A note on Agrawal conjecture

Roman Popovych

Abstract

We prove that Lenstra proposition suggesting existence of many counterexamples to Agrawal conjecture is true in a more general case. At the same time we obtain a strictly ascending chain of subgroups of the group $\left(Z_{p}[X] /\left(C_{r}(X)\right)\right)^{*}$ and state the modified conjecture that the set $\{X-1, X+2\}$ generate big enough subgroup of this group.

1 Introduction

Prime numbers are of fundamental importance in mathematics in general: there are few better known or more easily understood problems in pure mathematics than the question of rapidly determining whether a given number is prime or composite. Efficient primality tests are also useful in practice: a number of cryptographic protocols need big prime numbers.

In 2002 M.Agrawal, N.Kayal and N.Saxena [1] presented a deterministic polynomial-time algorithm AKS that determines whether an input number is prime or composite. It was proved [4] that AKS algorithm runs in $\mathrm{O}^{\sim}\left((\log n)^{7.5}\right)$ time. H.Lenstra and C.Pomerance [4] gave a significantly modified version of AKS with $\mathrm{O}^{\sim}\left((\log n)^{6}\right)$ running time.

In the paper we do not consider randomozed primality proving algorithm which was introduced by P.Berrizbeitia and investigated by Q.Cheng, D.Bernstein, P.Mihailescu-R.Avanzi [2].

The note concerns Agrawal conjecture. The conjecture was given in [2] and verified for $r<100$ and $n<10^{10}$ in [3].

Conjecture. If r is a prime number that does not divide n and if $(X-1)^{n} \equiv X^{n}-1\left(\bmod n, X^{r}-1\right)$, then either n is prime or $n^{2} \equiv l(\bmod r)$.

If Agrawal conjecture were true, this would improve the polynomial time complexity of the AKS primality testing algorithm from $\mathrm{O}^{\sim}\left((\log n)^{6}\right)$ to $\mathrm{O}^{\sim}\left((\log n)^{3}\right)$.
H.Lenstra and C.Pomerance [4] gave a heuristic argument which suggests that the above conjecture is false. However, M.Agrawal, N. Kayal and N. Saxena [1] pointed out that some variant of the conjecture may still be true (for example, if we force $r>\log n$).

In this paper we prove that proposition (H.Lenstra) from [4] suggesting existence of many counterexamples to the Agrawal conjecture is true in a more general case. We also give some modified conjecture and arguments that this conjecture may be true.

2 Preliminaries

Z_{n} denotes a ring of numbers modulo n. Recall that if p is prime and $h(X)$ is a polynomial of degree d and irreducible in Z_{p} then $Z_{p}[X] /(h(X))$ is a finite field of order p^{d}. We will use the notation $f(X)=g(X)(\bmod n, h(X))$ to represent the equation $f(X)=g(X)$ in the ring $Z_{n}[X] /(h(X))$.

We use the symbol $\mathrm{O}^{\sim}(t(n))$ for $\mathrm{O}(t(n)$.poly $(\log t(n)))$ where $t(n)$ is any function of n. We use log for base 2 logarithm.
N and Z denote the set of natural numbers and integers respectively. (a, b) denotes the greatest common divisor of integers a and b. Given $r \in N, a \in Z$ with (a, r)=1 the order of a modulo r is the smallest number k such that $a^{k}=1(\bmod r)$. It is denoted $O_{r}(a)$. For $r \in N, \varphi(r)$ is Euler's totient function giving the number of numbers less than r that are relatively prime to r. It is easy to see that $O_{r}(a) \mid \varphi(r)$ for any $a,(a, r)=1$.
(u_{1}, \ldots, u_{k}) denotes the group generated by elements $u_{1}, \ldots, u_{k} . A^{*}$ denotes the group of units of the ring A.

AKS algorithm basis consists in the following reasoning [1]. Let n is arbitrary integer for which it is necessary to determine whether it is prime or composite. For this purpose we verify the equalities $(X+a)^{n} \equiv X^{n}+a$ in the ring $Z_{n}[X] /\left(X^{r}-1\right)$ for numbers $l=1, \ldots, a$. We choose as power r of the polynomial $X^{r}-1$ the smallest r, that satisfies the condition $O_{r}(n)>\log ^{2} n$. The number of equalities is equal to $l=\lfloor\sqrt{\varphi(r)} \log n\rfloor$.

