
Zero-Knowledge in the Applied Pi-calculus and AutomatedVeri�cation of the Direct Anonymous Attestation ProtocolMichael Backes, Matteo Ma�ei, and Dominique UnruhSaarland University, Saarbrücken, Germany{ a k s m f e , n u } c . n - b db c e , a f i u r h @ s u i s . eAbstractWe devise an abstraction of zero-knowledge protocols that is accessible to a fullymechanized analysis. The abstraction is formalized within the applied pi-calculususing a novel equational theory that abstractly characterizes the cryptographic se-mantics of zero-knowledge proofs. We present an encoding from the equationaltheory into a convergent rewriting system that is suitable for the automated proto-col veri�er ProVerif. The encoding is sound and fully automated. We successfullyused ProVerif to obtain the �rst mechanized analysis of the Direct Anonymous At-testation (DAA) protocol. The analysis in particular required us to devise novelabstractions of sophisticated cryptographic security de�nitions based on interactivegames.1 IntroductionProofs of security protocols are known to be error-prone and, owing to the distributed-system aspects of multiple interleaved protocol runs, awkward to make for humans. Infact, vulnerabilities have accompanied the design of such protocols ever since early au-thentication protocols like Needham-Schroeder [11, 24], over carefully designed de-factostandards like SSL and PKCS [28, 8], up to current widely deployed products like Mi-crosoft Passport [13] and Kerberos [10]. Hence work towards the automation of suchproofs has started soon after the �rst protocols were developed; some important exam-ples of automated security proofs are [23, 22, 18, 21, 25, 27, 3, 5]. Language-basedtechniques are now widely considered a particularly salient approach for formally analyz-ing security protocols, dating back to Abadi's seminal work on secrecy by typing [1]. Theability to reason about security at the language level often allows for concisely clarifyingwhy certain message components are included in a protocol, how their entirety su�cesfor establishing desired security guarantees, and for identifying ambiguities in protocolmessages that could be exploited by an adversary to mount a successful attack on theprotocol.One of the central challenges in the analysis of complex and industrial-size protocolsis the expressiveness of the formalism used in the formal analysis and its capability tomodel complex cryptographic operations. While such protocols traditionally relied only1

on the basic cryptographic operations such as encryption and digital signatures, ModernCryptography has invented more sophisticated primitives with unique security featuresthat go far beyond the traditional understanding of cryptography to solely o�er secrecyand authenticity of a communication. Zero-knowledge proofs constitute the most promi-nent and arguably most amazing such primitive. A zero-knowledge proof consists of amessage or a sequence of messages that combines two seemingly contradictory properties:First, it constitutes a proof of a statement x (e.g, x = �the message within this ciphertextbegins with 0�) that cannot be forged, i.e., it is impossible, or at least computationallyinfeasible, to produce a zero-knowledge proof of a wrong statement. On the other hand, azero-knowledge proof does not reveal any information besides the bare fact that x consti-tutes a valid statement. In particular, a proof about some ciphertext would not leak thedecryption key or the plaintext. Zero-knowledge proofs were introduced in [17] and wereproven to exist for virtually all statements [16]. Zero-knowledge proofs have since shownto constitute very powerful building blocks for the construction of sophisticated crypto-graphic protocols to solve demanding protocol task: they allow for commonly evaluatinga function on distributed inputs without revealing any inputs to the other protocol par-ticipants [15], they allow for developing encryption schemes that are secure under verystrong active attacks [12], and many more.Early general-purpose zero-knowledge proofs were mainly invented to show the mereexistence of such proofs for the class of statements under consideration. These proofswere very ine�cient and consequently of only limited use in practical applications. Therecent advent of e�cient zero-knowledge proofs for special classes of statements changedthis. The unique security features that zero-knowledge proofs o�er combined with thepossibility to e�ciently implement some of these proofs have paved these proofs the wayinto modern cryptographic protocols such as e-voting protocols and anonymity protocols.The best known representative of these protocols is the widely-deployed Direct Anony-mous Attestation (DAA) protocol [9]. DAA constitutes a cryptographic protocol thatenables the remote authentication of a Trusted Platform Module (TPM) while preserv-ing the user's privacy. More precisely, if the user talks to the same veri�er twice, theveri�er is not able to tell if he communicates with the same user as before or with a dif-ferent one. DAA achieves its anonymity properties by heavily relying on non-interactivezero-knowledge proofs. Intuitively, these allow the TPM to authenticate with the veri�erwithout revealing the TPM's secret identi�er.1.1 Our ContributionsThe contribution of the paper is threefold: First, we present an abstraction of non-interactive zero-knowledge proofs within the applied pi-calculus using a novel equationaltheory that abstractly characterizes the cryptographic semantics of these proofs. Sec-ond, we transform our abstraction into an equivalent formalization that is accessible toProVerif [6], a well-established tool for the mechanized analysis of di�erent security prop-erties. Third, we apply our theory to the Direct Anonymous Attestation (DAA) protocol[9], the widely deployed authentication scheme for Trusted Platform Modules (TPMs),yielding its �rst mechanized security proof. 2

