Paper 2007/470
Faster Multi-Exponentiation through Caching: Accelerating (EC)DSA Signature Verification
Bodo Möller and Andy Rupp
Abstract
We consider the task of computing power products $\prod_{1 \leq i \leq k} g_i^{e_i}$ ("multi-exponentiation") where base elements $g_2, ..., g_k$ are fixed while $g_1$ is variable between multi-exponentiations but may repeat, and where the exponents are bounded (e.g., in a finite group). We present a new technique that entails two different ways of computing such a result. The first way applies to the first occurrence of any $g_1$ where, besides obtaining the actual result, we create a cache entry based on $g_1$, investing very little memory or time overhead. The second way applies to any multi-exponentiation once such a cache entry exists for the $g_1$ in question: the cache entry provides for a significant speed-up. Our technique is useful for ECDSA or DSA signature verification with common domain parameters and recurring signers.
Metadata
- Available format(s)
- Category
- Implementation
- Publication info
- Published elsewhere. Unknown where it was published
- Keywords
- Efficient implementationelliptic curve cryptographyECDSA verificationexponentiationDSA verification
- Contact author(s)
- bmoeller @ acm org
- History
- 2007-12-19: revised
- 2007-12-19: received
- See all versions
- Short URL
- https://ia.cr/2007/470
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2007/470, author = {Bodo Möller and Andy Rupp}, title = {Faster Multi-Exponentiation through Caching: Accelerating ({EC}){DSA} Signature Verification}, howpublished = {Cryptology {ePrint} Archive, Paper 2007/470}, year = {2007}, url = {https://eprint.iacr.org/2007/470} }