Then we consider the subgroup A of the group Z_{r}^{*}, generated by elements n and p. Assume that $|A|=t$.

We also consider the subgroup G of the group $U=\left(Z_{p}[X] /(h(X))\right)^{*}(p$ is prime divisor of n, $h(X)$ is irreducible over Z_{p} divisor of $X^{r}-1$), generated by the set of elements $X+a, a=0, \ldots, l$.

As $t<\varphi(r), l<t$, then creating products of at most $l+1$ polynomials of the form $X+a$ and proving that they are different in U, we obtain the lower bound $|G| \geq 2^{l+1}$ (note that it is possible to obtain more accurate bound).

If p is not a power of n, then one can also obtain an upper bound for $|G|$. For this goal we consider the set $I=\left\{(\mathrm{n} / \mathrm{p})^{\mathrm{i}} \mathrm{p}^{\mathrm{j}} \mid 0 \leq \mathrm{i}, \mathrm{j} \leq\lfloor\sqrt{t}\rfloor\right\}$. I consists of $\left.(\sqrt{t}\rfloor+1\right)^{2}>t$ different numbers. As $|G|=t$ then at least two numbers in I coincide modulo $r: \alpha=\beta \bmod r$. Then $(X+a)^{\alpha}=X^{\alpha}+a=X^{\beta}+a=(X+a)^{\beta}$. Hence, $(X+a)^{\alpha-\beta}=1$ and $|G|$ divides $\alpha-\beta$. So $|G|<\alpha<\left(\frac{n}{p} \cdot p\right)^{\lfloor\sqrt{t}\rfloor} \leq n^{\lfloor\sqrt{t}\rfloor}$

As $t>\log ^{2} n$ then $|G| \geq 2^{l+1} \geq 2^{\lfloor\sqrt{i \log } n++1}>n^{\lfloor\sqrt{i}\rfloor}$ and we come to contradiction.
So the idea of AKS algorithm proof consists in the following: to show that the set of elements $X+a$ generates "big enough" subgroup in the group $\left(Z_{p}[X] /(h(X))\right)^{*}$.

From this point of view it is possible to interpret the Agrawal conjecture in the following way. If the identity $(X-1)^{n} \equiv X^{n}-1\left(\bmod n, X^{r}-1\right)$ holds then the set that consists of unique element $X-1$ generates big enough subgroup.

In this paper we generalize H.Lenstra proposition which indicates that the set $\{X-1\}$ very likely does not generate big enough subgroup. At the same time we obtain a chain of subgroups $(X) \subset(X+1) \subset(X-1) \subset(X-1, X+2)$ and state the conjecture that the set $\{X-1, X+2\}$ generate big subgroup. The goal of future work is to clear up this question: what minimal set of elements one have to take to generate big enough subgroup. Primality proving algorithm running time depends on a number of elements of the set.

We will need the following simple fact.
Lemma 2.1. (1) $n-p^{i}$ for any integer i is divided by $p-1$ if and only if $p-1 \mid n-1$.
(2) $n-p^{i}$ for any integer i is divided by $p+1$ if and only if $p+1 \mid n+1$.

Proof. (1) The equality $n-p^{i}=(n-1)-\left(p^{i}-1\right)$ holds. Since $p-1 \mid p^{i}-1, n-p^{i}$ is divided by $p-1$ if and only if $p-1 \mid n-1$.
(2) The equality $n-p^{i}=(n+1)-\left(p^{i}+1\right)$ holds. Since $p+1 p^{i}+1, n-p^{i}$ is divided by $p+1$ if and only if $p+1 \mid n+1$.