We express cryptographic protocols in the applied pi-calculus, an extension of the pi-calculus with functions, that has proven to constitute a salient foundation for the analysisof cryptographic protocols, see [2, 20, 6, 7, 14]. We devise a novel equational theorythat concisely and elegantly characterizes the semantic properties of non-interactive zero-knowledge proofs, and that allows for abstractly reasoning about such proofs. The designof the theory in particular requires to carefully address the important principles thatzero-knowledge proofs are based upon: the soundness and the completeness of the proofveri�cation as well as the actual zero-knowledge property, i.e., a veri�er must not be ableto learn any new information from a zero-knowledge proof except for the validity of theproven statement. The only prior work on abstracting zero-knowledge proofs aims atformalizing in modal logic the informal prose used to describe the properties of theseproofs [19]. In contrast to our abstraction, the abstraction in [19] has not been appliedto any example protocols, and no mechanization of security proofs is considered there.The mechanization of language-based security proofs has recently enjoyed substantialimprovements that have further strengthened the position of language-based techniquesas a promising approach for the analysis of complex and industrial-size cryptographicprotocols. ProVerif [6] constitutes a well-established automated protocol veri�er basedon Horn clauses resolution that allows for the veri�cation of observational equivalence andof di�erent trace-based security properties such as authenticity. We present a mechanizedencoding of our equational theory into a �nite speci�cation that is suitable for ProVerif.More precisely, the equational theory is compiled into a convergent rewriting system thatProVerif can e�ciently cope with. We prove that the encoding preserves observationalequivalence and a large class of trace-based security properties.Finally, we exemplify the applicability of our theory to real-world protocols by an-alyzing the security properties of the Direct Anonymous Attestation (DAA) protocol[9]. DAA constitutes a cryptographic protocol that enables the remote authenticationof a hardware module called the Trusted Platform Module (TPM), while preserving theanonymity of the user owning the module. Such TPMs are now widely included in end-user hardware such as desktop PCs and notebooks. The DAA protocol relies heavilyon zero-knowledge proofs to achieve its anonymity guarantees. The occurrence of theseproofs in particular prevented a previous analysis of the protocol using abstraction or anyform of proof mechanization. Analyzing DAA �rst requires to devise novel abstractions ofsophisticated cryptographic security de�nitions based on interactive games between hon-est participants and the adversary; comprehensive anonymity properties are of this form.We formulate the intended anonymity properties in terms of observational equivalence,we formulate authenticity as a trace-based property, and we prove these properties in thepresence of external active adversaries as well as corrupted participants. The proofs arefully automated using ProVerif.We are con�dent that the methodology presented in this paper is general and that theprinciples followed in the analysis of DAA can be successfully exploited for the veri�cationof other cryptographic protocols based on non-interactive zero-knowledge proofs.
3

Table 1 Syntax of the applied pi-calculusTerms
M,N,F, Z ::= s, k, . . . , a, b, . . . , n,m names

x, y, z vars
f(M1, . . . ,Mk) functionwhere f ∈ Σ and k is the arity of f.Processes

P,Q ::= 0 nil
νn.P res
ifM = N then P else Q cond
a(x).P input
a〈N 〉.P output
P | Q par
!P replExtended Processes

A ::= P plain
A1 | A2 par
νn.A name res
νx.A var res
{M/x} subst1.2 Outline of the PaperWe start by reviewing the applied pi-calculus in Section 2. Section 3 contains the equa-tional theory for abstractly reasoning about non-interactive zero-knowledge proofs in theapplied pi-calculus. This equational theory is rewritten into an equivalent �nite theoryin terms of a convergent rewriting system in Section 4. Section 5 and 6 elaborate on theanalysis of DAA, the description of its security properties, and the use of ProVerif formechanizing the analysis. Section 7 concludes and outlines future work.2 Review of the Applied Pi-calculusThe syntax of the calculus is given in Table 1. Terms are de�ned by means of a signature

Σ, which consists of a set of function symbols, each with an arity. The set of terms
TΣ is the free algebra built from names, variables, and function symbols in Σ appliedto arguments. We partition each signature into public and private function symbols.The only di�erence is that private symbols are not available to the adversary. In thefollowing, functions symbols are public unless stated otherwise. We presuppose a sortsystem for the set N of names: we let s, k (possibly with sub- and superscripts) rangeover names of base type (e.g., Integer, Data, and so on), a, b over channel names, and n,mover names of any sort. We let u range over names and variables. Terms are equipped4

with an equational theory E, i.e., an equivalence relation on terms that is closed undersubstitution of terms and under application of term contexts (terms with a hole). Wewrite E ` M = N and E 6` M = N for an equality and an inequality, respectively,modulo E.The grammar of processes (or plain processes) is de�ned as follows. The nullprocess 0 does nothing; νn.P generates a fresh name n and then behaves as P ;
ifM = N then P else Q behaves as P if E ` M = N , and as Q otherwise; a(x).Preceives a message N from the channel a and then behaves as P{N/x}; a〈N 〉.P outputsthe message N on the channel a and then behaves as P ; P | Q executes P and Q inparallel; !P generates an unbounded number of copies of P .Extended processes are plain processes extended with active substitutions. An activesubstitution {M/x} is a �oating substitution that may apply to any process that it comesinto contact with. To control the scope of active substitutions, we can restrict the variable
x. Intuitively, νx.(P | {M/x}) constrains the scope of the substitution {M/x} to process
P . If the variable x is not restricted, as it is the case in the process (P | {M/x}), thenthe substitution is exported by the process and the environment has immediate access to
M . As usual, the scope of names and variables is delimited by restrictions and by inputs.We write fv(A) and fn(A) (resp. bv(A) and bn(A)) to denote the free (bound) variablesand names in an extended process A, respectively. We let free(A) := fv(A)∪ fn(A) and
bound(A) := bv(A) ∪ bn(A). For sequences M̃ = M1, . . . ,Mk and x̃ = x1, . . . , xk, welet {M̃/x̃} denote {M1/x1} | . . . | {Mk/xk}. We always assume that substitutions arecycle-free, that extended processes contain at most one substitution for each variable,and that extended processes contain exactly one substitution for each restricted variable.A context is a process or an extended process with a hole. An evaluation contextis a context without private function symbols whose hole is not under a replication, aconditional, an input, or an output. A context C[_] closes A if C[A] is closed. A frame isan extended process built up from 0 and active substitutions by parallel composition andrestriction. We let φ and ψ range over frames. The domain dom(φ) of a frame φ is theset of variables that φ exports, i.e., those variables x for which φ contains a substitution
{M/x} not under a restriction on x. Every extended process A can be mapped to aframe φ(A) by replacing every plain process embedded in A with 0. The frame φ(A) canbe viewed as an approximation of A that accounts for the static knowledge A exposes toits environment, but not for A's dynamic behavior.The semantics is inherited from the applied pi-calculus and is de�ned in terms ofstructural equivalence (≡) and internal reduction (→). Structural equivalence stateswhich processes should be considered equivalent up to syntactic re-arrangement.De�nition 1 (Structural Equivalence) Structural equivalence (≡) is the smallestequivalence relation on extended processes that satis�es the rules in Table 2 and thatis closed under α-renaming, i.e., renaming of bound names and variables, and underapplication of evaluation contexts.Internal reduction de�nes the semantics for extended processes.De�nition 2 (Internal Reduction) Internal reduction (→) is the smallest relation on5

