
Huge multicollisions and multipreimages of hash
functions BLENDER-n

(draft)

Vlastimil Klima1)

Abstract
In this paper we present a multicollision and multipreimage attack on the hash function
Blender-n for all output sizes n = 224, 256, 384 and 512. The complexity and memory
requirements for finding 22n multipreimages (multicollisions) of Blender-n [1] is roughly 10
times more than finding a collision for n/2-bit random hash function.
 All previous attacks were based on the trick by Joux [2] using many messages. Our
attacks are based on one message with several fixpoints. The state register has eight words.
By properly choosing message words we force half of the register to go to the original state.
Then we will find a collision in the rest with complexity 2n/4. The collision creates a fix point
in the sequence of states of the state register. We use 10 such fix points.
 Previously known attacks [4, 5] on Blender-n have the complexity at least 2n/2. Our
22n-multicollision and multipreimage attacks have a complexity 10*2n/4.

1 An overview of Blender-n
For the sake of simplicity we will only consider Blender-256. The attacks on other variants
are similar.

The hash function Blender is an iterated hash function. It uses w-bit words (w = 32 for
Blender-256, w = 64 for Blender-512), a state register A of eight w-bit words, two carry bits
c1, c2 and a hash register H of eight w-bit words. In the beginning the register H and bits c1,
c2 are zeroed. The initial value of the state register A is A0 = (a00, a10, a20, a30, a40, a50, a60,
a70) = Hinit. The register H contains a chaining value, which is the sum (modulo 232 by words)
of the states of the state register A, Ht = ∑t=1,...,K At. A new state is the function of the old state
and a message word. So we have (At+1, c1t+1, c2t+1) = f(At, c1t, c2t, Wt), where f is the
compression function and Wt is the current message word.

The sequence of words Wt is prepared by taking the message and the tail, consisting of fill
bytes (fill consists of 13 first bytes repeated to the required length), bit-length of the message,
length of the bit-length in bytes and finally two w-bit checksums.

The checksums are computed from all message words (before the first checksum):
checksum1 = non(∑t=1,...,K Wt),
checksum2 = ∑t=1,...,K (nonWt).
The bit-length of the message is not limited.

1) Independent cryptologist, Prague, Czech Republic, http://cryptography.hyperlink.cz,
v.klima@volny.cz

1

http://cryptography.hyperlink.cz/
mailto:v.klima@volny.cz

To avoid technical details, we will assume only messages with integer number of words,
having the first 13 bytes the same (for filling), the same length and even the same checksums.
It is important to note that checksums, updates of the register H and the register A, are
computed from w-bit words, especially the addition is made modulo 2w.

Here we remind a part of the original description of the hashing, paragraph 2.6.2, [1]:

The 256-bit algorithm uses eight 32-bit working variables, a0 to a7, eight 32-bit result
variables, H0 to H7, and two single-bit carry variables, c1 and c2; these constitute the “state”
of the algorithm carried from round to round. This algorithm also uses three 32-bit
intermediate values, T, T1 and T2, and one intermediate integer value r used to hold a rotation
factor.

Before hash computation begins, the working variables, a0 to a7, are initialized to the
following eight 32-bit words (Hinit) in hex: a0 = 6a09e667, ...(cut)..., a7 = 5be0cd19.

After the message has been prepared and the variables initialized, perform the following
computations for each 32-bit word Wt in the prepared message:

1. Compute the preliminary intermediate values using add-with-carry:
[c1,T1] = (a5 ⊕ Wt) + (a1 ⊕ rotl(a3, 8)) + c1
[c2,T2] = (a0 ⊕ rotr(Wt, 8)) + (a4 ⊕ rotr(a2, 8)) + c2

2. Compute the rotation factor:
r = 8 – (c1 + c2)

3. Rotate the intermediate values:
T1 = rotl(T1, r)
T2 = rotr(T2, r)

4. Compute the next state:
T = rotr(a0, 7)
a0 = a1 ⊕ T2
a1 = a2 ⊕ T1
a2 = a3 ⊕ T2
a3 = a4 ⊕ T1
a4 = a5 ⊕ T2
a5 = a6 ⊕ T1
a6 = a7 ⊕ T2
a7 = T ⊕ T1

5. Update the hash result variables:
H0 = H0 + a0
H1 = H1 + a1
H2 = H2 + a2
H3 = H3 + a3
H4 = H4 + a4
H5 = H5 + a5
H6 = H6 + a6
H7 = H7 + a7

2

These five steps constitute one round of the algorithm. After repeating these steps for each
word in the prepared message, the resulting 256-bit message digest of the message M is
H0 || H1 || H2 || H3 || H4 || H5 || H6 || H7.