3 Suggesting existence of counterexamples

Proposition 3.1. Let p_{l}, \ldots, p_{k} be k pairwise distinct prime integers, and let $n=p_{l} \ldots p_{k}$, r is prime number, p_{i} is primitive modulo r for all i. If for all i exist such integers a_{i} that $n \equiv p_{i}^{a_{i}} \bmod 2 r\left(p_{i}^{(r-1) / 2}-1\right)$, then

$$
(X-1)^{n} \equiv X^{n}-1\left(\bmod n, X^{r}-1\right) .
$$

Proof. Polynomials $X-1$ and $C_{r}(X)=X^{r-1}+X^{r-2}+\ldots+X+1$ are coprime in the polynomial ring $Z_{n}[X]$. Hence, in order to prove the identity $(X-1)^{n} \equiv X^{n}-1\left(\bmod n, X^{r}-1\right)$ it suffices to prove that

$$
(X-1)^{n} \equiv X^{n}-1\left(\bmod n, C_{r}(X)\right)
$$

The Chinese remainder theorem gives the following isomorphism:

$$
Z_{n}[X] /\left(C_{r}(X)\right) \cong \prod_{i=1}^{k} Z_{p_{i}}[X] /\left(C_{r}(X)\right)
$$

Each factor ring $R_{i}=Z_{p_{i}}[X] /\left(C_{r}(X)\right)$ is a field since each prime p_{i} is primitive modulo r $\left(O_{r}\left(p_{i}\right)=p_{i}-1\right)$ and thus the polynomial $C_{r}(X)$ is irreducible in $Z_{p_{i}}[X]$.

It therefore suffices to prove the identity
$(X-1)^{n} \equiv X^{n}-1\left(\bmod p_{i}, C_{r}(X)\right)$
for each p_{i}.

By assumption $n \equiv p_{i}^{a_{i}} \bmod r$ for some integer a_{i}. Therefore $X^{n} \equiv X^{p_{i}^{a_{i}}}$ modulo $X^{r}-1$ and so modulo $C_{r}(X)$.

Since R_{i} is a field $\left\{p_{i}\right.$ is prime $\}$, the identity

$$
\begin{equation*}
(X-1)^{p_{i}^{a_{i}}} \equiv X^{p_{i}^{q_{i}}}-1\left(\bmod p_{i}, C_{r}(X)\right) \tag{3.2}
\end{equation*}
$$

holds for the integer a_{i}.
p_{i} is primitive modulo $r, p_{i}^{r-1} \equiv 1 \bmod r$ and $p_{i}^{(r-1) / 2} \equiv-1 \bmod r$ (since r is prime number).
Thus $(X-1)^{p_{i}^{(r-1) / 2}} \equiv X^{-1}-1$ and $(X-1)^{p_{i}^{(r-1) / 2}} \equiv-X^{-1}(X-1)$ in the field R_{i}. Hence the order of $X-1$ in $\quad R_{i}$ divides $2 r\left(p_{i}^{(r-1) / 2}-1\right)$. By assumption $n \equiv p_{i}^{a_{i}} \bmod 2 r\left(p_{i}^{(r-1) / 2}-1\right)$ and thus $(X-1)^{n} \equiv(X-1)^{p_{i}^{q_{i}}}$.

Since left and right parts of identities (3.1), (3.2) coincides and identity (3.2) holds, then identity (3.1) also holds.

In the case $r=5$ we obtain the following proposition.
Proposition 3.2. Let p_{l}, \ldots, p_{k} be k pairwise distinct prime integers and let $n=p_{1} \ldots p_{k}$. Suppose that

1) k is odd
2) $p_{i} \bmod 5 \in\{2,3\}$ for $i=1, \ldots, k$;
3) $p_{1} \bmod 16 \in\{3,5,11,13\}$;
for $i=2, \ldots, k$: if $p_{i} \not p_{1} \bmod 5$ then $p_{i} \neq p_{1} \bmod 16$, otherwise $p_{i} \equiv p_{1}^{3} \bmod 16$;
4) $p_{i}-1 \mid n-1$ for $i=1, \ldots, k$;
5) $p_{i}+1 \mid n+1$ for $i=1, \ldots, k$.

Then $(X-1)^{n} \equiv X^{n}-1\left(\bmod n, X^{5}-1\right)$ and $n^{2} \neq 1 \bmod 5$.
Proof. Even number of factors p_{i} that equal to 2 or 3 modulo 5 gives 1 or -1 modulo 5. Indeed, if $p_{i} \bmod 5 \equiv 2$ and $p_{j} \bmod 5 \equiv 2$ then $p_{i} p_{j} \bmod 5 \equiv-1$. If $p_{i} \bmod 5 \equiv 2$ and $p_{j} \bmod 5 \equiv 3$ then $p_{i} p_{j} \bmod 5 \equiv 1$. If $p_{i} \bmod 5 \equiv 3$ and $p_{j} \bmod 5 \equiv 3$ then $p_{i} p_{j} \bmod 5 \equiv-1$.

