinct prime integers, and let $n = p_1...p_k$, r is prime number, p_i is primitive modulo r for all i. If for all i exist such integers a_i that $n \equiv p_i^{a_i} \mod 2r(p_i^{(r-1)/2} - 1)$, then

 $(X-1)^n \equiv X^n - 1 \pmod{n, X^r - 1}.$

Proof. Polynomials X-1 and $C_r(X)=X^{r-1}+X^{r-2}+\ldots+X+1$ are coprime in the polynomial ring $Z_n[X]$. Hence, in order to prove the identity $(X-1)^n \equiv X^n - 1 \pmod{n, X^r-1}$ it suffices to prove that

$$(X-1)^n \equiv X^n - 1 \pmod{n, C_r(X)}$$

The Chinese remainder theorem gives the following isomorphism:

$$Z_n[X]/(C_r(X)) \cong \prod_{i=1}^k Z_{p_i}[X]/(C_r(X))$$

Each factor ring $R_i = Z_{p_i}[X]/(C_r(X))$ is a field since each prime p_i is primitive modulo r $(O_r(p_i)=p_i-1)$ and thus the polynomial $C_r(X)$ is irreducible in $Z_{p_i}[X]$.

It therefore suffices to prove the identity

$$(X-1)^{n} \equiv X^{n}-1 \pmod{p_{i}, C_{r}(X)}$$
for each p_{i} .
$$(3.1)$$

By assumption $n \equiv p_i^{a_i} \mod r$ for some integer a_i . Therefore $X^n \equiv X^{p_i^{a_i}} \mod X^r$ -1 and so modulo $C_r(X)$.

Since R_i is a field { p_i is prime}, the identity

$$(X-1)^{p_i^{a_i}} \equiv X^{p_i^{a_i}} - 1 \pmod{p_i, C_r(X)}$$
(3.2)

holds for the integer a_i .

 p_i is primitive modulo r, $p_i^{r-1} \equiv 1 \mod r$ and $p_i^{(r-1)/2} \equiv -1 \mod r$ (since r is prime number).

Thus $(X-1)^{p_i^{(r-1)/2}} \equiv X^{-1} - 1$ and $(X-1)^{p_i^{(r-1)/2}} \equiv -X^{-1}(X-1)$ in the field R_i . Hence the order of X-1 in R_i divides $2r(p_i^{(r-1)/2} - 1)$. By assumption $n \equiv p_i^{a_i} \mod 2r(p_i^{(r-1)/2} - 1)$ and thus $(X-1)^n \equiv (X-1)^{p_i^{a_i}}$.

Since left and right parts of identities (3.1), (3.2) coincides and identity (3.2) holds, then identity (3.1) also holds.

In the case r=5 we obtain the following proposition.

Proposition 3.2. Let $p_1,...,p_k$ be k pairwise distinct prime integers and let $n = p_1...p_k$. Suppose that 1) k is odd

2) $p_i \mod 5 \in \{2,3\}$ for i=1,...,k;

3) $p_1 \mod 16 \in \{3, 5, 11, 13\};$

for i=2,...,k: if $p_i \equiv p_1 \mod 5$ then $p_i \equiv p_1 \mod 16$, otherwise $p_i \equiv p_1^3 \mod 16$;

4) p_i -1|n-1 for i=1,...,k;

5)
$$p_i$$
+1| n +1 for i =1,..., k

Then $(X-1)^n \equiv X^n - 1 \pmod{n, X^5 - 1}$ and $n^2 \neq 1 \mod 5$.

Proof. Even number of factors p_i that equal to 2 or 3 modulo 5 gives 1 or -1 modulo 5. Indeed, if $p_i \mod 5\equiv 2$ and $p_j \mod 5\equiv 2$ then $p_ip_j \mod 5\equiv -1$. If $p_i \mod 5\equiv 2$ and $p_j \mod 5\equiv 3$ then $p_ip_j \mod 5\equiv -1$. If $p_i \mod 5\equiv 3$ and $p_j \mod 5\equiv 3$ then $p_ip_j \mod 5\equiv -1$.

