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Abstract.  We give a method that appears to be able to find colliding 
messages for the Waterfall hash function with approximately O(270) work 
for all hash sizes.  If correct, this would show that the Waterfall hash 
function does not meet the required collision resistance. 
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1 Description of Waterfall 
 
Waterfall is a hash function designed by Bob Hattersley, and which was submitted to the 
SHA-3 competition.  In this hash function design, it parses the input as a series of 32-bit 
words.  Each word is input and updates three nonlinear shift registers (“streams” in the 
waterfall documentation) and two entropy pools.  After the words (and a possible final 
partial word) has been input, the shift registers and the entropy pools (and the total 
bitcount) is used to create the final hash. 
With the recommended algorithm parameters, the three streams are of 16 words, 7 words 
and 6 words, and both entropy pools are 32 words long, for a total of 93 words (2,976 
bits) of internal state.   Here is how each input word is processed; each word updates each 
of the three streams as follows (for s := 1, 2, 3): 
 
    previ := is 
 is := (is + 1) mod StreamSizes 

Streams[is] := Xbox[ Streams[is] ⊕ Streams[previ] ⊕ Input ⊕ Constants ] 
 
Here: 

• Input is the input word 
• Streams is the actual stream array 
• is is the per-stream active pointer 
• Xbox is a nonlinear 32-bit permutation 
• Constants is a constant that is different for each pool. 

 
Once all three streams have been updated, then the two pools are updated from the 7 
word and the 6 word stream by xoring in the updated word in the stream into two 
separate 32 word circular buffers as follows: 
 



 Pool2[j] := Pool2[j] ⊕ Stream2[i2] 
 Pool3[j] := Pool3[j] ⊕ Stream3[i3] 

j := (j + 1) mod 32 
 
Here: 

• Pool2, Pool3 are the two pool arrays 
• Stream2[i2], Stream3[i3] are the words from streams 2, 3 that were just updated 
• js is the active pointer (identical for both pools) 
• Xbox is a nonlinear 32-bit permutation 
• Constants is a constant that is different for each pool. 

 
Now, the states of the three streams and the two pools (and the total bit count) are the 
only state used to generate the final hash once the message has been processed.  The 
details of computing the final hash are somewhat complex, however, that is irrelevant.  If 
we can find two messages of equal length that generate a collision in those 93 words, we 
will have a final hash collision.  That will be our approach. 
 
 

2 Overview of Collision 
 
We will generate our collision using a differential.  Our general approach would be to 
generate a few (one though four, depending on where in the differential we are) words at 
a time, and verify those words successfully propagate the differential before continuing.  
Because the search involved with finding each set of words (“section”) is never more 
than an O(264) effort, and that we only occasionally need to backtrack over a section that 
we’ve already generated, this limits the total work to a small multiple of the work for any 
one section. 
 
Our strategy can be broken up into two phases.  In the first phase, we generate a 
difference within the streams, and then apply other differences that will eventually cancel 
out those differences.  Figuring out how such a differential would work is 
straightforward; the Waterfall specification gives such an example in table 4.2.12 
(although we’ll be using a different one listed below); it turns out that generating two 
messages that produce such a differential is not impractical (more on the details of this 
later). 
On the other hand, while such a differential cancels out all differences within the streams, 
it does leave differences within the pools.  The solution of this is the second phase; here, 
we generate the exact same differential again later in the message, with the bitwise 
differences within streams 2 and 3 exactly the same (the actual values of the differences 
within stream 1 can differ from the previous phase, as that does not propagate to a pool).  
Because the pools are updated by a simple xor, applying the same differential to the pools 
cancels the original differential.  Note that we cannot just reuse the same message bytes 
as we generated for the first occurrence of the differential (because the exact message 
words we choose depend on the stream state, and those will be different at the start of 



phase 2).  Therefore we will need to search for the differential again (and this time with 
additional constraints on the differentials within streams 2 and 3). 
Hence, an overall schematic of the differential would be (where the shaded version are 
where message differences appear): 
 

 
The exact contents of the common regions, and the exact spacing between the 
differentials (as long as the distance is a multiple of the pool size) would appear to be 
irrelevant for the difficulty in constructing the differential.  We will depend on the exact 
contents of the initial and middle common regions, as they do affect the state of the 
streams at the start of the differentials, and the exact values of the differentials we 
generate do depend on that. 