Odd number (≥ 3) of factors p_{i} that equal to 2 or 3 modulo 5 gives 2 or 3 modulo 5 . Hence $n^{2} \neq 1 \bmod 5$.

According to proposition 3.1 it suffices to show that for each i exists such integer a_{i} that the identity $n \equiv p_{i}^{a_{i}} \bmod 10\left(p_{i}^{2}-1\right)$ is true.

There are two different variants of $10\left(p_{i}^{2}-1\right)$ factoring into 4 pairwise coprime factors depending on the value $p_{i} \bmod 16$:

- if $p_{i} \bmod 16 \in\{3,11\}$ then $10\left(p_{i}^{2}-1\right)=5(16)\left(\frac{p_{i}-1}{2}\right)\left(\frac{p_{i}+1}{4}\right)$
- if $p_{i} \bmod 16 \in\{5,13\}$ then $10\left(p_{i}^{2}-1\right)=5(16)\left(\frac{p_{i}-1}{4}\right)\left(\frac{p_{i}+1}{2}\right)$

In both cases it suffices to show that exists such integer a_{i} that the identity $n \equiv p_{i}^{a_{i}} \bmod 10\left(p_{i}^{2}-1\right)$ is true modulo each factor.

Let us consider the first case.
If $n \equiv p_{i} \bmod 5$, then $a_{i}=1, n \equiv p_{i} \bmod 16$ by assumption $3, n \equiv p_{i} \bmod \left(p_{i}-1\right) / 2$ by lemma (2.1) and assumption $4, n \equiv p_{i} \bmod \left(p_{i}+1\right) / 4$ by lemma (2.1) and assumption 5.

If $n \neq p_{i} \bmod 5$, then $a_{i}=3\left(\right.$ since $\left.2 \equiv 3^{3} \bmod 5 \operatorname{and} 3 \equiv 2^{3} \bmod 5\right), n \equiv p_{i}{ }^{3} \bmod 5, n \equiv p_{i}{ }^{3} \bmod 16$ by assumption $3\left(11 \equiv 3^{3} \bmod 16,3 \equiv 11^{3} \bmod 16,13 \equiv 5^{3} \bmod 16,5 \equiv 13^{3} \bmod 16\right), n \equiv p_{i}^{3} \bmod \left(p_{i}-1\right) / 2$ by lemma (2.1) and assumption $4, n \equiv p_{i}{ }^{3} \bmod \left(p_{i}+1\right) / 4$ by lemma (2.1) and assumption 5.

In the second case the proof is analogous.
Note that in the proof of proposition 3.2 an order of element $X-1$ in the ring $Z_{p_{i}}[X] /\left(C_{r}(X)\right)$ divides $10\left(p_{i}^{2}-1\right)$ for any prime divisor p_{i} of n.

Remark. Proposition 3.2 is also true in the case $p_{1} \bmod 32 \in\{7,9,23,25\}$; for $i=2, \ldots, k$: if $p_{i} \equiv p_{1} \bmod 5$ then $p_{i} \equiv p_{1} \bmod 32$, otherwise $p_{i} \equiv p_{1}^{3} \bmod 32$.

Proposition (H.Lenstra) from [4] is a partial case of proposition 3.2.
By proposition 3.2, we have a heuristic which suggests the existence of many counterexamples [4] to the Agrawal conjecture. But no counterexample is yet known.

4 Chain of subgroups

Since, very likely, the Agrawal conjecture is not true it is natural to modify it slightly to obtain a version that may still be true.

Number n is assumed to be primitive $\bmod r$. Note that element $X-1$ is a unit in the ring $Z_{p}[X] /\left(C_{r}(X)\right)$.