Table 2 Structural EquivalencePar-0 A ≡ A | 0Par-A A1 | (A2 | A3) ≡ (A1 | A2) | A3Par-C A1 | A2 ≡ A2 | A1Repl !P ≡ P | !PRes-0 νn.0 ≡ 0Res-C νu.νu′.A ≡ νu′.νu.ARes-Par A1 | νu.A2 ≡ νu.(A1 | A2) if u /∈ free(A1)Alias νx.{M/x} ≡ 0Subst {M/x} | A ≡ {M/x} | A{M/x}Rewrite {M/x} ≡ {N/x} if Σ `M = NTable 3 Internal reductionComm
a〈x〉.P | a(x).Q→ P | Q

Then
M ground

ifM = M then P else Q → PElse
E 6`M = N M,N ground
ifM = N then P else Q → Qextended processes that satis�es the rules in Table 3 and that is closed under structuralequivalence and under application of evaluation contexts.We write A ⇓ a to denote that A can send a message on a, i.e., A →∗ C[a〈M 〉.P] forsome evaluation context C[_] that does not bind a. Observational equivalence constitutesan equivalence relation that captures the equivalence of processes with respect to theirdynamic behavior.De�nition 3 (Observational Equivalence) Observational equivalence (≈) is thelargest symmetric relation R between closed extended processes with the same domainsuch that ARB implies:1. if A ⇓ a, then B ⇓ a;2. If A→∗ A′, then B →∗ B′ and A′RB′ for some B′;3. C[A]RC[B] for all closing evalution contexts C[_].3 An Equational Theory of Zero-KnowledgeIn this section we de�ne a signature and an equational theory for abstractly reasoningabout non-interactive zero-knowledge proofs. Our equational theory is parametric in thatit augments an arbitrary base equational theory.6

3.1 An Underlying Cryptographic Base TheoryThe base equational theory we consider in this paper is given in Table 4. (Note againthough that any other base theory would work as well.) First, it consists of functionsfor constructing and destructing pairs, encrypting and decrypting messages by symmet-ric and asymmetric cryptography, signing messages and verifying signatures, modellingpublic and private keys, hashing, and constructing and verifying blind signatures. Inblind signature schemes, the content of a message is disguised before it is signed whilestill ensuring public veri�ability of the signature against the unmodi�ed message. Thesefunctions have received prior investigation within the applied Pi-calculus, e.g., to analyzethe JFK protocol [2] and the electronic voting protocol FOO 92 [20]. Second, the theorycontains three binary functions eq, ∧, and ∨ for modelling equality test, conjunction, anddisjunction, respectively; these functions allow for modelling monotone Boolean formu-las. In our example theory, we do not consider additional functions for, e.g., negationor specifying explicit inequalities. We shall often write = instead of eq and use in�xnotation for the functions eq, ∧, and ∨.3.2 The Equational Theory for Zero-KnowledgeOur equational theory for abstractly reasoning about non-interactive zero-knowledgeproofs is given in Table 5; its components are explained in the following. A non-interactivezero-knowledge proof is represented as a term of the form ZKi,j(M̃ , Ñ , F), where M̃ and
Ñ denote sequences M1, . . . ,Mi and N1, . . . , Nj of terms, respectively, and where F con-stitutes a formula over those terms, see below. Hence ZKi,j is a function of arity i+ j+1.We shall often omit arities and write this statement as ZK(M̃ ; Ñ ;F), letting semicolonsseparate the respective components. The statement will keep secret the terms M̃ , calledthe statement's private component, while the terms Ñ , called the statement's public com-ponent, will be revealed to the veri�er and to the adversary. The formula F constitutesa term without names and variables but additionally built upon distinguished nullaryfunctions αi and βi with i ∈ N.De�nition 4 ((i, j)-formulas) We call a term an (i, j)-formula if the term containsneither names nor variables, and if for every αk and βl occurring therein, we have k ∈
[1, i] and l ∈ [1, j].The values αi and βj in F constitute placeholders for the terms Mi and Nj, respectively.For instance, the term

ZK(k ; m, encsym(m,k) ; β2 = encsym(β1, α1))denotes a zero-knowledge proof that the term encsym(m,k) is an encryption of m with
k. More precisely, the statement reads: �There exists a key such that the ciphertext
encsym(m,k) is an encryption of m with this key�. As mentioned before, encsym(m,k)and m are revealed by the proof while k is kept secret. This is formalized in generalterms by the following in�nite set of equational rules:7