2 The state register
The hashing process has an internal state, defined by values (A, c1, c2, H). We will create
collisions in the state register A and then in the hash register H. For the sake of simplicity we
will talk about the state register A, but all of the following computations are made for the state
A including the carry bits c1, c2.

The state register has eight words. By a careful choice of 256 message words Wt we will force
the state register to have only 4 changing words after every 256th round. Let us denote A0 =
(a00, a10, a20, a30, a40, a50, a60, a70) = Hinit the initial value of the state register A.

The basic attack
Round 0:
From values of the state A0 we compute the first word W0 of the message so that T20 = 0.
There is exactly one corresponding value W0, as we can see from the equation T2 = (a0 ⊕
rotr(Wt, 8)) + (a4 ⊕ rotr(a2, 8)) + c2. Recall that the register A rotates its words one position
to the left and at the last word it rotates bits by 7 positions to the right:

A1 = (a10 ,a20 ⊕ T10, a30 ,a40 ⊕ T10, a50 , a60 ⊕ T10, a70 , rotr(a00,7) ⊕ T10).

Round 1:
Similarly in the round 1 we choose the word W1 of the message such that T11 = 0. There is
exactly one corresponding value computed from the equation T1 = (a5 ⊕ Wt) + (a1 ⊕ rotl(a3,
8)) + c1.
We get
A2 = (a20 ⊕ T10 ⊕T21, a30 ,a40 ⊕ T10 ⊕ T21, a50 , a60 ⊕ T10 ⊕ T21, a70 , rotr(a00,7) ⊕
T10 ⊕ T21, rotr(a10,7)).

Round 256:
In the previous rounds the words T2 and T1 are chosen so that they have no influence on
values a1, a3, a5, a7. Therefore the state register returns to its original value on odd positions
after 256 rounds:
A256 = (a0256, a10 , a2256, a30 , a4256, a50 , a6256, a70).

3 Collisions in the state register
For the sake of simplicity of the filling process (as a part of completing any message before
hashing), we assume the first 13 words to be constant. They can be followed by an arbitrarily
chosen sequence of bytes, so that we get an integer number of w-bit words at the beginning,
for instance 256 words. Let us call this part of the message as the first stationary part (S1).

We start from the last state and then we use the method described above to create states
A256*1, A256*2, A256*3, ..., until we find a collision in this sequence. This collisions creates a fix
point (or a cycle), because we can return back (and make several cycles) or go on. After the
first cycle we make 256 steps with randomly chosen message words Wt (to break the

3

deterministically defined cycle). Then we continue again with the method from previous
section and find the second collision in a new part of the A-states.

Complexity of finding the first and the second collision is 2n/4 from birthday paradox (2n/4+1
including carry bits).

Let us denote S1 the first stationary part of the sequence, C1 the part between the first
colliding points, S2 the second stationary part (256 random steps) and C2 the part between the
second colliding points.

Note that we can go through the part C1 (C2) as many times as we want.