Odd number (\geq 3) of factors p_i that equal to 2 or 3 modulo 5 gives 2 or 3 modulo 5. Hence $n^2 \neq 1 \mod 5$.

According to proposition 3.1 it suffices to show that for each *i* exists such integer a_i that the identity $n \equiv p_i^{a_i} \mod 10(p_i^2 - 1)$ is true.

There are two different variants of $10(p_i^2 - 1)$ factoring into 4 pairwise coprime factors depending on the value $p_i \mod 16$:

- if
$$p_i \mod 16 \in \{3, 11\}$$
 then $10(p_i^2 - 1) = 5(16) \left(\frac{p_i - 1}{2}\right) \left(\frac{p_i + 1}{4}\right)$

- if $p_i \mod 16 \in \{5,13\}$ then $10(p_i^2 - 1) = 5(16)\left(\frac{p_i - 1}{4}\right)\left(\frac{p_i + 1}{2}\right)$

In both cases it suffices to show that exists such integer a_i that the identity $n \equiv p_i^{a_i} \mod 10(p_i^2 - 1)$ is true modulo each factor.

Let us consider the first case.

If $n \equiv p_i \mod 5$, then $a_i = 1$, $n \equiv p_i \mod 16$ by assumption 3, $n \equiv p_i \mod (p_i - 1)/2$ by lemma (2.1) and assumption 4, $n \equiv p_i \mod (p_i + 1)/4$ by lemma (2.1) and assumption 5.

If $n \neq p_i \mod 5$, then $a_i=3$ (since $2\equiv 3^3 \mod 5$ and $3\equiv 2^3 \mod 5$), $n\equiv p_i^3 \mod 5$, $n\equiv p_i^3 \mod 16$ by assumption 3 (11 $\equiv 3^3 \mod 16$, $3\equiv 11^3 \mod 16$, $13\equiv 5^3 \mod 16$, $5\equiv 13^3 \mod 16$), $n\equiv p_i^3 \mod (p_i-1)/2$ by lemma (2.1) and assumption 4, $n\equiv p_i^3 \mod (p_i+1)/4$ by lemma (2.1) and assumption 5.

In the second case the proof is analogous.

Note that in the proof of proposition 3.2 an order of element X-1 in the ring $Z_{p_i}[X]/(C_r(X))$

divides $10(p_i^2 - 1)$ for any prime divisor p_i of n.

Remark. Proposition 3.2 is also true in the case $p_1 \mod 32 \in \{7,9,23,25\}$; for i=2,...,k: if $p_i \equiv p_1 \mod 5$ then $p_i \equiv p_1 \mod 32$, otherwise $p_i \equiv p_1^3 \mod 32$.

Proposition (H.Lenstra) from [4] is a partial case of proposition 3.2.

By proposition 3.2, we have a heuristic which suggests the existence of many counterexamples [4] to the Agrawal conjecture. But no counterexample is yet known.

4 Chain of subgroups

Since, very likely, the Agrawal conjecture is not true it is natural to modify it slightly to obtain a version that may still be true.

Number *n* is assumed to be primitive mod *r*. Note that element X-1 is a unit in the ring $Z_p[X]/(C_r(X))$.

Proposition 4.1 If $(X-1)^n \equiv X^n - 1 \pmod{n}$, $X^r - 1$, then $(X) \subset (X+1) \subset (X-1)$ is a strictly ascending chain of subgroups of the group $(Z_p[X]/(C_r(X)))^*$ for any prime divisor p of n.