Table 4 A base equational theory containing basic cryptographic primitives and logicaloperators
Σbase =





pair, encsym, decsym, encasym, decasym,
sign, ver,msg, pk, sk, hash, blind,
unblind, blindsign, blindver, blindmsg,
∧,∨, eq, first, snd, true, false





ver and blindver of arity 3, pair, encsym, decsym, encasym, decasym, sign, blind, unblind,
blindsign, ∧, ∨ and eq of arity 2, msg, pk, sk, hash, blindmsg, first and snd of arity 1, trueand false of arity 0.
Ebase is the smallest equational theory satisfying the following equations de�ned over all
x, y, z:

first(pair(x, y)) = x
snd(pair(x, y)) = y
decsym(encsym(x, y), y) = x
decasym(encasym(x, pk(y)), sk(y)) = x
msg(sign(x, y)) = x
ver(sign(x, sk(y)), x, pk(y)) = true

blindver(unblind(blindsign(blind(x, z),
sk(y)), z), x, pk(y)) = true

blindmsg(unblind(blindsign(blind(x, z), y), z)) = x
eq(x, x) = true

∧(true, true) = true

∨(true, x) = true

∨(x, true) = true

Publicp(ZKi,j(M̃ , Ñ , F)) = Np with p ∈ [1, j]

Formula(ZKi,j(M̃, Ñ , F)) = Fwhere Publicp and Formula constitute functions of arity 1. Since there is no destructorassociated to the statement's private component, the terms M̃ are kept secret. Thismodels the zero-knowledge property discussed in the introduction. We de�ne a state-ment ZKi,j(M̃, Ñ , F) to hold true if F is an (i, j)-formula and the formula obtained bysubstituting all αk's and βl's in F with the corresponding valuesMk and Nl is valid. Ver-i�cation of a statement ZKi,j with respect to a formula is modelled as a function Veri,jof arity 2 that is de�ned by the following equational rule:
Veri,j(F,ZKi,j(M̃, Ñ , F)) = true i�

1) EZK ` F{M̃/α̃}{Ñ/β̃} = true

2) F is an (i, j)-formulawhere {M̃/α̃}{Ñ/β̃} denotes the substitution of each αk with Mk and of each βl with8

Table 5 The equational theory for zero-knowledge, given a base theory (Σbase, Ebase)

ΣZK = Σbase ∪

{
ZKi,j,Veri,j,Publici,Formula,
αi, βi, true | i, j ∈ N

}

ZKi,j of arity i+ j + 1, Veri,j of arity 2, Publici and Formula of arity 1, αi, βi and true ofarity 0.
EZK is the smallest equational theory satisfying the equations of Ebase and the followingequations de�ned over all terms M̃, Ñ , F :

Publicp(ZKi,j(M̃ , Ñ , F)) = Np with p ∈ [1, j]

Formula(ZKi,j(M̃ , Ñ , F)) = F

Veri,j(F,ZKi,j(M̃, Ñ , F)) = true i�
1) EZK ` F{M̃/α̃}{Ñ/β̃} = true

2) F is an (i, j)-formula
Nl. This rule guarantees in the abstract model the soundness and correctness of zero-knowledge protocols.3.3 An Illustrating ExampleWe illustrate the zero-knowledge abstraction by means of the following example proto-col. We keep the protocol simplistic in order to focus on the usage of zero-knowledgeproofs; in particular, we ignore vulnerabilities due to replay attacks and correspondingcountermeasures such as nonces and timestamps.

A B Si

A,B //

oo {A,B}kSi

oo ZKParty B receives a signed message {A,B} from some server Si ∈ {S1, . . . , Sn}. (Thissigned message might, e.g., serve as a certi�cate that allows B to prove that he has beenauthorized to contact A.) While B should be able to convince A that he owns a signatureon this message issued by one of the possible n servers, the protocol should ensure that Adoes not learn which server Si in fact issued the signature. This prevents B from simplyforwarding the signed message to A. Instead, B proves knowledge of such a signature bya non-interactive zero-knowledge proof ZK.We now carefully examine the proof of knowledge ZK. We aim at formalizing thefollowing statement: �There exists α such that α is a signature of A and B, and thissignature was created using one of the signature keys kS1
, . . . , kSn�. Coming up with aformalization of this statement �rst requires us to tell the secret terms from the termsleaked to the veri�er. The identi�ers of A and B clearly have to be revealed since theproof intends to allow B to prove that he has been authorized to contact A. The signature9

itself and the corresponding veri�cation key pk(kSi
), however, have to be kept secret topreserve the anonymity of Si. These requirements are cast in our zero-knowledge notationas follows:

ZK = ZK2,n+1




sign(pair(A,B), sk(kSi
)), pk(kSi

);
pk(kS1

), . . . , pk(kSn), pair(A,B);(∨
i=1,n

α2 = βi

)
∧ ver(α1, βn+1, α2))


This statement captures that the signature sign(pair(A,B), sk(kSi

)) and the public key
pk(kSi

) used in the veri�cation are kept secret (i.e., the identity of Si is not revealed)while the proof reveals the public keys of all servers (this includes pk(kSi
) but does nottell it from the remaining public keys) as well as the identi�ers of A and B. The formulastates that the veri�cation key of the signature belongs to the set {pk(kS1
), . . . , pk(kSn)},and that the signed message consists of a pair composed of the identi�ers of A and B.We obtain the following description of a single protocol run:

A , a(y).if Test then b〈ok〉 else b〈errorA〉

B , a(x).if (ver(x, pair(A,B), pk(kSi
)))then a〈ZK 〉 else b〈errorB 〉

Si , a〈sign(pair(A,B), sk(kSi
))〉Prot , νkA.νkB .νkS1

.νkSn .
a〈pk(kS1

)〉.a〈pk(kSn)〉.(A | B | Si)where Test constitutes the following condition:
Ver2,n+1