4 Collisions using two fixpoints
Here we will describe one possibility how to use only two fix points. In the next section we
will use 10 fixpoints. Now we define two colliding messages M1 and M2.
 The first message M1 goes through the part S1 once, then N1 times through the cycle
C1, once through the part S2 and once through the cycle C2.
 The second message M2 goes once through the part S1, once through the cycle C1,
once through the part S2 and N2 times through the cycle C2.
 Let us denote L(S1), L(C1), L(S2), L(C2) the number of rounds in appropriate parts
S1, C1, S2, C2 of the state sequence. Let L(M1), L(M2) denote the number of rounds of
messages M1 and M2.
 The hash value is defined as a sum (separately in 8 words, modulo 232) of
corresponding states A obtained from processing all words of the message.
 So, let us denote S(S1), S(C1), S(S2) and S(C2) the contribution of A-states in parts
S1, C1, S2, C2, to the hash value (sum). Let S(M1), S(M2) be the whole sum of the states,
when processing the entire messages M1 and M2.
Also, let us denote s(S1), s(C1), s(S2) and s(C2) the sums of message words in corresponding
parts of the state sequence.
 Let us define N1 = 2w * L(C2) + 1, N2 = 2w * L(C1) + 1. Then two messages will have
the same lengths, checksums and chaining values (sums of A-states).

The lengths
The lengths of the messages M1 and M2 are
L(M1) = L(S1) + Nl*L(C1) + L(S2) + 1*L(C2) = L(S1) + (2w * L(C2) + 1)*L(C1) + L(S2) +
L(C2) = L(S1) + L(C1) + L(S2) + L(C2) + 2w * L(C2)*L(C1),

L(M2) = L(S1) + 1*L(C1) + L(S2) + N2*L(C2) = L(S1) + L(C1) + L(S2) + (2w * L(C1) +
1)* L(C2) = L(S1) + L(C1) + L(S2) + L(C2) + 2w * L(C2)*L(C1),

so the lengths of the messages (in words) are the same L = L(M1) = L(M2).

The checksums
Let us denote K the length of a message in words and X the sum of words of a message, X =
∑t=1,...,K Wt. Then we have (modulo 2w)
checksum1 = non(∑t=1,...,K Wt) = non X = 0xFF...FF - X = 1 - X,
checksum2 = ∑t=1,...,K (nonWt) = ∑t=1,...,K (1 - Wt) = K - ∑t=1,...,K Wt = K - X.

4

When the messages M1 and M2 have the same length L(M1) and L(M2) and the same sum of
all words X(M), then they have also the same checksums checksum1 and checksum2.

Because the sum is computed modulo 2w, we have
X(M1) = s(S1) + Nl*s(C1) + s(S2) + 1*s(C2) = s(S1) + (2w * L(C2) + 1)*s(C1) + s(S2) +
s(C2) = s(S1) + s(C1) + s(S2) + s(C2),

X(M2) = s(S1) + 1*s(C1) + s(S2) + N2*s(C2) = s(S1) + s(C1) + s(S2) + (2w * L(C1) +
1)*s(C2) = s(S1) + s(C1) + s(S2) + s(C2),

so the checksums of messages M1 and M2 are the same.

The chaining values
Both messages M1 and M2 end in the last state of the cycle C2. Let us compute their chaining
values h(M1) and h(M2).

Because the sums are computed from words modulo 2w, we have
h(M1) = S(S1) + Nl*S(C1) + S(S2) + 1*S(C2) = S(S1) + (2w * L(C2) + 1)*S(C1) + S(S2) +
S(C2) = S(S1) + S(C1) + S(S2) + S(C2),

h(M2) = S(S1) + 1*S(C1) + S(S2) + N2*S(C2) = S(S1) + S(C1) + S(S2) + (2w * L(C1) +
1)*S(C2) = S(S1) + S(C1) + S(S2) + S(C2),

so chaining values are the same as well.

The hash values
Note that now we can choose an arbitrary suffix and append it to both messages. Then we
complete the hashing by processing the common part of the messages: the filling, length,
length of the length and the checksums. We will obtain full collision.

The complexity and memory requirements
The complexity and memory requirement for finding above collisions for Blender-n is
roughly the same as finding the collision for n/2-bit random hash function.

5 Multipreimages
Let us choose a hash value H. We will create message M (in fact huge number of messages)
such that h(M) = H in the following steps:

1. Set the first stationary part S1 to a random value (greater then 13). Use the procedure
from the section 3 and find the first collision cycle C1. Follow the cycle C1 with a
random stationary part S2 (having a very small random size) and the second cycle C2,
stationary part S3 (having a very small random size), ..., and finish with the cycle S10
and C10. Let us denote Afin the final state of the state register.