Proof. As $(X-1)^n \equiv X^n - 1 \pmod{n, X^r - 1}$, then $(X-1)^n \equiv X^n - 1 \pmod{p, C_r(X)}$. Since *n* is primitive mod *r* there exist such integer *a* that $n^a \equiv 2 \pmod{r}$. Then $(X-1)^{n^a} = X^2 - 1 = (X-1)(X+1)$. So $X + 1 = (X-1)^{n^a} \in (X-1)$ and $(X+1) \subseteq (X-1)$.

As $X+1 \in (X-1)$ and $(X-1)^n \equiv X^n - 1 \pmod{p}$, $C_r(X)$, then $(X+1)^n \equiv X^n + 1 \pmod{p}$, $C_r(X)$.

Since *n* is primitive mod *r* there exist such integer *c* that $n^c \equiv r-1 \pmod{r}$. Then

 $(X + 1)^{n^c} = X^{n^c} + 1 = X^{r-1} + 1 = X^{-1} + 1 = X^{-1}(X + 1)$. Recall that $X^r = 1$. Hence, $(X + 1)^{n^c - 1} = X^{-1} \pmod{p}$, $C_r(X)$. So $(X^{-1}) \subseteq (X+1)$. As groups (X^{-1}) and (X) coincide then $(X) \subseteq (X+1)$.

Since $(X) = \{1, X, \dots, X^{r-1}\}$ it is clear that element $X+1 \notin (X)$ and $(X) \subset (X+1)$.

To prove that $(X+1) \subset (X-1)$ let us consider an automorphism σ of the ring $Z_p[X]/(C_r(X))$ sending X to X^{-1} . Assume $(X+1)^V = X-1 \pmod{p}$, $C_r(X)$ for some integer V.

Recall that X+1 and X-1 are units and so $[\sigma(X+1)]^{-1}$ and $[\sigma(X-1)]^{-1}$ exist. Consider $(X+1)[\sigma(X+1)]^{-1}=(X+1)[X^{-1}(1+X)]^{-1}=X$ and $(X-1)[\sigma(X-1)]^{-1}=(X-1)[-X^{-1}(X-1)]^{-1}=-X$. Then $X^{V}=-X-a$ contradiction.

So, the chain of groups $(X) \subset (X+1) \subset (X-1)$ is strictly ascending.

Hence, if $(X-1)^n \equiv X^n - 1 \pmod{n, X^r - 1}$ then an order of element X-1 in the group $(Z_p[X]/(C_r(X)))^*$ is a product of three numbers: an order of group (X) that equals to r, an index of subgroup (X) in group (X+1) and an index of subgroup (X+1) in group (X-1).

Proposition 4.2. If *p* is prime and $a \neq 0, -1, 1 \mod p$, then element $X + a \notin (X-1)$ in the group $(Z_p[X]/(C_r(X)))^*$.

Proof. Assume that $(X-1)^V = X + a \pmod{p, X^r} - 1$. Again let us consider an automorphism σ of the ring $Z_p[X]/(C_r(X))$ sending X to X^{-1} . Then we have $(X+a) [\sigma(X+a)]^{-1} = (X-1)^V [\sigma((X-1)^V)]^{-1}$, $(X+a)[X^{-1}+a]^{-1} = (-X)^V$, $X+a = (-1)^V X^{V-1} + (-1)^V a X^V$. Since $(-1)^V \neq a$ then $X=(-1)^V X^{V-1}$, $V-1\equiv 1 \mod r$, $V\equiv 2 \mod r$. From the other hand $a=(-1)^V a X^V$, $V\equiv 0 \mod r - a$ contradiction.

Hence, we have the following strictly ascending chain of groups $(X) \subset (X+1) \subset (X-1) \subset (X-1, X+2)$.

Moreover, for r=5 we have the following proposition.

Proposition 4.3. If prime number p is not equal to 2,3,5,11,19 and $p^2 \neq 1 \mod 5$, then an order of element X+2 in the field $Z_p[X]/(C_5(X))$ does not divide $10(p^2-1)$.