((∨
i=1,n

α2 = βi

)
∧ ver(α1, βn+1, α2), y

)
= true

∧
i=1,n

Publici(y) = pk(kSi
) ∧ Publicn+1(y) = pair(A,B)We wrote Test using conjunctions only to increase readability; Test can be straightfor-wardly encoded in the syntax of the calculus by a sequence of conditionals.4 Towards a Mechanized Analysis of Zero-KnowledgeThe equational theory ΣZK de�ned in the previous section is not suitable for existing toolsfor mechanized security protocol analysis. The reason is that the signature ΣZK, andconsequently the number of equations in the speci�cation, is in�nite since, for instance,we assume a di�erent ZKi,j constructor for each possible arity. In this section, we specifyan equivalent equational theory in terms of a convergent rewriting system. This theoryturns out to be suitable for ProVerif [6], a well-established tool for mechanized veri�cationof di�erent security properties of cryptographic protocols speci�ed in a variant of theapplied pi-calculus. 10

4.1 A Finite Speci�cation of Zero-KnowledgeThe central idea of our equivalent �nite theory is to focus on the zero-knowledge proofsused within the process speci�cation and to abstract away from the additional ones thatare possibly generated by the environment. This makes �nite both the signature and thespeci�cation of the equational theory.Pinning down this conceptually elegant and appealing idea requires to formally charac-terize the zero-knowledge proofs generated, veri�ed, and read in the process speci�cation.First, we track the zero-knowledge proofs generated or veri�ed in the process speci�cationby a set F of triples of the form (i, j, F), where i is the arity of the private component,
j the arity of the public component, and F the formula. Second, we record the arity h(resp. l) of the largest private component (resp. public component) of zero-knowledgeproofs used in the process speci�cation. For terms M and processes P , we let terms(M)denote the set of subterms ofM and terms(P) denote the set of terms in P . We can nowformally de�ne the notion of (F , h, l)-validity of terms and processes.De�nition 5 (Process Validity) A term Z is (F , h, l)-valid if and only if the followingconditions hold:1. for every ZKi,j(M̃, Ñ , F) ∈ terms(Z) and Veri,j(F,M) ∈ terms(Z),(a) F is an (i, j)-formula and (i, j, F) ∈ F ,(b) F ∈ TΣbase∪{αk ,βl |k∈[1,i],l∈[1,j]},(c) and for every (i, j, F ′) ∈ F such that EZK ` F = F ′, we have F = F ′.2. For every k ∈ N, αk and βk occur in Z only inside of the last argument of some

ZKi,j or Veri,j function.3. for every (i, j, F) ∈ F , we have i ∈ [0, h] and j ∈ [0, l].4. for every Publicp(M) ∈ terms(Z), we have p ∈ [1, l].A process P is (F , h, l)-valid if and only if M is (F , h, l)-valid for every M ∈ terms(P),the private arity of P is less or equal than h, and the public arity of P is less or equalthan l.We check that each zero-knowledge proof generation and veri�cation is tracked in F(condition 1a). For the sake of simplicity, we prevent the occurrence of zero-knowledgeoperators within formulas in the process speci�cation (condition 1b). Without loss ofgenerality, we also require that equivalent formulas occurring in zero-knowledge proofsof the same arity are syntactically equal (condition 1c) and that the αi's and βj 's onlyoccur within formulas (condition 2). Finally, we check that the arity of private andpublic components of zero-knowledge proofs used in the process speci�cation is less orequal than h and l, respectively (conditions 3 and 4).Given an (F , h, l)-valid process, we can easily de�ne a �nite equational theory EF ,h,l
FZKfor (F , h, l)-valid terms by a convergent rewriting system. For any (i, j, F) ∈ F , we11

Table 6 The �nite equational theory for zero-knowledge with respect to an (F , h, l)-validprocess, given a base theory (Σbase, Ebase)

ΣF ,h,l
FZK

= Σbase ∪





ZKF
i,j,PZKF

i,j,VerFi,j,FakeZKk,Publicp,

Formula,FakeCollect,FakePublic,FakeVer, αg, βp

| (i, j, F) ∈ F , g ∈ [1, h], k ∈ [0, l], p ∈ [1, l]





PZKF
i,j of arity i+ j + 1, ZKF

i,j of arity i+ j, FakeZKk of arity k + 2, FakeVer of arity 4,
FakePublic and FakeCollect of arity 2, VerFi,j, Publicp, and Formula of arity 1, αg and βpof arity 0. PZKF

i,j is private.
EF ,h,l

FZK
is the smallest equational theory satisfying the equations of Ebase and the followingequations for every (i, j, F) ∈ F :

ZKF
i,j(x̃, ỹ) = PZKF

i,j(x̃, ỹ, F{x̃/α̃}{ỹ/β̃})

VerFi,j(PZKF
i,j(x̃, ỹ, true)) = true

Publicp(PZKF
i,j(x̃, ỹ, z)) = yp p ∈ [1, j]

Formula(PZKF
i,j(x̃, ỹ, z)) = F

Publicp(FakeZKk(x, ỹ, z)) = yk p ∈ [1, k], k ∈ [0, l]

Formula(FakeZKk(x, ỹ, z)) = z k ∈ [0, l]include in the signature ΣF ,h,l
FZK

the function symbols ZKF
i,j and VerFi,j of arity i + j and

1, respectively. We then replace every term ZKi,j(M̃ , Ñ , F) and Veri,j(F,M) in theprocess speci�cation by ZKF
i,j(M̃ , Ñ) and VerFi,j(M), respectively. Since formulas areuniquely determined by the ZKF

i,j function symbol, they can be omitted from the protocolspeci�cation. Furthermore, we need in the equational theory only those functions αi and
βj that satisfy i ∈ [1, h] and j ∈ [1, l]; the remaining ones can be safely omitted sincethey do not o�er the adversary any additional capabilities. For �nitely modelling theveri�cation of zero-knowledge proofs, we include in ΣF ,h,l