Proposition 4.1 If $(X-1)^{n} \equiv X^{n}-1\left(\bmod n, X^{r}-1\right)$, then $(X) \subset(X+1) \subset(X-1)$ is a strictly ascending chain of subgroups of the group $\left(Z_{p}[X] /\left(C_{r}(X)\right)\right)^{*}$ for any prime divisor p of n.
Proof. As $(X-1)^{n} \equiv X^{n}-1\left(\bmod n, X^{r}-1\right)$, then $(X-1)^{n} \equiv X^{n}-1\left(\bmod p, C_{r}(X)\right)$. Since n is primitive $\bmod r$ there exist such integer a that $n^{a} \equiv 2(\bmod r)$. Then $(X-1)^{n^{a}}=X^{2}-1=(X-1)(X+1)$. So $X+1=(X-1)^{n^{a}} \in(X-1)$ and $(X+1) \subseteq(X-1)$.

As $X+1 \in(X-1)$ and $(X-1)^{n} \equiv X^{n}-1\left(\bmod p, C_{r}(X)\right)$, then $(X+1)^{n} \equiv X^{n}+1\left(\bmod p, C_{r}(X)\right)$.
Since n is primitive $\bmod r$ there exist such integer c that $n^{c} \equiv r-1(\bmod r)$. Then
$(X+1)^{n^{c}}=X^{n^{c}}+1=X^{r-1}+1=X^{-1}+1=X^{-1}(X+1) . \quad$ Recall that $X^{r}=1$. Hence, $(X+1)^{n^{c}-1}=X^{-1}\left(\bmod p, C_{r}(X)\right)$. So $\left(X^{-1}\right) \subseteq(X+1)$. As groups $\left(X^{-1}\right)$ and (X) coincide then $(X) \subseteq(X+1)$.

Since $(X)=\left\{1, X, \ldots, X^{r-1}\right\}$ it is clear that element $X+1 \notin(X)$ and $(X) \subset(X+1)$.
To prove that $(X+1) \subset(X-1)$ let us consider an automorphism σ of the ring $Z_{p}[X] /\left(C_{r}(X)\right)$ sending X to X^{-1}. Assume $(X+1)^{V}=X-1\left(\bmod p, C_{r}(X)\right)$ for some integer V.

Recall that $X+1$ and $X-1$ are units and so $[\sigma(X+1)]^{-1}$ and $[\sigma(X-1)]^{-1}$ exist. Consider $(X+1)[\sigma(X+1)]^{-1}=(X+1)\left[X^{-1}(1+X)\right]^{-1}=X$ and $(X-1)[\sigma(X-1)]^{-1}=(X-1)\left[-X^{-1}(X-1)\right]^{-1}=-X$. Then $X^{V}=-X-\mathrm{a}$ contradiction.

So, the chain of groups $(X) \subset(X+1) \subset(X-1)$ is strictly ascending.
Hence, if $(X-1)^{n} \equiv X^{n}-1\left(\bmod n, X^{r}-1\right)$ then an order of element $X-1$ in the group $\left(Z_{p}[X] /\left(C_{r}(X)\right)\right)^{*}$ is a product of three numbers: an order of group (X) that equals to r, an index of subgroup (X) in group $(X+1)$ and an index of subgroup $(X+1)$ in group $(X-1)$.

Proposition 4.2. If p is prime and $a \neq 0,-1,1 \bmod p$, then element $X+a \notin(X-1)$ in the group $\left(Z_{p}[X] /\left(C_{r}(X)\right)\right)^{*}$.
Proof. Assume that $(X-1)^{V}=X+a\left(\bmod p, X^{r}-1\right)$. Again let us consider an automorphism σ of the ring $Z_{p}[X] /\left(C_{r}(X)\right)$ sending X to X^{-1}. Then we have $(X+a) \quad[\sigma(X+a)]^{-1}=(X-1)^{V}\left[\sigma\left((X-1)^{V}\right)\right]^{-1}$, $(X+a)\left[X^{-1}+a\right]^{-1}=(-X)^{V}, X+a=(-1)^{V} X^{V-1}+(-1)^{V} a X^{V}$. Since $(-1)^{V} \neq a$ then $X=(-1)^{V} X^{V-1}, V-1 \equiv 1 \bmod r$, $V \equiv 2 \bmod r$. From the other hand $a=(-1)^{V} a X^{V}, V \equiv 0 \bmod r-$ a contradiction.

Hence, we have the following strictly ascending chain of groups $(X) \subset(X+1) \subset(X-1) \subset(X-1, X+2)$.

