
Cube Attacks on Tweakable Black Box Polynomials

Itai Dinur and Adi Shamir

Computer Science department

The Weizmann Institute

Rehobot 76100, Israel

Abstract. Almost any cryptographic scheme can be described by tweakable polynomials over

GF (2), which contain both secret variables (e.g., key bits) and public variables (e.g., plaintext bits

or IV bits). The cryptanalyst is allowed to tweak the polynomials by choosing arbitrary values

for the public variables, and his goal is to solve the resultant system of polynomial equations

in terms of their common secret variables. In this paper we develop a new technique (called a

cube attack) for solving such tweakable polynomials, which is a major improvement over several

previously published attacks of the same type. For example, on the stream cipher Trivium with a

reduced number of initialization rounds, the best previous attack (due to Fischer, Khazaei, and

Meier) requires a barely practical complexity of 255 to attack 672 initialization rounds, whereas

a cube attack can find the complete key of the same variant in 219 bit operations (which take

less than a second on a single PC). Trivium with 735 initialization rounds (which could not be

attacked by any previous technique) can now be broken with 230 bit operations. Trivium with 767

initialization rounds can now be broken with 245 bit operations, and the complexity of the attack

can almost certainly be further reduced to about 236 bit operations. Whereas previous attacks

were heuristic, had to be adapted to each cryptosystem, had no general complexity bounds, and

were not expected to succeed on random looking polynomials, cube attacks are provably successful

when applied to random polynomials of degree d over n secret variables whenever the number

m of public variables exceeds d + logdn. Their complexity is 2d−1n + n2 bit operations, which is

polynomial in n and amazingly low when d is small. Cube attacks can be applied to any block

cipher, stream cipher, or MAC which is provided as a black box (even when nothing is known

about its internal structure) as long as at least one output bit can be represented by (an unknown)

polynomial of relatively low degree in the secret and public variables.

Keywords: Cryptanalysis, algebraic attacks, cube attacks, tweakable black box polynomials,

stream ciphers, Trivium.

1 Introduction

Solving large systems of multivariate polynomial equations is considered an exceedingly difficult prob-
lem, which had been studied extensively over many years. The problem is NP-complete even when
the system contains only quadratic equations modulo 2 (see [18]), and it provides the main protective
mechanism in many cryptographic schemes.

The main mathematical tool developed in order to solve such equations is the notion of Grobner
bases (see [1],[2] and [3]), but when we try to apply it in practice to random equations with more than
100 variables it usually runs out of space without providing any answers. The much simpler linearization

technique considers each term in these polynomials as a new independent variable, and tries to solve
the resultant system of linear equations by Gauss elimination. Its main problem is that it requires a
hugely overdefined system of polynomial equations. For example, a system of 256 polynomial equations
of degree d = 16 in n = 256 variables over GF (2) is expected to have a unique solution, but in order
to find it by linearization we have to increase the number of equations to the number of possible terms
in these equations, which is about nd = 2128. There are several improved algorithms such as XL and
XSL (see [3],[4],[5], [6] and [7]) which reduce the number of required equations and the time and space
complexities, but they are still completely impractical for such sizes.

The main observation in this paper is that the polynomial equations defined by many cryptographic
schemes are not arbitrary and unrelated. Instead, they are typically variants derived from a single master
polynomial by setting some tweakable variables to any desired value by the attacker. For example, in
block ciphers and message authentication codes (MAC’s) the output depends on key bits which are
secret and fixed, and on message bits which are public and controllable by the attacker in a chosen
plaintext attack. Similarly, in stream ciphers the output depends on secret fixed key bits and on public
IV bits which can be chosen arbitrarily. By modifying the values of these tweakable public bits, the
attacker can obtain many derived polynomial equations which are closely related. What we show in this
paper is that when the master polynomial is sufficiently random, we can eliminate with provably high
probability all of its nd nonlinear terms by considering a surprisingly small number of only 2dn tweaked
variants, and then solve a precomputed version of the resultant n linear equations in n variables using
only n2 bit operations. For example, when d = 16 and n = 10, 000, we can simultaneously eliminate
all the 2200 nonlinear terms by considering only the 220 derived polynomial equations obtained by
encrypting 220 chosen plaintexts defined by setting 20 public bits to all their possible values. After this
“massacre” of nonlinear terms, the only thing left is a random looking system of linear equations in all
the secret variables, which is easy to solve. In case the master polynomial is not random, there are no
guarantees about the success rate of the attack, and if the degree of the master polynomial is too high,
the basic attack technique is not likely to work. For these cases, we describe in the appendix several
generalizations which may prove to be useful.

To demonstrate the attack, consider the following dense master polynomial of degree d = 3 over
three secret variables x1, x2, x3 and three public variables v1, v2, v3:

P (v1, v2, v3, x1, x2, x3) = v1v2v3 + v1v2x1 + v1v3x1 + v2v3x1 + v1v2x3 + v1v3x2 + v2v3x2+

v1v3x3 + v1x1x3 + v3x2x3 + x1x2x3 + v1v2 + v1x3 + v3x1 + x1x2 + x2x3 + x2 + v1 + v3 + 1

Third degree polynomials over six variables can have
(
6
3

)
+
(
6
2

)
+
(
6
1

)
+
(
6
0

)
= 42 possible terms, and

thus there are 242 such polynomials over GF (2). To eliminate all the 35 possible nonlinear terms by
Gauss elimination, we typically need 35 such polynomials. By setting the three public variables v1, v2, v3

to all their possible 0/1 values, we can get only 8 derived polynomials, which seem to be insufficient.
However, summing the 4 derived polynomials with v1 = 0 we get x1 + x2, summing the 4 derived
polynomials with v2 = 0 we get x1 + x2 + x3, and summing the four derived polynomials with v3 = 0
we get x1 + x3, which simultaneously eliminated all the nonlinear terms. When we numerically sum
modulo 2 the values of the derived polynomials in these three different ways (instead of symbolically

summing the polynomials themselves), we get a simple system of three linear equations in the three
secret variables. Consequently, the master nonlinear polynomial can be solved by a chosen message
attack which evaluates it for just 8 combinations of values of its public variables.

Since we deal with dense multivariate polynomials of relatively high degree, their explicit representa-
tions are extremely big, and thus we assume that they are provided only implicitly as black boxes which
can be queried. This is a natural assumption in cryptanalysis, in which the attacker can interact with
an encryption black box that contains the secret key. A surprising consequence of our approach is that
we can now attack completely unknown cryptosystems (such as the CRYPTO-1 algorithm implemented
in millions of transportation smart cards, whose design was kept as a trade secret until very recently)
which are embedded in tamper resistant hardware, without going through the tedious and expensive
process of physical reverse engineering! Since the number of queries we use is much smaller than the
number needed in order to uniquely interpolate the polynomial from its black box representation, our
algorithm manages to break such unknown cryptosystems even when it is information theoretically
impossible to uniquely determine them from the available data.

Some of the issues we deal with in this paper are how to efficiently estimate the degree d of a given
black box multivariate polynomial, how to solve high degree polynomials which can be well approximated
by low degree polynomials (e.g., when they only contain a small number of high degree terms which
almost always evaluate to zero), and how to easily find the linear equations defined by the sums of these
huge derived polynomials. Note that in the black box model the attacker is not allowed to perform
symbolic operations such as asking for the coefficient of a particular term, evaluating the GCD of two
polynomials, or computing their Grobner basis, unless he first interpolates them from their values by a
very expensive procedure which requires a huge number of queries.

We call this cryptanalytic technique a cube attack since it sets some public variables to all their
possible values in n (not necessarily disjoint) (d− 1)-dimensional boolean cubes, and sums the results
in each cube. The attack is not completely new, since some of its ideas and techniques were also used
in previous heuristic attacks on various cryptosystems, but we believe that this is the first time that all
these elements were brought together, accompanied by careful analysis of their complexity and success
rate for random black box polynomials.

Cube attacks should not be confused with the interpolation attacks of Jakobsen and Knudsen ([17]),
which deal with cryptosystems whose basic operations are quadratic polynomials over all or half of
the input. Such polynomials are univariate or bivariate polynomials over GF (2n), and thus have fairly
compact representations which can be easily interpolated from sufficiently many input/output pairs.
Our attack deals with huge black box multivariate polynomials over GF (2) which cannot possibly be
interpolated from the available data.

The attack is remotely related to the square attack (see [8]) which considers the special case of
cryptographic schemes whose secret bits are grouped into longer words, which are arranged in a two
dimensional square. Cube attacks make no such assumptions about how the secret bits in the polynomial
equations are related to each other, and thus they can be applied in a much broader set of circumstances.