2. Let Afin is the final state of all assumed messages. Note that Afin is the final state after
processing all message words (before processing the tail).

3. Let us choose a bit-length L of the message (multipreimages, multicollisions), for
instance around the value w*2n/2 + 8+w+log(10) (i.e. 2n/2 + 8+w+log(10) w-bit words). All the
assumed messages will have the prescribed bit-length L.

5

4. Let us choose a value X, the future sum of message words. All messages will have the
same sum X. Also, all messages will have the same tail (filling, bit-length, length of
length, checksums).

5. Knowing the final state Afin, the filling, the bit-length, the length of length and
checksums, we can process all these words (the tail) and obtain the value dH of their
contribution to the hashing register.

6. Now we can "cut" the contribution of the tail from the bit-length, the sum of words
and the hash. We obtain adjusted values H, L and X. We can assume that L is directly
the number of w-bit words instead of bits (in the following).

7. The task is to find a message (messages) with the length L, the sum of message words
X, the final state Afin and the chaining value H.

Construction of preimages
For every i = 1, ..., 10 let us denote

L(Ci) - the length of the cycle Ci (in w-bit words),
s(Ci) - the sum of words Wt, associated with the states of the cycle Ci
S(Ci) - the sum of states At, associated with the states of the cycle Ci

L(Si) - the length of the cycle Si (in w-bit words),
s(Si) - the sum of words Wt, associated with the states of the cycle Si
S(Si) - the sum of states At, associated with the states of the cycle Si

We can create a huge number of messages M such that we will go once through the stationary
parts S1, ..., S10 and differently many times through the cycles C1, ..., C2. We only need to
set the numbers so that the sum of words, the sum of states and the sum of partial lengths will
be the same. For every i = 1, ..., 10 let us denote ki the number of passes through the cycle Ci.

We need to solve the system of equations:

(H): H = ∑i=1,...,10 ki* S(Ci) mod 2w

(X): X = ∑i=1,...,10 ki* s(Ci) mod 2w

(L): L = ∑i=1,...,10 ki* L(Ci)

Note that the equation (H) is a system of 8 equations, because X and S(Ci) are 8-word vectors,
(H) is one equation and (L) is also one equation. So there are 10 equations with 10 unknowns
ki. If the equation (L) was also modular (mod 2w) then we could solve the system simply by
Gauss elimination method. But the last equation is without modulo reduction, so we will deal
with it more.

Note. If we choose more cycles (fixpoints), we have more degrees of freedom in the above
system H-X-L (more variables then equations) and therefore we can obtain much more
solutions. This can be done for instance by increasing the working factor from 10 to 11. Also,
if the system of equations is linearly dependent, we can exclude the cycle, which creates the
dependency, and add a new one.

Solving the system H-X-L
Let us denote the low and high part of a variable V as VL = V mod 2w, VH = (V - VL)/2w = V
>> w. Note that
S(Ci) = S(Ci)L and s(Ci) = s(Ci)L, while L(Ci) = L(Ci)H * 2w + L(Ci)L and ki = ki

H *2w + ki
L.

6

We can rewrite H-X-L as
(H): H = ∑i=1,...,10 ki

L * S(Ci)L mod 2w

(X): X = ∑i=1,...,10 ki
L * s(Ci) L mod 2w

(LL): LL = ∑i=1,...,10 (ki
H *2w + ki

L)* (L(Ci)H*2w + L(Ci)L) mod 2w

(LH): LH = (∑i=1,...,10 (ki
H *2w + ki

L)* (L(Ci)H*2w + L(Ci)L)) >> w

The last two equations are
(LL): LL = ∑i=1,...,10 ki

L * L(Ci)L mod 2w

(LH): LH = (∑i=1,...,10 (ki
H *2w *L(Ci) + ki

L* L(Ci)H*2w + ki
L*L(Ci)L)) >> w

 = c2) + ∑i=1,...,10 (ki
H *L(Ci) + ki

L* L(Ci)H)