 
3 Details of the Differential 
 
Here is the actual differential we will use: 
 

Step Input Stream1 Stream2 Stream3 
0 0 0000000000000000 0000000 000000 
1 1 0000000000000000 0000000 000000 
2 1 0000000000000001 0000001 000001 
3 1 0000000000000011 0000011 000011 
4 0 0000000000000110 0000110 000110 
5 1 0000000000001100 0001100 001100 
6 1 0000000000011001 0011001 011001 
7 0 0000000000110010 0110010 110010 
8 0 0000000001100100 1100100 100101 
9 0 0000000011001000 1001001 001010 
10 0 0000000110010000 0010010 010100 
11 0 0000001100100000 0100100 101000 
12 0 0000011001000000 1001000 010001 
13 0 0000110010000000 0010001 100011 
14 0 0001100100000000 0100011 000110 
15 0 0011001000000000 1000111 001100 
16 0 0110010000000000 0001110 011000 
17 0 1100100000000000 0011100 110000 
18 0 1001000000000001 0111000 100001 
19 0 0010000000000010 1110000 000010 

Multiple of 32 words 



20 0 0100000000000100 1100001 000100 
21 1 1000000000001000 1000011 001000 
22 0 0000000000010000 0000110 010001 
23 0 0000000000100000 0001100 100011 
24 0 0000000001000000 0011000 000110 
25 0 0000000010000000 0110000 001100 
26 0 0000000100000000 1100000 011000 
27 0 0000001000000000 1000001 110000 
28 0 0000010000000000 0000010 100001 
29 0 0000100000000000 0000100 000010 
30 0 0001000000000000 0001000 000100 
31 0 0010000000000000 0010000 001000 
32 0 0100000000000000 0100000 010000 
33 1 1000000000000000 1000000 100000 
34  0000000000000000 0000000 000000 

 
In the above table, 0 means that there is no differential in the corresponding word, and 1 
means that there is a nonzero differential.  There are some words that must have the same 
differential (so that they will cancel out at times); these are not listed here, but these will 
be listed a constraints in the differential analysis. 
This differential is longer than the one listed in Waterfall paper (which is only 30 words 
long).  We selected this differential because each piece of it can be constructed with 
search of no more than O(2**64) operations expected. 
Also note that we start off the differential with an input of 0 (no difference), and with the 
corresponding trivial differential for one word in the streams.  We do this because when 
constructing the initial part of the differential, we’ll need to specify the value of this 
word; as it is part of what we’ll need to specify, we list it as part of the differential. 
Our differential causes some differences within the pools as well.  Because we will be 
careful to repeat (and hence, undo) those differences during phase 2, we don’t need to 
analyze those differences. 

  
4 Constructing the Differential 
 
Our goal for each phase is, given the state of the waterfall streams at the start of the 
differential, to create two messages strings (we’ll call them ‘A’ and ‘B’) that have the 
differential characteristics listed above.  In addition, during the second phase, we’ll also 
need to contain the differentials in streams 2 and 3 to what the differentials were in the 
first phase. 
To find such message strings A and B, we break up the search into ‘stages’.  For each 
stage, we take a number of steps (the actual number of steps will vary, depending on the 
local complexity of the differential), and search for the message values for both A and B 
for those steps.  When the input differential is listed as 1, we search for two separate 
values for that input world; when the input differential is listed as 0, we search for a 
common value. 



Here is how the search can be handled for each stage: you start at the first step of the 
stage, and initialize both the A version of the streams and the B version of the streams to 
be the hash state immediately prior to when the stage input occurs.  Then, we scan 
through possible values of the first input word, and when we find one that meets all the 
constraints of the first word, we can then step to the second word, and start searching 
there.  If we find a failure in the second word (there is no such input words that meet 
those constraints, we go back to the first word and look for another input that would meet 
the constraints there).  In all cases, there is at least O(1) expected input words that meet 
all the constraints. 
Some notes: 

• On occasion, there will be no input words that meet all the constraints of a step.  
When this happens, we’ll need to step back to the previous step.  As this happens 
only occasionally, this adds only a constant factor to the running time. 

• When we compute a step with an input differential (and hence the A input and the 
B input are different for this word), then there will generally be a constraint 
applied to the step as well.  In this case, we can pick one of the streams that have 
a constraint, iterate through the possible A inputs, and compute the corresponding 
B input as: 

 
B := StreamB[is] ⊕ StreamB[previ] ⊕ Constants⊕ 

Xbox-1[ Delta ⊕ 
Xbox [StreamA[is] ⊕ StreamA[previ] ⊕ A ⊕ Constants ] ] 
 

where Delta is the target differential for that particular stream.  Then, we can 
iterate through the other constraints on this step in the usual manner. 
If the constraint is that there be a 0 differential, then this computation can be 
simplified to: 
 
B := StreamB[is] ⊕ StreamB[previ] ⊕  StreamA[is] ⊕ StreamA[previ] ⊕ A 
 
In both cases, this allows us to scan through all possible settings of this step in 
only O(232) iterations; the time estimates we give below assume that we do this. 
 

• Some of the constraints will be listed as “this differential must be the same as it 
was during phase 1”.  This means that, during phase 2, we need to constrain the 
differential here to the exact same value (xor) as we used during the 
corresponding step during the first phase.  This constraint does not apply to phase 
1; we can use any nonzero value here (and we’ll need to repeat it during phase 2). 

 
 
4.1 Stage 1: Steps 0-3 
In these steps, the following constraints apply: 

• Step 1: the stream2 differential will need to be the same as it was during phase 1 
• Step 1: the stream3 differential will need to be the same as it was during phase 1 
• Step 2: the stream2 differential will need to be the same as it was during phase 1 



• Step 2: the stream3 differential will need to be the same as it was during phase 1 
• Step 3: the stream1 differential will need to be 0 
• Step 3: the stream2 differential will need to be 0 
• Step 3: the stream3 differential will need to be 0 

This stage takes an expected O(264) time during phase 2, and less during phase 1. 