The attack is also superficially similar to integral attack (also called saturation attack in the litera-
ture) and to high order differential attack which sum the output of cryptosystems over various subsets
of input variables. However, as explained in section 3, this is just an artifact of the special field GF (2)

in which addition and subtraction are the same operation, and over a general field GF (pk) with p > 2
we have to use a different way to apply cube attacks.

Several previously published techniques try to break particular schemes by highly heuristic attacks
that sum output values on some Boolean cubes of public variables. These related attacks include [26],
[27], [28], [29], [30] and [31], and are collectively referred to as chosen IV statistical attacks. Compared
to these attacks, the cube attack is much more general, is applicable to block ciphers in addition to
stream ciphers, and has a better-defined preprocessing phase which does not need adaptations for each
given scheme. As a result, cube attacks can be applied with provable success rate and complexity even
when the cryptosystem is modelled by a random black box polynomial about which nothing is known.
The most important difference is that in cube attacks each summation leads to an easily solvable linear
equation (in any number of secret key bits), whereas in chosen IV statistical techniques there are many
attack scenarios, and each summation typically leads only to a statistically biased expression (in a small
subset of the secret key bits). Such a bias has to be amplified by many repetitions using a much larger
amount of data before it can be used in order to find the key. The most convincing demonstration of
this difference is the best previously known chosen IV attack on the Trivium stream cipher [28]: When
the number of initialization rounds is reduced to 672, this attack has a relatively high complexity of 255

operations, whereas the standard unoptimized cube attack can perform full key recovery in just 219 bit
operations; When the number of initialization steps is increased to 735, no previously published attack
is faster than exhaustive search, whereas the same cube attack can easily perform full key recovery in
230 bit operations. These and further results about Trivium are discussed in the appendix.

2 Terminology

This section describes the formal notation we use in the rest of the paper. The attacker is given a black
box that evaluates an unknown polynomial p over GF (2) of n + m inputs bits (x1, .., xn, v1, .., vm) and
outputs a single bit. The polynomial is assumed to be in Algebraic Normal Form, namely, the sum of
products of variables. The input bits x1, .., xn are the secret variables, while v1, .., vm are the public
variables. The solution consists of two phases. During the preprocessing phase, the attacker is allowed
to set the values of all the variables (x1, .., xn, v1, .., vm) and to use the black box in order to evaluate
the corresponding output bit of p. This corresponds to the usual cryptanalytic setting in which the
attacker can study the cryptosystem by running it with various keys and plaintexts. During the online
phase, the n secret variables are set to unknown values, and the attacker is allowed to set the values of
the m public variables (v1, .., vm) to any desired values and to evaluate p on the combined input.

To simplify our notation, we ignore in the rest of this section the distinction between secret and
public variables, and denote all of them by x1, ..., xn. Since x2

i = xi modulo 2, the terms tI in the
polynomial can be indexed by the subset I ⊆ {1, ..., n} of the variables which are multiplied together,
and every polynomial can be represented by sums of tI for a certain collection of subsets I. We denote
by Pn

d the set of all the multivariate polynomials over GF (2) with n variables and total degree bounded
by d.

Given a multivariate polynomial p and any index subset I, we can factor the common subterm tI

out of some of the terms in p, and represent the polynomial as the sum of terms which are supersets of

I and terms which are not supersets of I:

p(x1, .., xn) ≡ tI · pS(I) + q(x1, .., xn)

We call pS(I) the superpoly of I in p. Note that for any p and I, the superpoly of I in p is a polynomial
that does not contain any common variable with tI , and each term in q(x1, .., xn) misses at least one
variable from I.

To demonstrate these notions, let

p(x1, x2, x3, x4, x5) = x1x2x3 + x1x2x4 + x2x4x5 + x1x2 + x2 + x3x5 + x5 + 1

be a polynomial of degree 3 in 5 variables, and let I = {1, 2} be an index subset of size 2. We can
represent p as:

p(x1, x2, x3, x4, x5) = x1x2(x3 + x4 + 1) + (x2x4x5 + x3x5 + x2 + x5 + 1)

where

tI = x1x2

pS(I) = x3 + x4 + 1

q(x1, x2, x3, x4, x5) = x2x4x5 + x3x5 + x2 + x5 + 1

Definition 1. A maxterm of p is a term tI such that deg(pS(I)) ≡ 1, i.e. the superpoly of I in p is a
linear polynomial which is not a constant.

Any subset I of size k defines a k-dimensional Boolean cube of 2k vectors CI in which we assign all
the possible combinations of 0/1 values to variables in I, and leave all the other variables undetermined.
Any vector v ∈ CI defines a new derived polynomial p|v with n− k variables (whose degree may be the
same or lower than the degree of the original polynomial). Summing these derived polynomials over all
the 2k possible vectors in CI , we end up with a new polynomial, which is denoted by pI ,

∑
v∈CI

p|v.
In the next section, we prove that this polynomial has a simple alternative definition, which makes it
extremely useful in cryptanalytic applications.

3 The Main Observation

Theorem 1. For any polynomial p and subset of variables I, pI ≡ pS(I) modulo 2.

Proof. Write p(x1, .., xn) ≡ tI ·pS(I) +q(x1, .., xn). We first examine an arbitrary term tJ of q(x1, .., xn),
where J is the subset containing the variable indexes that are multiplied together in tJ . Since tJ misses
at least one of the variables in I, it is added an even number of times (for the two possible values of
any one of the missed variables, where all the other values of the variables are kept the same), which
cancels it out modulo 2 in

∑
v∈C p|v.

Next, we examine the polynomial tI · pS(I): All v ∈ CI zero tI , except when we assign the value 1
to all the variables in I. This implies that the polynomial pS(I) (which has no variables with indexes

in I and is thus independent of the values we sum over) is summed only once, when tI is set to 1.
Consequently, the formal sum of all the derived polynomials is exactly the superpoly pS(I) of the term
we sum over. �

Basically, the theorem states that the sum of the 2k polynomials derived from the original polynomial
p by assigning all the possible values to the k variables in I, eliminates all the terms except those which
are contained in the superpoly of I in p. The summation thus reduces the total degree of the master
polynomial by at least k, and if tI is any maxterm in p, this sum yields a linear equation in the
remaining variables. For example, if we sum the polynomial p(x1, x2, x3, x4, x5) defined in the previous
section over the four possible values of x1 and x2 in the maxterm tI = x1x2, we get the linear expression
pS(I) = (x3 + x4 + 1). Consequently, all the cryptanalyst has to do in order to solve a tweakable master
polynomial of degree d is to find sufficiently many maxterms in it, and for each maxterm to sum at most
2d−1 derived polynomials. Note that he only has to add the 0/1 values of these derived polynomials
(which he can obtain via a chosen plaintext attack), and not their huge symbolic expressions. The
summed bit is then equated with a fixed linear expression which can be derived from the master black
box polynomial during a separate preprocessing stage, since it is not key-dependent. For low degrees
such as d = 16, the derivation of the right hand side of each linear equation during the online phase of
the attack requires at most 215 = 32768 additions of single bit values, which takes a negligible amount
of time.

Over a general field GF (pk) with p > 2, the correct way to apply cube attacks is to alternately add
and subtract the outputs of the master polynomial with public inputs that range only over the two
values 0 and 1 (and not over all their possible values of 0, 1, 2, ..., p − 1), where the sign is determined
by the sum (modulo 2) of the vector of assigned values. In this form, they are reminiscent of FFT
computations. Cube attacks are thus more closely related to high order differential attacks than to
integral attacks, but they do not use the same formal operator. For example, consider the bivariate
polynomial p(x, v) = 4x2v3 + 3x2v5 (mod 7) of degree 7. The formal derivative of this polynomial with
respect to v is the 6-degree polynomial p′v(x, v) = 5x2v2 + x2v4 (mod 7) whereas our numeric difference
yields p(x, 1)−p(x, 0) = (4x2 +3x2)− (0+0) = 0 (mod 7) which has degree 0. In addition, cube attacks
use algebraic rather than statistical techniques to actually find the secret key.

4 The Preprocessing Phase

Given an explicit description of the master polynomial, it is easy to split it into p(x1, .., xn) ≡ tI ·pS(I) +
q(x1, .., xn) for any term tI . However, when the exponentially long master polynomial is given only as
a black box, it is not clear how to find this representation, and how to store it in a compact way.

When tI is a maxterm, the issue of compact representation becomes easy, since we only have to know
its superpoly pS(I) in order to apply the attack, and this expression is a short linear combination of
some of the secret variables xi, with the possible addition of the constant 1. Note that we can eliminate
all the public variables vi that are not summed over from this linear expression by fixing each one of
them to 0 (or to 1) during the summation.