Now we can find solution of the system H-X-LL of 10 linear equations with 10 unknown
integer variables ki

L (mod 2) w

(H): H = ∑i=1,...,10 ki
L * S(Ci)L mod 2w

(X): X = ∑i=1,...,10 ki
L * s(Ci) L mod 2w

(LL): LL = ∑i=1,...,10 ki
L * L(Ci)L mod 2w

After that we replace ki

L in the remaining equation (LH), and we have

(LH): LH = ∑i=1,...,10 (ki

H *L(Ci) + ki
L* L(Ci)H) = ∑i=1,...,10 (ki

H *L(Ci)) + CC
where CC is a constant with the value ∑i=1,...,10 ki

L* L(Ci)H.

It remains to solve one equation with 10 unknown integer variables ki

H. Recall that this is a
linear diophantine equation with an exception that we are looking for nonnegative solutions.
We will solve it by brute force3).

The cycles Ci will contain around 2n/4 points. The points are states after processing 256 words,
so the constants L(Ci) will be around 2n/4 * 28 and CC will be around 10 * 2w * 2n/4 * 28 ≤
2log(10)+w+n/4+8. The value LH is around 2n/2+8+w+log(10)/2w= 2n/2 + 8+log(10), so the value Lrest = LH -
CC will also be around 2n/2 + 8 +log(10). We have
(LH): Lrest = ∑i=1,...,10 ki

H *L(Ci).
Let us say that the cycle C1 is the smallest one. Now we can set 9 variables ki

H for i = 2, ..., 10
arbitrarily and then compute k1

H from the equation (LH). If the expression Lrest - ∑i=2,...,10 ki
H

*L(Ci) is divided by L(C1), we get one solution. The solution is found with probability
1/L(C1). Since the difference between Lrest and L(Ci) is big, we can expect a huge number of
solutions, more than around ((2n/2 + 8+log(10) /10) / 2n/4 * 28)9 / L(C1) ≥ 22n.

Every solution represents a way from the initial state, different times passing through 10
fixpoints and finishing in the last known unique state. All these messages have the same
prescribed hash value.

The complexity and memory requirements for finding 22n multipreimages (multicollisions) of
Blender-n is roughly 10 times more than finding a collision for n/2-bit random hash function.

2) c is a carry from the low part, it can acquire at maximum 10 possible values, so we can omit it from further
considerations and assume c = 0.
3) certainly there are more effective methods

7

6 Conclusion
We showed a multicollision and multipreimage attack on the hash function Blender-n for all
output sizes. Our 22n-multicollision and multipreimage attacks have a complexity 10*2n/4.

7 References
[1] Colin Bradbury: BLENDER, A Proposed New Family of Cryptographic Hash Algorithms,
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/Blender.zip

[2] Antoine Joux: Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions, CRYPTO 2004, LNCS, Vol. 3152, pp. 306-316. Springer, 2004

[3] Vlastimil Klima: A near-collision attack on BLENDER,
http://cryptography.hyperlink.cz/BMW/near_collision_blender.pdf

[4] Florian Mendel: Preimage Attack on Blender,
http://ehash.iaik.tugraz.at/uploads/4/48/Blender-preimage.pdf

[5] Craig Newbold: Observations and Attacks On The SHA-3 Candidate Blender,
http://ehash.iaik.tugraz.at/uploads/4/48/Blender-preimage.pdf

[6] Liangyu Xu: Semi-free start collision attack on Blender,
http://ehash.iaik.tugraz.at/uploads/4/48/Blender-preimage.pdf

8

http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/Blender.zip
http://cryptography.hyperlink.cz/BMW/near_collision_blender.pdf
http://ehash.iaik.tugraz.at/uploads/4/48/Blender-preimage.pdf
http://ehash.iaik.tugraz.at/uploads/4/48/Blender-preimage.pdf
http://ehash.iaik.tugraz.at/uploads/4/48/Blender-preimage.pdf

	1 An overview of Blender-n
	2 The state register
	3 Collisions in the state register
	4 Collisions using two fixpoints
	5 Multipreimages
	6 Conclusion
	7 References