 
4.2 Stage 2: Steps 4-6 
In these steps, the following constraints apply: 

• Step 5: the stream2 differential will need to be the same as it was during phase 1 
• Step 5: the stream3 differential will need to be the same as it was during phase 1 
• Step 6: the stream1 differential will need to be 0 
• Step 6: the stream2 differential will need to be 0 
• Step 6: the stream3 differential will need to be 0 

This stage takes an expected O(264) time during phase 2, and less during phase 1. 
 
4.3 Stage 3: Step 7 
In this step, the following constraint apply: 

• Step 7: the stream3 differential will need to be the same as generated for stream3 
during step 2. 

This stage takes an expected O(232) time during both phases. 
 
 
4.4 Stage 4: Step 8 
In this step, the following constraint applies: 

• Step 8: the stream2 differential will need to be the same as generated for stream2 
during step 2. 

This stage takes an expected O(232) time during both phases. 
 

4.5 Stage 5: Steps 9 
In this step, there are no constraints.  The values for the input can be arbitrarily chosen 
This stage takes an expected O(1) time during both phases. 

 
4.6 Stage 6: Steps 10-12 
In these steps, the following constraints apply: 

• Step 11: the stream3 differential will need to be the same as it was during phase 1 
• Step 12: the stream2 differential will need to be the same as it was during phase 1 
• Step 12: the stream3 differential will need to be the same as generated for stream3 

during step 7 
This stage takes an expected O(264) time during phase 2, less during phase 1. 

 
4.7 Stage 7: Step 13 
In this step, the following constraint applies: 

• Step 13: the stream2 differential will need to be the same as it was during phase 1 
This stage takes an expected O(232) time during phase 2, less during phase 1 



 
4.8 Stage 8: Step 14 
In this step, the following constraint applies: 

• Step 14: the stream2 differential will need to be the same as generated for stream2 
during step 8. 

This stage takes an expected O(232) time during both phases. 
 

4.9 Stage 9: Step 15 
In this step, there are no constraint.  The values for the input can be arbitrarily chosen 
This stage takes an expected O(1) time during both phases. 
 
4.10 Stage 10: Steps 16, 17 
In these steps, the following constraint applies: 

• Step 17: the stream1 differential will need to be the same as generated for stream1 
during step 2 

• Step 17: the stream3 differential will need to be the same as generated for stream3 
during step 12. 

This stage takes an expected O(264) time during both phases. 
 
4.11 Stage 11: Steps 18-21 
In these steps, the following constraints apply: 

• Step 19: the stream2 differential will need to be the same as it was during phase 1 
• Step 20: the stream2 differential will need to be the same as generated for stream2 

during step 14. 
• Step 21: the stream1 differential will need to be 0 
• Step 21: the stream2 differential will need to be 0 
• Step 21: the stream3 differential will need to be the same as it was during phase 1 

This stage takes an expected O(264) time for the second phase, less during phase 1. 
 
4.12 Stage 12: Step 22 
In this step, the following constraint applies: 

• Step 22: the stream3 differential will need to be the same as generated for stream3 
during step 17 

This stage takes an expected O(232) time for both phases. 
 
4.13 Stage 13: Steps 23-25 
In these steps, there are no constraints.  The values for the input can be arbitrarily chosen 
This stage takes an expected O(1) time during both phases. 
 
4.14 Stage 14: Step 26 
In this step, the following constraint applies: 

• Step 26: the stream2 differential will need to be the same as generated for stream2 
during step 20 

This stage takes an expected O(232) time for both phases. 



 
4.15 Stage 15: Step 27 
In this step, the following constraint applies: 

• Step 27: the stream3 differential will need to be the same as generated for stream3 
during step 22 

This stage takes an expected O(232) time for both phases. 
 
4.16 Stage 16: Steps 28-30 
In these steps, there are no constraints.  The values for the input can be arbitrarily chosen 
This stage takes an expected O(1) time during both phases. 
 
4.17 Stage 17: Steps 31-33 
In these steps, the following constraint applies: 

• Step 33: the stream1 differential will need to be 0 
• Step 33: the stream2 differential will need to be 0 
• Step 33: the stream3 differential will need to be 0 

This stage takes an expected O(264) time for both phases. 
 
In this stage, the processing is slightly different.  We’ll step through the 264 possible 
choices for input words 31 and 32; and see which one leaves a common value for 

StreamB[is] ⊕ StreamB[previ] ⊕  StreamA[is] ⊕ StreamA[previ] 
for all three streams.  Once we find such a value, we can then choose appropriate values 
for input word 33. 
 
 
If we examine all those steps, no step takes more than an expected O(264) steps.  If we 
consider the two phases, and add in some budget for the occasional backtrack to a 
previous stage, we come up with a total cost of about O(270) steps. 
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