In order to actually find pS(I) for a given black box master polynomial and a maxterm tI in it, we
use a separate preprocessing phase in which the attacker is given the extra power of tweaking both the
public and the secret variables:

Theorem 2. Let tI be a maxterm in a black box polynomial p. Then:

1. The free term in pS(I) can be computed by summing modulo 2 the values of p over all the inputs of
n + m variables which are zero everywhere except on the d− 1 variables in the summation cube CI .

2. The coefficient of xj in the linear expression pS(I) can be computed by summing modulo 2 all the
values of p for input vectors which are zero everywhere except on the summation cube CI and all
the values of p for input vectors which are zero everywhere except on the summation cube and at xj

which is set to 1.

The proof is based on the observation that in a linear expression, the coefficient of any variable xj

is 1 if and only if flipping the value of xj flips the value of the expression, and the free term can be
computed by setting all the variables to zero.

In the rest of this section, we distinguish between the cases of random and non-random master
polynomials.

4.1 Preprocessing Random Polynomials

In many cryptographic schemes, the mixing of the inputs is so thorough that the representation of each
ciphertext bit as a fully expanded polynomial function of the n key bits and m plaintext bits can be
viewed as a random polynomial:

Definition 2. A random polynomial of degree d in n + m variables is a polynomial p ∈ Pn+m
d such

that each possible term of degree at most d is independently chosen to occur with probability 0.5.

In fact, the notion of randomness we need in order to lower bound the success probability of cube
attacks is considerably weaker, since the only terms which play any role in the attack are those that
correspond to maxterms in p:

Definition 3. A d-random polynomial with n + m variables is a polynomial p ∈ Pn+m
d such that each

possible term of degree d which contains one secret variable and d− 1 public variables is independently
chosen to occur with probability 0.5, and all the other terms can be chosen arbitrarily.

In any d-random polynomial, any term tI which is the product of d − 1 public variables vi has an
extremely high probability to be a maxterm: Its corresponding superpoly is a polynomial of degree at
most 1, and it is a polynomial of degree 0 only when for all the secret variables xi the terms tIxi are
not chosen to appear in the polynomial. The probability of this event is 2−n.

For any two terms tI1 and tI2 which are the products of d− 1 public variables, we get independent
random choices of their corresponding superpolys, even when I1 and I2 are almost identical. For example,

when d = 4, I1 = {1, 2, 3}, and I2 = {1, 2, 4}, each one of the two terms v1v2v3x5 and v1v2v4x5 occurs
in p with probability 0.5 independently of the other. Since we do not need disjoint subsets of public
variables as our maxterms, we only need about d + logd n tweakable public variables in order to pack n

different maxterms among their products, since
(
d+logd n

d

)
=
(
d+logd n
logd n

)
≈ dlogd n = n. In particular, when

d = 16 and n = 10, 000, it suffices to have only m = 20 tweakable public variables to apply the cube
attack, since

(
20
15

)
= 15, 504 > n. Note that the computations of these maxterms are not independent

since we reuse the same derived polynomials in many overlapping cube summations, but the results of
the computations are independent linear combinations of the secret variables.

After choosing n random maxterms, the attacker defines an n × n matrix A whose rows contain
their corresponding superpolys. If the matrix is nonsingular, the attacker precomputes and stores A−1

in order to reduce the complexity of the linear algebra in the online phase of the attack from O(n3) to
O(n2).

Since A is a random matrix in which each entry is independently selected with probability 1/2, it is
very easy to compute the probability that it is nonsingular:

Lemma 1. The probability that an n× n random binary matrix over GF (2) is invertible is
∏n

i=1(1−
2−i) ≈ 0.28879

Proof. The proof is by a simple induction on the rows of the matrix.

This is a constant probability, which can be made arbitrarily close to 1 during the preprocessing phase
by considering a few extra maxterms. For d = 16 n = 10, 000 and m = 20, there are 15, 504 possible
superpolys to choose from, and the probability that the rank of all these random linear expressions will
be smaller than 10, 000 is negligible.

Since the preprocessing phase has to be executed only once for each cryptosystem whereas the
online phase has to be executed once for each key, some cryptanalytic attacks “cheat” by allowing
extremely expensive operations during an unbounded preprocessing phase which make the whole attack
impractical. When cube attacks are applied to random polynomials, the complexity of the preprocessing
phase is at most n times larger than that of the online phase of the attack, and thus if one phase is
practically feasible so is the other.

4.2 Preprocessing Nonrandom Polynomials

When the polynomial representation of the cryptosystem is not assumed to be d-random, there are
no guarantees about the success rate of the attack. The basic questions we are faced with in this case
are how to estimate the degree d of the polynomial p which is only given as a black box, and how to
choose appropriate maxterms if they exist. We propose the following technique, which is a variant of
the random walk proposed in [28]

The attacker randomly chooses a size k between 1 and m and a subset I of k public variables, and
computes the value of the superpoly of I by numerically summing over the cube CI (setting each one
of the other public variables to a static value, usually to zero). If his subset I is too large, the sum will

be a constant value (regardless of the choice of secret variables), and in this case he has to drop one
of the public variables from I and repeat the process. If his subset I is too small, the corresponding
pS(I) is likely to be a nonlinear function in the secret variables, and in this case he has to add a public
variable to I and repeat the process. The correct choice of I is the borderline between these cases, and
if it does not exist the attacker can restart with a different initial I.

The best way to understand this process is to think about a (not necessarily random) polynomial
p in which all the terms have the same degree d, but contain different proportions of secret and public
variables. When we sum over subsets I with d − 2 public variables, we will get a purely quadratic
polynomial in the secret variables which corresponds to all those terms that contain the d− 2 variables
in I as their public variables and two additional secret variables. Linear terms will not occur in this
polynomial since every term which contains d − 1 public variables is eliminated by at least one public
variable which is not in I and is thus set to zero. Note that for nonrandom polynomials, this quadratic
expression may be empty for some I (misleading us to believe that I is too large), but nonempty for
another I (indicating correctly that it is too small), and thus we may have to restart the preprocessing
with several initial I’s. When we sum over subsets I with d − 1 public variables, we will get a linear
polynomial in the secret variables, but again it may be empty. In particular, if all the terms in the
nonrandom p contain at least two secret variables, we will never be able to get any linear superpoly
during the preprocessing phase, regardless of the choice of I. When we sum over I with d public variables,
we will get a key-independent constant, which is zero or one depending on whether the unique term
which is the product of all the public variables in I does or does not occur in p. In this case we will
always act correctly by reducing the size of I. Finally, when we sum over an I of size d + 1 or larger,
we will always get the zero polynomial, since every term in p misses at least one of the public variables
in I, and will thus be added an even number of times modulo 2.

For any choice of values for all the secret variables, we sum the 0/1 values of p over the subcube
CI of public variables, setting all the other public variables to zero. This sum is a function of secret
variables only, and we can test it for linearity during the preprocessing phase (in which we are allowed
to modify the secret variables) by using any one of the efficient linearity tests which were developed as
part of the PCP theorem (see [9]).

One example of such a linearity test is the BLR test (see [10]), which chooses vectors x, y ∈ {0, 1}n

independently and uniformly at random, and verifies that pS(I)[0] + pS(I)[x] + pS(I)[y] = pS(I)[x + y].
The test ensures that if pS(I) is linear, the test always succeeds, whereas if pS(I) is far from being linear,
the test fails with high probability. The test is repeated sufficiently many times until the attacker is
convinced that pS(I) is very close to being linear (e.g., it it linear, except for a few high degree terms
which almost always evaluate to zero). By using the cube attack in this case, we can find most but
not all of the possible keys, which is good enough in our cryptanalytic application. Note that in our
preprocessing, almost all the functions we test are likely to be nonlinear superpolys (which typically
fail in one of the first few linearity tests, thus requiring only a few cube summations) or easily detected
constant functions, whereas in the preprocessing done by Fischer Khazaei and Meier, almost all the
functions they test are balanced, and distinguishing them from slightly biased functions requires a huge
number of cube summations on average.

As in the random setting, the attacker stops when sufficiently many linearly independent vectors
are derived and A−1 can be computed. The online phase of the attack is identical to the case of random
polynomials.

There are many possible optimizations of this process. For example, summing the values of p over
subcubes with large intersections can be sped up by memorizing various partial sums, and thus we do
not have to start from scratch when we add or eliminate one public variable from I in our proposed
random walk search technique. Another extension uses the freedom to choose the values of the public
variables that are not summed over. In case we get an empty superpoly for a specific cube, and a non-
linear superpoly for any of its sub-cubes, we can still try to make the superpoly nonempty in order to
get a maxterm by setting some of the remaining public variables to one. If the result is still zero, we can
set some more of these variables to one. If the result is non-linear, we can set a few public variables that
are not summed over back to zero. Note that this random walk over the values of the public variables
we do not sum over is different from the previously described random walk over the subset of the public
variables we sum over.