FZK the function symbols PZKF
i,j ofarity i+j+1. A term ZKF

i,j(M̃, Ñ) is equivalent to PZKF
i,j(M̃, Ñ , F{M̃/α̃}{Ñ/β̃}). Thiscan be captured using a �nite description, since the number of formulas in the processspeci�cation is �nite:

ZKF
i,j(x̃, ỹ) = PZKF

i,j(x̃, ỹ, F{x̃/α̃}{ỹ/β̃})For verifying a zero-knowledge proof, it thus su�ces to check whether the last argumentof the PZKF
i,j is true or not:

VerFi,j(PZKF
i,j(x̃, ỹ, true)) = trueThe rule for extracting the public component is de�ned in the expected manner. Extract-ing the formula from a zero-knowledge proof PZKF

i,j(M̃, Ñ , F{M̃/α̃}{Ñ/β̃}) requiresan additional thought: for preserving the secrecy of private components, the function12

Formula yields the formula F (without the substitution {M̃/α̃}{Ñ/β̃}) in order to pre-vent the adversary from deriving the formula instantiated with private terms.
Publicp(PZKF

i,j(x̃, ỹ, z)) = yp p ∈ [1, j]

Formula(PZKF
i,j(x̃, ỹ, z)) = FWe obtain a �nite set of rules since the number of ZKF

i,j and VerFi,j constructors corre-sponds to the (�nite) number of formulas occurring in the process speci�cation. The
PZKF

i,j functions are private; hence they cannot be used by the adversary to derive termsof the form ZKF
i,j(M̃, Ñ , true), which would be successfully veri�ed by trusted partici-pants regardless of the value of F{M̃/α̃}{Ñ/β̃}. The possibility to construct such termswould break the soundness property of zero-knowledge proofs.It now remains to encode the zero-knowledge proofs generated by the environment.These proofs possibly contain formulas or have arities di�erent from the ones speci�edin the process. We include in ΣF ,h,l

FZK
a �nite set of symbols FakeZKk of arity k + 2,where k ∈ [0, l]. The term FakeZKk(M, Ñ, F) never occurs in process speci�cationsand represents zero-knowledge statements forged by the adversary; here M constitutes adistinguished term that uniquely refers to the zero-knowledge proof and that plays a roleonly in the proof of soundness, Ñ denotes the �rst k elements of the public component,and F is the formula. The equational rules for extracting the public components and theformula from FakeZKk terms are speci�ed as follows:

Publicp(FakeZKk(x, ỹ, z)) = yk

Formula(FakeZKk(x, ỹ, z)) = zfor any p ∈ [1, k] and k ∈ [0, l]. We additionally include in ΣF ,h,l
FZK

functions FakeCollect,
FakePublic, and FakeVer. These functions are only used for proving the �nite theoryequivalent to the in�nite one in the next section; the functions are free in that they donot occur in any equations.4.2 Compilation into Finite FormWe now de�ne the static compilation of terms and processes.De�nition 6 (Static Compilation) The (F , h, l)-static compilation is the partial func-tion σ : TΣZK

→ T
ΣF,h,l

FZK

recursively de�ned as follows:
ZKi,j(M̃, Ñ , F)σ = ZKF

i,j(M̃σ, Ñσ) ∀(i, j, F) ∈ F

Veri,j(F,M)σ = VerFi,j(Mσ) ∀(i, j, F) ∈ F

Publicp(M)σ = Publicp(Mσ) ∀p ∈ [1, l]

Formula(M)σ = Formula(Mσ)

f(M1, . . . ,Mi)σ = f(M1σ, . . . ,Miσ) ∀f ∈ Σbase

xσ = x ∀x

nσ = n ∀n13

Table 7 Labelled transition systemIn
M ∈ TΣ+

a(x).P
a(M)
→ P{M/x}

Out-Atom
a〈u〉.P

a〈u〉
→ P

Open-Atom
A

a〈u〉
→ A′ u 6= a

νu.A
νu.a〈u〉
→ A′Scope

A
µ
→ A′ u does not occur in µ

νu.A
µ
→ νu.A′

Par
A

µ
→ A′ bound(µ) ∩ free(B) = ∅

A | B
µ
→ A′ | BStruct

A ≡ B B
µ
→ B′ B′ ≡ A′

A
µ
→ A′Notation: Σ+ contains the public function symbols in Σ. In Out-Atom, u is either achannel name or a variable.The (F , h, l)- static compilation constitutes a total function when restricted to (F , h, l)-valid terms. The �rst equations deal with the compilation of zero-knowledge proofs andoperators acting on them. The static compilation acts component-wise on the remainingterms and behaves as the identity function on names and variables. The compilation ofa process P , written Pσ, is de�ned by the compilation of the terms occurring therein.The following theorem �nally states that observational equivalence is preserved understatic compilation and hence asserts the soundness of the encoding from the in�nitespeci�cation into the �nite speci�cation. Its proof is given in the next section.Theorem 1 (Preservation of Observational Equivalence) Let P and Q be

(F , h, l)-valid processes and σ be the (F , h, l)-static compilation. If P ≈EZK
Q, then

Pσ ≈
E

F,h,l
FZK

Qσ.We additionally prove that a comprehensive class of trace-based properties is preservedunder static compilation. We �rst de�ne the notion of an execution trace. This requiresto review the labelled operational semantics that extends the semantics given in Table3 by allowing us to reason about processes that interact with their environment. Thelabelled transition system is given in Table 7.De�nition 7 (Execution Traces) The set of execution traces of an extended process
A, written traces(A), is de�ned as follows:traces(A) = {µ1φ(A1), . . . , µnφ(An) | A→∗µ1