Moreover, for $r=5$ we have the following proposition.
Proposition 4.3. If prime number p is not equal to $2,3,5,11,19$ and $p^{2} \neq 1 \bmod 5$, then an order of element $X+2$ in the field $Z_{p}[X] /\left(C_{5}(X)\right)$ does not divide $10\left(p^{2}-1\right)$.
Proof. It is easy to verify that $(X+2)\left(X^{3}-X^{2}+3 X-5\right)=-11\left(\bmod p, C_{5}(X)\right)$, so element $-11^{-1}\left(X^{3}-X^{2}+3 X-5\right)$ is a multiplicative inverse of $X+2$ in the field $Z_{p}[X] /\left(C_{5}(X)\right)=Z_{p}[X] /\left(X^{4}+X^{3}+X^{2}+X+1\right)$. We have $(X+2)^{p^{2}} \equiv X^{-1}+2=X^{-1}(2 X+1)$ (as p is prime) and $(X+2)^{p^{2}-1} \equiv-11^{-1} X^{-1}(2 X+1)\left(X^{3}-X^{2}+3 X-5\right)=-11^{-1} X^{-1}\left(-3 X^{3}+3 X^{2}-9 X-7\right)$

Therefore $(X+2)^{10\left(p^{2}-1\right)} \equiv 11^{-10}\left(-3 \mathrm{X}^{3}+3 \mathrm{X}^{2}-9 \mathrm{X}-7\right)^{10} \equiv$ $\equiv-11^{-10}\left(19486165920 X^{3}+26683280040 X^{2}+22802637960 X+29275201379\right)$

Factorization of polynomial coefficients of non-zero powers of X is as follows:
$19486165920=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 13 \cdot 19 \cdot 164357 ; \quad 26683280040=2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 19 \cdot 167 \cdot 70079$;
$22802637960=2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 19 \cdot 67 \cdot 49757$.

Since p does not divide the greatest common divisor of the coefficients (equals to $2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 19$) then the coefficients are not simultaneously equal to 0 modulo p. Hence, the polynomial $(X+2)^{10\left(p^{2}-1\right)}$ is not equal to 1 .

5 Conclusion

In this paper we generalize H.Lenstra proposition which indicates that the set $\{X-1\}$ very likely does not generate big enough subgroup in the group $\left(Z_{p}[X] /\left(C_{r}(X)\right)\right)^{*}$.

At the same time we obtain a strictly ascending chain of subgroups $(X) \subset(X+1) \subset(X-1) \subset(X-1, X+2)$ of this group and state the modified conjecture that the set $\{X-1, X+2\}$ generate big subgroup.

These arguments suggest that the following variant of the Agrawal conjecture may be true:

Modified conjecture. If r is a prime number that does not divide n, if $(X-1)^{n} \equiv X^{n}-1\left(\bmod X^{r}-1, n\right)$ and if $(X+2)^{n} \equiv X^{n}+2\left(\bmod X^{r}-1, n\right)$, then either n is prime or $n^{2} \equiv 1(\bmod r)$.

Acknowledgements. I would like to thank Hendrik W.Lenstra for reading a draft version of this paper and providing valuable comments.

References

[1] M. Agrawal, N. Kayal and N. Saxena, PRIMES is in P, Annals of Mathematics, 160 (2004), pp. 781-793.
[2] D.J.Bernstein, Proving primality in essentially quartic random time, Math. of Computations, v.76, No. 257, 2007, pp. 389-403.
[3] R. Bhattacharjee and P. Pandey, Primality testing, IIT Kanpur, 2001. Available at http://www.cse.iitk.ac.in/research/btp2001/primality.html.
[4] A.Granville, It is easy to determine whether a given integer is prime, Bullletin of the American Math. Society, v.42, No. 1, 2005, pp. 3-38.
[5] N. Kayal and N. Saxena, Towards a deterministic polynomial-time test, IIT Kanpur, 2002. Available at http://www.cse.iitk.ac.in/research/btp2002/primality.html.
[6] H.W.Lenstra,Jr. and C.Pomerance, Remarks on Agrawal's conjecture, 2003.
Available at http://www.aimath.org/wwn/primesinp/articles/html/50a.

Roman Popovych, Department of Computer Science and Engineering, National University Lviv Politechnika, Bandery Str.,12, 79013, Lviv, Ukraine E-mail: popovych@polynet.lviv.ua