A different attack scenario on non random polynomials uses the cube attack as a distinguisher rather
than as a key extraction procedure. For example, if some output bit is a polynomial of degree at most
d in the n + m input variables, summing it over any d-dimensional cube of public variables will always
give a constant value (which depends on the summation set I, but not on the key, and thus can be
precomputed in the preprocessing phase), whereas in a random cipher such a sum will be uniformly
distributed. Since the attacker has to sum over a single cube and does not have to solve any equations,
the complexity of this distinguisher is just 2d. Consequently, ANY cryptographic scheme in which d < n

and d < m can be distinguished from a random cipher by an algorithm which is faster than exhaustive
search, regardless of whether its polynomial representation is random or not. A detailed description of
the theory and applications of cube distinguishers appearers in [19].

5 Applications to Block Ciphers

In chosen plaintext attacks on block ciphers, the public variables are the bits of the plaintext. Since
most block ciphers have a block size of at least 128 bits, there is no shortage of tweakable variables.

Since the attack is using only a single bit from the ciphertext, it makes no difference whether the
cryptographic mapping is invertible or not. Consequently, we can attack a keyed hash function (also
known as a MAC, or message authentication code) by using exactly the same techniques. An example
of such an attack on the keyed hash function MD6 can be found in [19].

The main problem in applying the cube attack to block ciphers is that they usually contain many
rounds, and the degree of the polynomial grows exponentially with the number of rounds (until it hits
the maximum possible value of n + m). Several techniques that may help to overcome the problem of
high degree polynomials in block ciphers appear in the appendix.

6 Applications to Stream Ciphers

In the case of stream ciphers, the secret variables represent the key, and the public variables represent
the IV. The model assumes that the attacker can simulate the cipher during the preprocessing phase,
and can apply a chosen IV attack during the online phase. Note that we can also use a known IV
attack if the stream cipher operates in the common counter mode that uses consecutive binary numbers
(such as the packet number or the time of day) as its IV’s, since their least significant bits contain full
subcubes of various dimensions.

Many proposed stream ciphers use one or more linear feedback shift registers (LFSR), which are
either filtered or combined by nonlinear functions to produce the output. In this case, the degree of
the output polynomial is only determined by this function, is relatively small, is easy to bound, and
does not increase when the cipher generates a large number of bits (many of which are kept hidden
during the initialization phase). The attack requires the knowledge of only one output bit for several IV
values, and we can choose its location arbitrarily. In particular, we can choose a bit location in which
the corresponding plaintext bit is known. Typical examples of such locations include standard packet
header bits, or the high bits of ASCII characters which are known to be zero.

As an extreme example of the power of cube attacks, consider a long LFSR with 10, 000 bits and a
secret dense feedback polynomial, which is filtered by a layer of 1, 000 S-boxes. Each S-box is a different
secret mapping of 8 bits from the LFSR into one output bit, and the connection pattern between the
LFSR and the S-boxes is also assumed to be secret. In each clock cycle, the cipher outputs only one bit,
which is the XOR of the outputs of all the S-boxes. Each bit in the LFSR is initialized by a different
secret dense quadratic polynomial in 10, 000 key and IV bits. The LFSR is clocked a large and secret
number of times without producing any outputs, and then only the first output bit for any given IV is
made available to the attacker.

The attack is a structural attack which is based only on the general form of the cryptosystem (as
described in figure 1). Note that the attacker does not know the secret LFSR feedback polynomial,
the 1, 000 S-boxes, the LFSR/S-Box interconnection pattern, the actual key/IV mixing function, or the
number of dummy initialization steps. The only properties of this design which are exploited by the
cube attack are that the output of each S-box is a random looking polynomial of degree 16 (obtained
by substituting quadratic expressions in each one of its 8 input variables), that the XOR of these S-
boxes is also a polynomial of degree 16 (in the 10, 000 secret and public variables), and that we have
sufficient tweaking power over the generation of the first output bit. The attack uses only 220 output
bits (one for each IV value), which are summed in 10, 000 overlapping 15 dimensional cubes (note that(
20
15

)
= 15504 > 10000). The attacker can thus get 10, 000 linear equations in 10, 000 variables, which

he can easily solve by using the precomputed inverse of the coefficient matrix. This stream cipher can
thus be broken in less than 230 bit operations, even though it could not be attacked by any previous
technique, including correlation attacks or the analysis of low Hamming weight LFSR modifications
(see for instance [11],[12],[13],[14],[15], and [16]).

We have experimentally tested the cube attack on this stream cipher, in order to rule out the
possibility that the black box polynomials which represent this stream cipher have some unexpected

properties that foil the attack. In all our tests, the attack behaved exactly as expected under the
assumption that the polynomials are d-random.

Some stream ciphers such as LILI and A5/1 use clock control in order to foil correlation attacks. If
A5/1 had used its clock control only when producing the output bits (but not during the initialization
rounds), it would have been trivial to break it with a straightforward cube attack, which uses only the
first output bit produced for each IV value.

Other types of stream ciphers such as Trivium (see [21]) include a small amount of nonlinearity in
the feedback of the shift register, and thus the degree of the output polynomial grows slowly over time.
Since the attacker needs only the first output bit for each IV, it may be possible to apply the cube attack
to such schemes, provided that they do not apply too many initialization rounds in which no output is
produced. Results of the attack on simplified variants of Trivium that apply fewer initialization rounds
are given in appendix B.

If the attacker is given more than one output bit in each execution of the stream cipher, he can
slightly reduce the number of public variables required in the attack by summing the outputs of several
polynomials pi defining different output bits. This way he can get more than one linear equation for
each maxterm during the preprocessing phase, and thus he can use fewer tweakable bits and use a
smaller number of expensive restarts (which use many initialization steps) of the stream cipher during
his attack.

An interesting observation is that unlike the case of other attacks, XOR’ing the outputs of several
completely unrelated stream ciphers does not provide enhanced protection against cube attacks: If each
one of the stream ciphers can be represented by a low degree multivariate polynomial, their XOR is
also a low degree polynomial which can be attacked just as easily as the individual stream ciphers.

Sbox SboxSbox

Key IV

Sbox

Mix

Output

 LFSR

Fig. 1. A typical Filtered LFSR generator

7 Conclusions

In this paper we introduced a new type of cryptanalytic attack and described some of its applications.
It joins the rank of linear, differential, algebraic, and correlation attacks by being a generic attack that
can be applied to many types of cryptographic schemes. We demonstrated its effectiveness by breaking
(both in theory and with an actual implementation) a standard construction of a stream cipher which
seems to be secure against all the previously known attacks. We also used the attack to break simplified
Trivium variants with complexity that is considerably lower than the complexity of previous known
attacks. The attack is likely to be the starting point for a new area of research, and hopefully it will
lead to a better understanding of what makes cryptosystems secure.

References

1. Iyad A. Ajwa, Zhuojun Liu, and Paul S. Wang. Gröbner bases algorithm. Technical report, ICM Technical

Reports Series (ICM-199502-00, 1995).

2. Jean charles Faugère. A new efficient algorithm for computing gröbner bases (f4). In Journal of Pure and

Applied Algebra, pages 75–83. ACM Press, 1999.

3. Ars Gwenole, Faugere Jean-Charles, Imai Hideki, Kawazoe Mitsuru, and Sugita Makoto. Comparison

Between XL and Groebner Basis Algorithms. 2004.

4. Nicolas Courtois, Er Klimov, Jacques Patarin, and Adi Shamir. Efficient algorithms for solving overdefined

systems of multivariate polynomial equations. In In Advances in Cryptology, Eurocrypt2000, LNCS 1807,

pages 392–407. Springer, 2000.

5. Nicolas Courtois and Jacques Patarin. About the xl algorithm over gf(2). In CT-RSA, pages 141–157, 2003.

6. Bo-Yin Yang, Jiun-Ming Chen, and Nicolas Courtois. On asymptotic security estimates in xl and gröbner

bases-related algebraic cryptanalysis. In ICICS, pages 401–413, 2004.

7. Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with overdefined systems of equations.

In ASIACRYPT, pages 267–287, 2002.

8. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher square. In FSE ’97: Proceedings of

the 4th International Workshop on Fast Software Encryption, pages 149–165, London, UK, 1997. Springer-

Verlag.

9. Sanjeev Arora. Probabilistic checking of proofs: a new characterization of np. In Journal of the ACM, pages

2–13, 1998.

10. Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to numerical

problems. Journal of Computer and System Sciences, 47:549–595, 1993.

11. Nicolas T. Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear feedback. pages

345–359. Springer-Verlag, 2003.

12. Jovan Dj. Golic. On the security of nonlinear filter generators. In Proceedings of the Third International

Workshop on Fast Software Encryption, pages 173–188, London, UK, 1996. Springer-Verlag.

13. Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In CRYPTO, pages 176–194,

2003.

14. H̊akan Englund and Thomas Johansson. A new simple technique to attack filter generators and related

ciphers. In Selected Areas in Cryptography, pages 39–53, 2004.

15. Jovan Dj. Golic, Andrew Clark, and Ed Dawson. Generalized inversion attack on nonlinear filter generators.

IEEE Trans. Comput., 49(10):1100–1109, 2000.

16. Thomas Johansson and Fredrik Jnsson. Fast correlation attacks through reconstruction of linear polynomi-

als. pages 300–315. Springer-Verlag, 2000.

17. Thomas Jakobsen and Lars R. Knudsen. The interpolation attack on block ciphers. In In Fast Software

Encryption, pages 28–40. Springer-Verlag, 1997.

18. Michael R. Garey, David S. Johnson: Computers, and Interactibility. A guide to the theory of np-

completeness. Bell Telephone Labratories, Incorporated.

19. Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube Testers and Key Recovery Attacks

On Reduced-Round MD6 and Trivium In In Fast Software Encryption. Springer-Verlag, 2009.

20. estream: Ecrypt stream cipher project. http://www.ecrypt.eu.org/stream/

21. Christophe De Cannière and Bart Preneel. Trivium - a stream cipher construction inspired by block cipher

design principles. estream, ecrypt stream cipher. Technical report, of Lecture Notes in Computer Science.

22. H. Raddum. Cryptanalytic results on trivium. eSTREAM, ECRYPT Stream Cipher Project, Report

2006/039, 2006, 2006. www.ecrypt.eu.org/stream/papersdir/2006/039.ps

23. Alexander Maximov and Alex Biryukov. Two trivial attacks on trivium. In Selected Areas in Cryptography,

pages 36–55, 2007.

24. Chris Charnes Cameron McDonald and Josef Pieprzyk. Attacking bivium with minisat.

http://eprint.iacr.org/2007/040

25. M. Sönmez Turan and O. Kara. Linear approximations for 2-round trivium. In Proc. First International

Conference on Security of Information and Networks (SIN 2007), pages 96–105. Trafford Publishing, 2007.

26. H̊akan Englund, Thomas Johansson, and Meltem Sönmez Turan. A framework for chosen iv statistical

analysis of stream ciphers. In INDOCRYPT, pages 268–281, 2007.

27. M. Vielhaber. Breaking one.fivium by aida an algebraic iv differential attack. Cryptology ePrint Archive,

Report 2007/413.

28. Simon Fischer, Shahram Khazaei, and Willi Meier. Chosen iv statistical analysis for key recovery attacks

on stream ciphers. In AFRICACRYPT, pages 236–245, 2008.

29. Antoine Joux and Frédéric Muller. A chosen iv attack against turing. In Selected Areas in Cryptography,

pages 194–207, 2003.

30. S. O’Neil. Algebraic structure defectoscopy. Cryptology ePrint Archive, Report 2007/378.

31. Markku juhani O Saarinen. Chosen-iv statistical attacks on estream ciphers. In Proceeding of SECRYPT

2006, pages 260–266, 2006.

A Appendix: Extensions and Generalizations of Cube Attacks

Various generalizations of the cube attack can be successfully applied even to cryptosystems in which
the attacker cannot find sufficiently many linear superpolys, and thus the original attack fails:

1. In block ciphers, the attacker can try to use a ”meet in the middle” attack. Each bit in the middle of
the encryption process can be described as either a polynomial in the plaintext and key bits, or as a
polynomial in the ciphertext and key bits. Since the number of rounds is halved, the degree of each
one of these polynomials may be the square root of the degree of the full polynomial which describes
the cipher (especially when the number of rounds is relatively small and these degrees did not hit
their maximal possible values). Instead of equating the given ciphertext bits to their high degree
polynomials, the attacker can equate the two low degree polynomials describing the two halves of
the encryption and get an easier to solve master equation. This technique can also be extended to
the case of double encryptions, where the attacker has the additional benefit that the secret key
bits used in the two polynomials are disjoint. Note that the attacker can get multiple polynomial
equations for each one of the bits in the middle or for any one of their polynomial combinations.

2. In some stream ciphers with many initialization rounds, it is difficult to find the low degree maxterms
required for the attack. In these cases, given that the internal structure of the stream cipher in
known, we can try a different approach: The attacker explicitly represents the state register bits as
polynomials in terms of the public and private variables at some intermediate initialization round.
Given this explicit representation, the attacker performs linearization on the private variables by
replacing them with a new set of private variables, reducing the degrees of the state register bit
polynomials. The values of the new set of private variables can then be recovered using the basic
techniques of the cube attack. After the values of the new private variables are recovered, the
attacker can solve for the original key by solving the equations obtained during linearization. If
the cipher’s state is invertible, or close to being invertible, the attacker can simply run the cipher
backwards to recover the key, instead of solving equations. Note that a similar technique may also
be used to attack block ciphers, given that the attacker can explicitly represent the polynomials at
some intermediate encryption round.

3. The attacker can benefit from any system of linear equations (even if it has fewer than n equa-
tions), or from any system of nonlinear equations in which some of the variables occur linearly, by
enumerating and testing only their smaller set of solutions.

4. The attacker can exploit ANY nonlinear superpoly he can find and compactly represent by guessing
some of the secret variables in it and simplifying the result. In particular, guessing n − 1 key bits
will always suffice to turn any superpoly into an easy to solve linear equation in the remaining
variable, and will thus result in an attack which is faster than exhaustive search, assuming that the
evaluation of the superpoly is not too time consuming.

5. The attacker can try to solve the equations he can derive from the cube attack even when they are
nonlinear, provided that their degrees are low enough. When m is large, the attacker can sum over
many possible subsets of d − 1 public variables, and get a highly overdefined system of nonlinear
equations which might be solved by linearization or any other technique.

6. The attacker can easily recognize quadratic superpolys by a generalization of the BLR linearity test:
The attacker randomly chooses vectors x1, x2, x3 ∈ {0, 1}n, and verifies that pS(I)[0] + pS(I)[x1] +
pS(I)[x2] + pS(I)[x3] + pS(I)[x1 + x2] + pS(I)[x1 + x3] + pS(I)[x2 + x3] + pS(I)[x1 + x2 + x3] =
0. Again, non quadratic functions are likely to be eliminated after a few tests. The test can be
further generalized to cubic functions and to polynomials of higher degree with the number of
required function evaluations growing exponentially with the degree. The coefficient calculation for
polynomials of higher degree can be generalized as well.

7. The attacker can use the cube attack even if he cannot compactly represent superpolys. In this
case, the attacker decides on a subkey (i.e. a subset of private variables) whose value is guessed
during the online phase. For each value of the subkey bits, the degree of the superpolys in the
remaining private variables is likely to be reduced, and the attacker can compute and store them
more efficiently. Since the cubes and corresponding superpolys are now key-dependant, they need
to be computed and stored for each potential value of the subkey. This requires more preprocessing
time and memory, but gives the attacker the extra flexibility of using different maxterms for each
subset of keys.

8. The attacker is usually given more than one output bit, and thus more than one polynomial in the
input bits. In addition to trying each one of them separately, he can test any polynomial combination
of these polynomials and try to find some linear superpolys among these combinations.

9. Note that in the common mode of operation of stream ciphers in which n = m, and the secret
key and public IV bits are XOR’ed together during the initialization step, the maximal possible
degree of the polynomial representation of the scheme is n, whereas in the general case the maximal
possible degree is n + m.

10. When the cryptographic scheme has an insufficient number of public variables (or none at all), we
can recast the cube attack as a related key attack in which we are also allowed to flip some of the
secret key bits during the online phase. By replacing some of the xi variables by the combinations
xi + vi, we may get linear pS(I) polynomials where none existed before.

B Appendix: Cube Attacks on scaled-down Trivium variants

Trivium [21] is a stream cipher designed in 2005 by C. De Canni‘ere and B. Preneel and submitted to the
Profile 2 (hardware) European project eSTREAM [20]. It has an exceptionally simple structure, which
leads to very good performance in both hardware and software. Despite Trivium’s simplicity, there are
no substantial cryptanalytic results against it so far. Due to these outstanding qualities, Trivium was
chosen as part of the portfolio for Profile 2 by the eSTREAM project.