→ A1 . . .→
∗µn
→ An}In the following, we let s range over execution traces. We now introduce the notionof trace-based security property. We assume the existence of a special channel c thatis never restricted by the process. In the following, we let B(M1, . . . ,Mn) denote a14

boolean formula over the terms M1, . . . ,Mn: such terms are meant to express trace-based security properties. For instance, the notion of authenticity can be formalized as
pair(end, x) ⇒ pair(begin, x), where end and begin are special nullary functions.De�nition 8 (Trace-based Security Property) A trace s satis�es the event M withsubstitution ξ, written s `ξ M if and only if there exist s1, s2, N, ξ such that s ` s1 ::
c〈N 〉 :: s2 and EZK ` N = Mξ.A trace s satis�es the property B(M1, . . . ,Mn) with substitution ξ, written s `ξ

B(M1, . . . ,Mn), if and only if B(s `ξ M1, . . . , s `ξ Mn).A process satis�es the property B(M1, . . . ,Mn), written P `ξ B(M1, . . . ,Mn), if andonly if for every trace s ∈ traces(P), there exists ξ such that s `ξ B(M1, . . . ,Mn)Finally, we can state the theorem of preservation for trace-based security properties.Theorem 2 (Trace-based Security Property Preservation) Let P be a (F , h, l)-valid process, σ be the (F , h, l)-static compilation, andM1, . . . ,Mn be (F , h, l)-valid terms.If Pσ ` B(M1σ, . . . ,Mnσ), then P ` B(M1, . . . ,Mn).4.3 Preservation of Observational Equivalence and Trace-based Secu-rity PropertiesInstead of proving that observational equivalence is preserved under static compilation,we show preservation of an equivalent formulation of observational equivalence based onstatic equivalence and labelled bisimilarity. We �rst review these notions.De�nition 9 (Term Equality in Frames) Two termsM and N are equal in a frame φ,written (M = N)φ, if and only if φ ≡ νñ.σ, Mσ = Nσ, and {ñ}∩ (fn(M)∪fn(N)) = ∅for some names ñ and substitution σ.De�nition 10 (Static Equivalence) Two closed frames φ and ψ are statically equiv-alent, written φ ≈s ψ if and only if dom(φ) = dom(ψ) and for all terms M and N , itholds that (M = N)φ if and only if (M = N)ψ.We say that two closed extended processes are statically equivalent, written A ≈s B ifand only if their frames are statically equivalent.We now de�ne the notion of labelled bisimilarity, which constitutes an equivalent no-tion of observational equivalence. Labelled bisimilarity does not rely on the universalquanti�cation over evalution contexts used in the de�nition of observational equivalence.De�nition 11 (Labelled Bisimilarity) Labelled bisimilarity (≈l) is the largest sym-metric relation R on closed extended processes such that ARB implies:1. A ≈s B;2. if A→ A′, then B →∗ B′ and A′RB′ for some B′;3. if A µ
→ A′ and fv(µ) ⊆ dom(A) and bn(µ) ∩ fn(B) = ∅, then B →∗ µ

→→∗ B′ and
A′RB′ for some B′. 15

We �nally state the well-known equivalence between observational equivalence and la-belled bisimilarity.Theorem 3 (Observational Equivalence and Labelled Bisimilarity) Observa-tional equivalence coincides with labelled bisimilarity: ≈=≈l.It hence remains to be shown that labelled bisimilarity is preserved under static compi-lation. In the following, we write P ≡E Q to emphasize that P and Q are structurallyequivalent with respect to an equational theory E. Furthermore, we write Mφ for theground term obtained by repeated application of the substitution in φ to M , where weassume that fv(M) ⊆ fv(φ) ∪ bv(φ). This notation is well-de�ned since frames do notcontain substitutions with cyclic dependencies. The next de�nition introduces a normalform for terms. Intuitively, a term is in (F , h, l)-normal form if the subterms generatedby the environment cannot be further simpli�ed (conditions 1 and 2) and, in the case ofzero-knowledge proofs, they either comply with the process speci�cation or belong to adi�erent equivalence class (condition 3).De�nition 12 (Normal Form) A term M ∈ TΣZK
is in (F , h, l)-normal form withrespect to a frame φ if and only if the following conditions hold:1. for every Publicj(Z) ∈ terms(M), i, j′, M̃ , Ñ , F such that j > l and EZK ` Zφ =

ZKi,j′(M̃, Ñ , F), we have j′ < j.2. for every Veri,j(F,Z) ∈ terms(M), M̃, Ñ such that EZK ` Zφ = ZKi,j(M̃, Ñ , F),we have that (i, j, F) ∈ F .3. for every ZKi,j(M̃, Ñ , F) ∈ terms(M), F ′ such that (i, j, F ′) ∈ F and ΣZK ` F =
F ′, we have F = F ′.For any term there exists an equivalent term in normal form.Proposition 1 (Normal Form) For any term M ∈ TΣZK

and frame φ, there exists aterm N ∈ TΣZK
in (F , h, l)-normal form with respect to φ such that EZK ` (M = N)φ.Proof. By an inspection of the equational rules in Table 5 and De�nition 12.We now characterize the notion of validity of extended processes. Intuitively, an extendedprocess is (F , h, l)-valid if it can be separated into an (F , h, l)-valid process and a framewhere free variables, referring to output messages, are associated to (F , h, l)-valid terms,and bound variables, referring to input messages, are associated to terms in (F , h, l)-normal form that only contain free names and free variables.De�nition 13 (Extended Process Validity) A frame φ is (F , h, l)-valid if and onlyif there exist ñ, ỹ, {Z̃/x̃}, with ỹ ⊆ x̃, such that the following conditions hold:1. φ = νñ.νỹ.{Z̃/x̃}.2. for every xk ∈ fv(φ), we have that Zk is (F , h, l)-valid.16