Proof. It is easy to verify that $(X+2)(X^3-X^2+3X-5)=-11 \pmod{p,C_5(X)}$, so element $-11^{-1}(X^3-X^2+3X-5)$ is a multiplicative inverse of X+2 in the field $Z_p[X]/(C_5(X))=Z_p[X]/(X^4+X^3+X^2+X+1)$. We have

 $(X+2)^{p^2} \equiv X^{-1} + 2 = X^{-1}(2X+1)$ (as p is prime) and

$$(X+2)^{p^{2}-1} \equiv -11^{-1}X^{-1}(2X+1)(X^{3}-X^{2}+3X-5) = -11^{-1}X^{-1}(-3X^{3}+3X^{2}-9X-7)$$

Therefore $(X+2)^{10(p^2-1)} \equiv 11^{-10}(-3X^3+3X^2-9X-7)^{10} \equiv$

 $\equiv -11^{-10} (19486165920X^3 + 26683280040X^2 + 22802637960X + 29275201379)$

Factorization of polynomial coefficients of non-zero powers of X is as follows: $19486165920=2\cdot2\cdot2\cdot2\cdot2\cdot3\cdot5\cdot13\cdot19\cdot164357;$ $26683280040=2\cdot2\cdot2\cdot3\cdot5\cdot19\cdot167\cdot70079;$ $22802637960=2\cdot2\cdot2\cdot3\cdot3\cdot5\cdot19\cdot67\cdot49757.$

Since *p* does not divide the greatest common divisor of the coefficients (equals to $2 \cdot 2 \cdot 3 \cdot 5 \cdot 19$) then the coefficients are not simultaneously equal to 0 modulo *p*. Hence, the polynomial $(X + 2)^{10(p^2-1)}$ is not equal to 1.

5 Conclusion

In this paper we generalize H.Lenstra proposition which indicates that the set {X-1} very likely does not generate big enough subgroup in the group $(Z_p[X]/(C_r(X)))^*$.

At the same time we obtain a strictly ascending chain of subgroups $(X) \subset (X+1) \subset (X-1) \subset (X-1, X+2)$ of this group and state the modified conjecture that the set $\{X-1, X+2\}$ generate big subgroup.

These arguments suggest that the following variant of the Agrawal conjecture may be true:

Modified conjecture. If r is a prime number that does not divide n, if $(X-1)^n \equiv X^n - 1 \pmod{X^r - 1}$, n) and if $(X+2)^n \equiv X^n + 2 \pmod{X^r - 1}$, n), then either n is prime or $n^2 \equiv 1 \pmod{r}$.

Acknowledgements. I would like to thank Hendrik W.Lenstra for reading a draft version of this paper and providing valuable comments.

References

- [1] M. Agrawal, N. Kayal and N. Saxena, PRIMES is in P, Annals of Mathematics, 160 (2004), pp. 781–793.
- [2] D.J.Bernstein, *Proving primality in essentially quartic random time*, Math. of Computations, v.76, No. 257, 2007, pp. 389-403.
- [3] R. Bhattacharjee and P. Pandey, *Primality testing*, IIT Kanpur, 2001. Available at http://www.cse.iitk.ac.in/research/btp2001/primality.html.
- [4] A.Granville, *It is easy to determine whether a given integer is prime*, Bulletin of the American Math. Society, v.42, No. 1, 2005, pp. 3-38.

[5] N. Kayal and N. Saxena, *Towards a deterministic polynomial-time test*, IIT Kanpur, 2002. Available at http://www.cse.iitk.ac.in/research/btp2002/primality.html.

[6] H.W.Lenstra, Jr. and C.Pomerance, *Remarks on Agrawal's conjecture*, 2003. Available at http://www.aimath.org/WWN/primesinp/articles/html/50a.

Roman Popovych, Department of Computer Science and Engineering, National University Lviv Politechnika, Bandery Str., 12, 79013, Lviv, Ukraine E-mail: popovych@polynet.lviv.ua