B.1 Description of Trivium

Trivium’s internal state consists of 288 bits stored in three NLFSRs of different lengths. In each round,
each register is shifted by one bit. The feedback to each register consists of a non linear combination of
bits from another register, XORed with a bit from the same register. The output bit at the end of each
round is a linear combination of six state bits, two taken from each register. The output generation
pseudo-code of Trivium is given below:

for i = 1 to N do
t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

zi ← t1 + t2 + t3

t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2,, s93)← (t3, s1,, s92)
(s94, s95,, s177)← (t1, s94,, s176)
(s178, s279,, s288)← (t2, s178,, s287)

end for

During initialization, the 80-bit key is placed in the first register, and the 80-bit IV is placed in
the second register. The other state bits are set to zero, except the last three bits in the third register,
which are set to one. The state is then updated 4 × 288 = 1152 times without producing an output.
The initialization pseudo-code of Trivium is given below:

(s1, s2,, s93)← (K1, K2,,K80, 0, .., 0)
(s94, s95,, s177)← (IV1, IV2, .., IV80, 0, ..., 0)
(s178, s279,, s288)← (0, 0,, 0, 1, 1, 1)
for i = 1 to 4 · 288 do

t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2,, s93)← (t3, s1,, s92)
(s94, s95,, s177)← (t1, s94,, s176)
(s178, s279,, s288)← (t2, s178,, s287)

end for

Fig. 2. Trivium

B.2 Previous Attacks

Trivium has a simple structure which led many cryptanalysts to try to attack it. Nevertheless, to this
day, there are no attacks better than exhaustive search on the full version of Trivium. Due to Trivium’s
cryptanalytic resistance, scaled-down variants have been proposed and studied by cryptanalysts hoping
to better understand the full-scale version. Two scaled-down variants named Bivium A and Bivium B
were introduced in [22]. Both of these variants have an internal state composed of only 2 shift registers.
Previous attacks on Trivium and its Bivium variants are summarized below:

– Raddum [22] developed an algorithm for solving sparse quadratic equations. The algorithm was used
to break Bivium A in ”about a day”, and requires 256 seconds to break Bivium B. The complexity
of the attack applied to Trivium is 2164.

– Maximov and Biryukov [23] developed a technique that can be applied to Bivium and Trivium. The
technique involves guessing certain key bits and key bit products that reduce the Trivium quadratic
equation system to a linear equation system that can be solved by linear algebra. The technique
can be used to recover the state of Bivium B with complexity of c · 236.1, and to recover the state
of Trivium with complexity of c · 283.5, where the constant c is the complexity of solving the system
of linear equations.

– McDonald, Charnes, and Pieprzyk [24] showed that the MiniSat algorithm can be used to attack
Bivium B with complexity of about 256.

Another family of scaled-down Trivium variants, assumes that fewer than 1152 initialization rounds
are performed before producing an output. Previous attacks on Trivium variants with fewer than 1152
initialization rounds are summarized below:

– Turan and Kara [25] used linear cryptanalysis to give a linear approximation with bias 2−31 for
Trivium with 288 initialization rounds.

– Englund, Johansson, and Turan [26] developed statistical tests and used them to show statistical
weaknesses of Trivium with up to 736 initialization rounds. The basic idea is to use a statistical
(rather than algebraic) variant of a cube attack, which selects an IV subset, examines all the
keystream produced by assigning this subset all possible values, while keeping the other IV bits
fixed. The key stream is viewed as a function of the selected IV subset variables, and statistical
tests are performed to distinguish this function from a random one.

– Vielhaber [27] recovered 47 key bits of Trivium with 576 initialization rounds in negligible time. The
key bits were recovered after some small IV special subsets were found, each one with the following
property: The result of summing on some keystream bit produced by assigning a special subset all
possible IV values, while keeping the other IV bits fixed, is equal to either one of the key bits or to
the sum of two key bits. Note that this is a very special case of our cube attack, and it is not clear
why the author imposed this unnecessary restriction.

– Fischer, Khazaei, and Meier [28] combined statistical tests with the method described in [27], and
showed an attack on Trivium with 672 initialization rounds with complexity 255.

The last three attacks share their cube summing element with our attack, but then proceed in
a different way, which does not apply efficient linearity testing to the resultant superpolys in order
to find easy to solve linear equations. Our greatly improved cryptanalytic results for Trivium clearly
demonstrate that cube attacks are more general, more efficient, and more powerful than these previous
techniques.

B.3 The Attack

We summarize the results we obtained so far for various simplified variants of Trivium. All the maxterms
and their associated linear equations were obtained by running the preprocessing phase of the cube

attack in a high level language on a single PC over several weeks, and much better results can be
expected by using a more optimized implementation on a cluster of more powerful computers.

– The best known attack on the variant which uses 672 initialization rounds is described by Fischer,
Khazaei, and Meier in [28]. The authors attack this variant with complexity 255. We were able to
find 63 linearly independent maxterms during the preprocessing phase of the cube attack on this
variant (in fact, we found more, but the additional maxterms do not reduce the total complexity
of the attack). All of the maxterms correspond to cubes of size 12. The maxterms and cubes are
listed in Table 1 next to the summed output bit index. Both the key bit indexes and the IV bit
indexes range from 0 to 79. The output bit index ranges from 672 to 685, hence the attacker needs
up to 14 initial output bits produced by the cipher after the 672 key mixing rounds. Each of the
maxterms passed at least 100 linearity tests, and thus the maxterm equations are likely to be correct
for most keys. During the online phase of the cube attack, the attacker has to find the values of
the linear equations defined by these maxterms by summing over the 63 cubes, of size 12. This
requires a total of about 218 chosen IVs. After the maxterm values are computed, the rest of the
key can be recovered by exhaustive search with complexity 217. The total complexity of the attack
is thus no more than 219, which is a big improvement compared to the best known attack. Note
that the maxterms are very sparse, hence the complexity of the linear algebra in the preprocessing
and online phases is negligible.

– We pushed the attack further by strengthening the Trivium variant to use 735 initialization rounds
before producing an output. Currently, there is no known attack that is better than exhaustive
search on this scaled-down Trivium variant. We were able to find 53 linearly independent maxterms
corresponding to cubes of size 23 (again, we have more). The total complexity of the online phase
of the attack is less than 230, which is much better than exhaustive search. The maxterms are listed
in Table 2 in the appendix, next to the corresponding cubes.

– Pushing the attack even further, we were able to find so far 35 maxterms for the stronger Trivium
variant that uses 767 initialization rounds. The maxterms are listed in Table 3 in the appendix,
next to the corresponding cubes. Most cubes are of size 29, but there are a few cubes of size ranging
from 28 to 31. The complexity of the attack is 245 since it is dominated by an exhaustive search
for the 80 − 35 = 45 missing key bits, after the values of the linear equations defined by these
maxterms are computed. Computation on weaker variants shows that once a cube of a certain size
that corresponds to a maxterm is found, we can expect to find many more cubes of the same size
with linear superpolys. Thus, given more preprocessing resources, it is very likely that the online
phase complexity of the attack can be reduced to about 236.

Our results show that even after many key mixing initializations rounds, Trivium is still break-
able with complexity that is significantly faster than exhaustive search. We are still investigating the
resistance of stronger Trivium variants to cube attacks and their generalizations.

B.4 Details of the new cube attacks on scaled-down Trivium variants

Tables 1, 2 and 3 list the maxterms, cube IV indexes, and output bit indexes for Trivium with 672, 735
and with 767 initialization rounds respectively. In each one of the summations in Tables 1 and 2, all

the public variables that do not belong to the cube were set to 0. In a few summations in Table 3, some
public variables that do not belong to the cube were set to 1. These are specified in the last column. IV
and key bits are indexed as in the original Trivium specification starting from 0 to 79 (e.g. key bits 65
and 68 and IV bits 68 and 77 determine the output bit with index 0).
Acknowledgements: We would like to thank Shahram Khazaei, Willi Meier and Paul Crowley for
independently verifying our results.

Table 1. Maxterms for Trivium with 672 Initialization rounds

Maxterm Equation Cube Indexes Output Bit Index

1+x0+x9+x50 {2,13,20,24,37,42,43,46,53,55,57,67} 675

1+x0+x24 {2,12,17,25,37,39,46,48,54,56,65,78} 673

1+x1+x10+x51 {3,14,21,25,38,43,44,47,54,56,58,68} 674

1+x1+x25 {3,13,18,26,38,40,47,49,55,57,66,79} 672

1+x2+x34+x62 {0,5,7,18,21,32,38,43,59,67,73,78} 678

1+x3+x35+x63 {1,6,8,19,22,33,39,44,60,68,74,79} 677

x4 {11,18,20,33,45,47,53,60,61,63,69,78} 675

x5 {5,14,16,18,27,31,37,43,48,55,63,78} 677

x7 {1,3,6,7,12,18,22,38,47,58,67,74} 675

1+x8+x49+x68 {1,12,19,23,36,41,42,45,52,54,56,66} 676

x11 {0,4,9,11,22,24,27,29,44,46,51,76} 684

x12 {0,5,8,11,13,21,22,26,36,38,53,79} 673

x13 {0,5,8,11,13,22,26,36,37,38,53,79} 673

1+x14 {2,5,7,10,14,24,27,39,49,56,57,61} 672

x15 {0,2,9,11,13,37,44,47,49,68,74,78} 685

x16 {1,6,7,12,18,21,29,33,34,45,49,70} 675

x17 {8,11,15,17,26,23,32,42,51,62,64,79} 677

x18 {0,10,16,19,28,31,43,50,53,66,69,79} 676

x19 {4,9,10,15,21,24,32,36,37,48,52,73} 672

x20 {7,10,18,20,23,25,31,45,53,63,71,78} 675

1+x20+x50 {11,16,20,22,35,43,46,51,55,58,62,63} 675

1+x21+x66 {10,13,15,17,30,37,39,42,47,57,73,79} 673

x22 {2,4,21,23,25,41,44,54,58,66,73,78} 673

x23 {3,6,14,21,23,27,32,40,54,57,70,71} 672

1+x24 {3,5,14,16,18,20,33,56,57,65,73,75} 672

1+x28 {6,11,14,19,33,39,44,52,58,60,74,79} 676

x29 {1,7,12,18,21,25,29,45,46,61,68,70} 675

x30 {2,8,13,19,22,26,30,46,47,62,69,71} 674

x31 {3,9,14,20,23,27,31,47,48,63,70,72} 673

x32 {4,10,15,21,24,28,32,48,49,64,71,73} 672

x33 {2,4,6,12,23,29,32,37,46,49,52,76} 680

1+x34+x62 {0,5,7,13,18,21,32,38,43,59,73,78} 678

1+x35+x63 {1,6,8,14,19,22,33,39,44,60,74,79} 677

x36 {2,4,5,8,15,19,27,32,35,57,71,78} 677

x38+x56 {0,3,4,9,20,28,33,41,54,58,72,79} 678

1+x39+x57+x66 {8,11,13,17,23,25,35,45,47,54,70,79} 674

x40+x58+x64 {0,6,10,16,19,31,43,50,66,69,77,79} 676

1+x41 {2,15,17,20,21,37,39,44,46,56,67,73} 674

x42+x60 {1,16,20,22,34,37,38,53,58,69,71,78} 674

x43 {2,7,14,22,41,45,48,58,68,70,72,76} 673

x44+x62 {3,14,16,18,20,23,32,46,56,57,65,73} 672

1+x45+x64 {0,6,10,16,18,28,31,43,53,69,77,79} 676

x46+x55 {2,8,11,13,28,31,35,37,49,51,68,78} 684

x47 {5,8,20,32,36,39,45,51,65,69,76,78} 676

x48 {2,4,10,14,16,22,25,44,49,51,57,78} 678

x49+x62 {1,12,19,23,36,41,42,45,52,56,69,75} 676

x51+x62 {1,7,8,13,21,23,28,30,47,68,71,75} 674

x52 {5,8,9,12,16,18,23,40,44,63,66,70} 674

x53 {2,11,21,24,32,55,57,60,63,66,70,77} 675

1+x54+x60 {4,7,10,18,20,25,50,53,61,63,71,78} 675

x55+x64 {5,12,16,19,22,36,47,55,63,71,77,79} 674

1+x56 {4,9,18,21,23,27,32,38,43,58,67,69} 677

x57 {1,7,9,14,18,21,33,40,45,49,59,68} 675

1+x58 {2,6,12,13,19,23,30,48,55,59,69,79} 673

x60 {5,7,10,13,15,17,28,40,47,73,76,79} 681

x61 {13,21,24,39,42,46,48,51,55,61,72,78} 673

1+x62 {2,4,10,11,19,34,47,55,56,58,69,77} 674

x63 {5,7,10,15,17,35,40,47,52,57,76,79} 674

x64 {8,11,13,17,23,25,35,47,62,64,68,79} 673

x65 {2,3,13,15,19,29,32,37,39,51,76,79} 682

1+x66 {5,7,10,13,15,17,35,40,52,70,76,79} 678

1+x67 {5,20,24,29,33,35,37,39,63,65,74,78} 677

1+x68 {1,12,19,23,36,41,52,54,56,66,69,75} 676

Table 2. Maxterms for Trivium with 735 Initialization rounds

Maxterm Equation Cube Indexes Output Bit Index

1+x0 {1,4,8,11,12,13,18,27,35,37,39,46,48,50,51,52,54,56,62,63,65,72,78} 735

x1 {1,8,13,14,16,19,21,24,29,32,37,41,44,48,50,52,60,68,70,72,74,77,79} 738

x1+x55+x61+x64 {0,2,14,23,26,27,29,33,36,38,41,45,51,58,60,62,64,65,67,68,71,75,79} 737

1+x2+x65+x67 {3,7,9,11,12,17,20,22,24,26,27,30,34,36,38,43,49,51,55,69,70,72,78} 736

x3 {1,2,4,7,14,15,21,25,27,36,39,44,49,54,60,61,63,64,69,70,73,76,78} 736

x4 {2,3,5,8,15,16,22,26,28,37,40,45,50,55,61,62,64,65,70,71,74,77,79} 735

x5+x56+x65 {1,13,15,18,21,23,25,26,29,36,43,46,51,52,55,59,60,62,69,71,74,75,78} 737

1+x6+x57+x66 {2,14,16,19,22,24,26,27,30,37,44,47,52,53,56,60,61,63,70,72,75,76,79} 737

1+x7 {1,3,8,13,17,18,19,21,25,36,38,40,46,49,50,54,61,62,63,66,69,73,79} 736

x8 {4,7,11,12,14,17,18,22,24,30,33,37,38,40,50,52,63,64,66,70,72,74,77} 735

x8+x21 {4,11,12,14,17,18,22,24,30,33,35,37,38,40,47,50,52,63,64,66,70,72,74} 735

x9 {1,3,5,7,9,12,18,22,30,31,33,38,43,45,52,54,61,68,70,72,73,75,78} 737

x10 {2,4,6,8,10,13,19,23,31,32,34,39,44,46,53,55,62,69,71,73,74,76,79} 736

1+x12+x65 {2,4,6,8,15,19,23,28,31,32,34,39,46,50,53,55,62,69,71,73,74,76,79} 736

x13 {3,7,9,11,12,17,20,22,24,25,27,30,38,43,49,51,52,62,69,70,72,75,78} 736

x14 {4,8,10,12,13,18,21,23,25,26,28,31,39,44,50,52,53,63,70,71,73,76,79} 735

x15 {4,5,8,11,13,15,18,21,26,33,35,42,47,48,50,53,58,59,60,67,69,76,78} 739

x16+x18 {1,3,5,7,9,12,14,18,27,30,31,33,43,45,49,52,54,61,70,72,73,75,79} 738

1+x17 {2,4,8,13,15,19,23,28,31,34,39,44,46,50,53,55,62,69,71,73,74,76,79} 738

1+x18 {1,3,7,8,9,12,14,17,18,25,30,31,33,45,49,52,54,61,70,72,73,75,79} 738

1+x18+x52 {4,8,11,13,15,18,21,26,31,33,35,42,48,49,50,53,57,58,59,60,67,69,78} 739

x19 {3,10,11,13,17,19,21,23,29,32,34,36,37,39,46,49,51,62,63,65,69,71,73} 736

x20 {4,11,12,14,18,20,22,24,30,33,35,37,38,40,47,50,52,63,64,66,70,72,74} 735

1+x22 {2,3,5,9,15,16,22,26,28,37,40,50,61,62,63,64,69,70,71,74,76,77,79} 735

1+x22+x58+x68 {1,3,8,13,17,18,19,21,25,26,36,38,39,40,49,54,61,62,63,66,69,73,79} 735

x24 {0,4,7,11,12,17,18,22,24,33,35,37,38,40,47,50,52,63,64,66,70,72,77} 735

x28+x30 {4,5,8,11,13,15,18,21,26,33,35,47,48,50,53,57,58,59,60,67,69,76,78} 739

1+x29 {0,3,4,8,13,14,17,19,21,22,25,37,40,41,44,46,56,59,70,72,73,75,78} 739

1+x30 {1,4,5,9,14,15,18,20,22,23,26,38,41,42,45,47,57,60,71,73,74,76,79} 738

x31 {1,4,5,9,14,15,18,20,22,23,33,38,42,45,47,52,57,60,67,71,73,74,79} 738

x32+x34 {4,11,12,14,17,18,20,24,30,33,35,37,38,40,47,53,63,64,66,68,70,72,74} 735

1+x33+x58+x64 {1,2,4,8,14,15,21,25,27,36,39,44,49,60,61,62,63,64,69,70,73,75,78} 736

1+x34+x59+x65 {2,3,5,9,15,16,22,26,28,37,40,45,50,61,62,63,64,65,70,71,74,76,79} 735

x35 {1,3,8,13,17,18,19,21,25,26,31,33,36,38,40,46,54,61,62,63,66,73,79} 735

x36 {0,3,5,9,13,17,19,21,28,40,45,46,49,54,58,59,63,64,67,72,74,75,78} 735

1+x37+x61 {4,11,12,14,17,18,20,22,24,35,37,40,47,50,51,53,63,64,66,68,70,72,74} 735

1+x39 {0,4,11,12,17,18,22,24,33,35,37,38,40,47,50,52,63,64,66,70,72,74,77} 735

x44 {0,4,7,10,14,18,19,25,27,29,33,35,38,42,45,48,50,53,59,60,66,77,79} 747

x45 {3,8,11,15,19,20,26,28,30,34,36,39,43,49,51,54,60,61,64,67,71,76,78} 746

x46 {4,9,12,16,20,21,27,29,31,35,37,40,44,50,52,55,61,62,65,68,72,77,79} 745

x54 {1,4,8,11,12,13,18,27,30,35,37,38,46,48,50,52,54,56,62,63,65,72,78} 735

x56 {1,4,6,8,10,13,16,17,19,21,24,26,27,29,38,41,45,50,55,60,69,72,78} 737

x57 {3,5,7,9,12,17,20,22,24,26,27,30,34,38,43,49,51,52,62,70,72,75,78} 735

x58 {2,3,4,6,14,18,24,27,37,42,45,47,49,50,51,56,60,67,69,71,74,76,78} 739

x59 {1,3,9,10,11,17,25,32,34,36,39,45,47,59,65,66,67,68,70,72,74,75,78} 739

1+x60 {1,4,6,8,10,16,17,18,21,24,26,27,33,38,41,45,50,52,60,69,71,72,78} 737

x61 {1,4,5,8,9,14,15,20,23,26,32,38,42,45,47,52,57,60,67,71,74,76,79} 737

x62 {1,4,5,8,9,15,20,23,26,32,38,42,45,47,52,57,60,67,71,73,74,76,79} 737

x63 {3,5,9,15,22,26,28,37,40,45,50,55,61,62,63,65,69,70,71,74,76,77,79} 735

1+x64 {1,4,8,12,13,18,27,35,37,38,39,46,48,50,52,54,56,62,63,65,72,78,79} 735

x65 {1,4,6,8,16,17,18,21,24,26,27,29,33,38,41,45,50,52,60,69,71,72,78} 738

1+x66 {2,5,7,9,17,18,19,22,25,27,28,30,34,39,42,46,51,53,61,70,72,73,79} 737

1+x67 {3,5,13,15,18,20,23,28,32,33,37,40,44,50,53,56,60,62,63,65,72,75,78} 736

Table 3. Maxterms for Trivium with 767 Initialization rounds

Maxterm Equation Cube Indexes Output Variables set to 1

1+x0 {1,3,4,7,9,10,12,16,19,21,25,27,29,30,32,34,35,37,40,47,50,51,60,61,64,67,72,73,79} 769

x3 {0,3,6,9,12,15,18,21,24,27,30,32,37,40,43,44,48,50,53,57,59,61,63,64,66,68,71,73,77,79} 773 {11}
x20 {1,3,5,7,10,14,18,20,22,23,26,30,36,38,42,43,44,45,47,49,52,54,60,63,69,71,72,73,78} 770 {53}
x22 {1,3,5,7,10,12,14,16,18,20,23,26,30,39,41,42,43,47,50,52,53,55,58,60,61,64,69,71,78} 769

x23 {0,2,4,6,8,10,14,17,19,21,23,26,30,34,35,36,43,45,46,48,49,54,59,64,67,72,73,74,75,79} 767

1+x29 {1,3,5,7,10,12,14,17,20,22,24,30,32,34,37,38,40,41,48,50,54,56,58,59,65,66,68,70,78} 774

x30 {0,2,4,6,8,10,14,17,19,21,23,26,30,33,34,35,36,43,45,46,49,54,57,59,62,64,72,73,75,79} 773 {67}
1+x31 {0,2,4,6,8,10,13,14,17,19,21,23,26,30,31,34,35,36,37,42,53,60,61,64,66,69,72,73,77,79} 773

x32 {0,2,4,6,8,10,14,17,19,21,23,25,26,27,30,32,34,43,44,53,58,63,68,70,71,72,75,78,79} 772 {33,37,38}
1+x33+x60+x66+x68 {1,3,5,7,10,14,18,20,23,26,30,35,37,39,40,41,44,48,49,51,54,58,59,60,61,64,70,75,77,78} 772

1+x34 {1,3,5,7,10,12,14,16,17,20,24,28,30,33,34,36,40,42,45,46,51,52,54,56,62,66,70,77,78} 770 {76}
x35 {1,3,4,6,7,8,9,12,14,16,19,21,25,27,30,38,41,44,45,48,50,55,57,60,63,65,71,73,79} 769

x36 {0,2,4,5,6,8,10,14,17,19,21,23,26,27,30,37,39,40,47,48,55,62,65,70,73,75,77,78,79} 768 {54}
x37 {1,3,5,7,10,12,14,16,17,20,24,26,30,32,35,37,41,45,46,54,58,60,64,67,68,69,70,72,78} 770

x38 {0,2,4,6,8,10,14,17,19,23,25,26,30,34,36,38,40,42,44,53,56,57,60,63,69,72,73,75,79} 768 {39}
x41 {0,1,3,4,7,10,12,15,17,19,22,24,25,28,30,34,39,42,44,52,56,58,59,62,64,68,70,72,79} 773 {71}

1+x45 {1,3,5,7,10,12,14,16,18,20,22,23,26,30,33,39,42,43,47,50,52,53,55,58,60,64,71,77,78} 769

1+x46 {1,3,5,8,11,14,16,17,19,21,23,26,27,29,30,32,36,38,42,44,45,49,51,53,59,60,63,64,75,76,78} 771

x51 {0,2,4,6,8,10,14,17,19,23,26,30,33,38,39,41,43,46,47,50,54,58,59,60,62,63,64,71,72,77,79} 773

1+x53+x57 {1,3,5,7,10,14,16,18,20,23,26,30,35,37,39,41,44,48,49,51,54,58,60,64,68,70,75,77,78} 773 {40,61}
x54 {0,2,4,6,8,10,14,17,19,23,26,30,33,38,39,41,43,46,50,54,59,60,61,62,63,64,70,74,77,79} 767

1+x55 {1,3,5,7,10,12,14,17,18,20,24,27,30,33,36,38,40,41,44,53,56,59,61,66,68,72,75,76,78} 771

x56 {1,3,5,7,9,12,14,16,19,21,23,25,27,30,35,37,40,51,56,62,63,64,67,69,71,74,75,76,79} 769

1+x57 {1,3,5,7,10,12,14,17,20,24,30,32,34,37,38,40,48,50,52,54,56,57,58,59,63,66,68,70,78} 774

x58 {0,2,4,6,8,10,14,17,19,21,23,26,30,33,36,43,45,48,49,54,57,59,62,64,67,72,74,75,79} 767

x59+x65 {1,3,5,7,10,12,14,17,20,22,24,26,28,30,35,40,41,42,44,52,54,60,65,67,68,73,74,75,78} 773

x60 {2,4,10,13,15,19,23,25,27,31,33,34,37,40,41,45,48,50,51,54,56,60,61,62,67,69,71,73,76} 770

1+x60+x66 {1,3,4,5,7,9,12,16,19,21,25,27,30,32,33,35,38,40,43,45,47,51,55,57,59,60,62,75,79} 774

x61 {3,5,11,14,16,20,24,26,28,32,34,35,38,41,42,46,49,51,52,55,57,61,62,63,68,70,72,74,77} 769

x62 {1,3,5,7,10,12,14,17,20,22,24,26,28,30,35,40,41,42,44,47,52,54,65,66,67,68,73,75,78} 772

1+x62+x68 {1,3,5,7,10,12,14,17,20,22,24,26,28,30,35,40,41,42,44,47,52,59,60,67,68,73,75,77,78} 773

x63 {2,4,8,10,13,15,19,23,27,31,33,37,40,41,45,48,50,54,56,60,61,62,67,69,71,73,76,78} 770

x64 {3,5,9,11,14,16,20,24,28,32,34,38,41,42,46,49,51,55,57,61,62,63,68,70,72,74,77,79} 769

x65 {0,2,4,6,7,8,10,14,17,19,21,23,26,30,32,34,36,37,39,41,43,45,55,56,61,66,74,76,79} 767

1+x67 {2,4,6,8,11,13,15,17,19,21,23,24,27,31,34,40,42,43,44,48,51,56,59,61,65,70,72,78,79} 768