3. for every xk ∈ bv(φ), we have that Zk is in (F , h, l)-normal form with respect to φand free(Zk) ∩ bound(φ) = ∅.An extended process A is (F , h, l)-valid if and only if there exist ñ, ỹ, {M̃/x̃}, with ỹ ⊆ x̃,such that the following conditions hold:1. A = νñ.νỹ.({Z̃/x̃}|P).2. νñ.νỹ.{Z̃/x̃} is (F , h, l)-valid.3. P is (F , h, l)-valid.In the following, we use FakeCollect(M̃) for M̃ = M1, . . . ,Mn as an abbreviation for theterm FakeCollect(M1,FakeCollect(M2, . . . ,FakeCollect(Mn−1,Mn))). We further considera countable set of names that are meant to represent natural numbers, denoted i, j, andnullary functions αi and βj with i > h and j > l, denoted fαi
and fβj

, respectively.Without loss of generality, we discipline α-renaming to guarantee that such names arenever restricted in the process.We now introduce the dynamic compilation of terms at run-time.De�nition 14 (Dynamic Compilation) The (F , h, l)-dynamic compilation is thefunction ρ : TΣZK
→ T

ΣF,h,l
FZK

recursively de�ned as follows:
Publicj(M)ρ = Publicj(Mρ) if j ∈ [1, l]

FakePublic(j,Mρ) otherwise
ZKi,j(M̃, Ñ , F)ρ = ZKF

i,j(M̃ρ, Ñρ) if (i, j, F) ∈ F

FakeZKk(g, Ñkρ, Fρ) otherwise
(k = min(j, l),
g = FakeCollect(i, j, M̃ρ, Ñρ))

Formula(M)ρ = Formula(Mρ)

αiρ = αi if i ∈ [1, h]
fαi

otherwise
βjρ = βj if j ∈ [1, l]

fβj
otherwise

Veri,j(F,M)ρ = VerFi,j(Fρ,Mρ) if (i, j, F) ∈ F
FakeVer(i, j, Fρ,Mρ) otherwise

f(M1, . . . ,Mi)ρ = f(M1ρ, . . . ,Miρ) ∀f ∈ Σbase

xρ = x ∀x

nρ = n ∀nThe next proposition states that ρ is closed under variable substitution.17

Proposition 2 (Closure of Dynamic Compilation) Let ρ be the (F , h, l)-dynamiccompilation. For every frame φ and every term M in (F , h, l)-normal form with respectto φ, we have (Mρ)φρ = (Mφ)ρProof. By an inspection of De�nition 14 and De�nition 12.We next lemma states that term equality is preserved by dynamic compilation.Lemma 1 (Preservation of Term Equality) Let φ be an (F , h, l)-valid frame and
ρ be the (F , h, l)-dynamic compilation. Then for any ground terms M1,M2 ∈ TΣZK

in
(F , h, l)-normal form with respect to φ, we have EZK `M1 = M2 ⇔ EF ,h,l

FZK
`M1ρ = M2ρ.Proof. We prove the ⇒ implication by induction on the length of the derivation of M1.We �rst discuss the interesting base cases:

M1 = Publick(ZKi,j(M̃, Ñ , F)), M2 = Nk We have two cases:1. (i, j, F) ∈ F : By de�nition of ρ (cf. De�nition 14), we get M1ρ =

Publick(ZKF
i,j(M̃ρ, Ñρ)). By de�nition of EF ,h,l

FZK
(cf. Table 6), we get

EF ,h,l
FZK ` Publick(ZKF

i,j(M̃ρ, Ñρ)) = Nkρ, as desired.2. (i, j, F) /∈ F : By de�nition of ρ, we can derive that M1ρ =
Publick(FakeZKmin(j,l)(FakeCollect(i, j, M̃ρ, Ñρ), Ñ1min(j,l), Fρ). By de�nitionof EF ,h,l

FZK , EF ,h,l
FZK `M1ρ = Nkρ, as desired.

M1 = Formula(ZKi,j(M̃, Ñ , F)), M2 = F We have two cases:1. (i, j, F) ∈ F : By de�nition of ρ, we get M1ρ = Formula(ZKF
i,j(M̃ρ, Ñρ)). Byde�nition of EF ,h,l

FZK
, we get EF ,h,l

FZK
` Formula(ZKF

i,j(M̃ρ, Ñρ)) = F and, since
M1 is in (F , h, l)-normal form with respect to φ, by de�nition of ρ we havethat Fρ = F , as desired.2. (i, j, F) /∈ F : By De�nition 14, we obtain M1ρ = Formula(

FakeZKmin(j,l)(FakeCollect(i, j, M̃ρ, Ñρ), Ñ1min(j,l), Fρ). By an inspection ofTable 6, we have EF ,h,l
FZK `M1ρ = Fρ, as desired.

M1 = Ver(F,ZKi,j(M̃ , Ñ , F)) and M2 = true It must be the case that (i, j, F) ∈ F , oth-erwise M1 is not in (F , h, l)-normal form with respect to φ. By de�nition of ρ,
M1ρ = VerFi,j(ZKF

i,j(M̃ρ, Ñρ)). By the equational theory of Table 6, EF ,h,l
FZK `

M1ρ = true, as desired.We prove the induction step by cases:Symmetry We have that EZK `M1 = M2 is proved by symmetry from EZK `M2 = M1.By induction hypothesis, EF ,h,l
FZK `M2ρ = M1ρ. The result follows by symmetry of

EF ,h,l
FZK . 18

Transitivity The result follows directly from the induction hypothesis.The proof of the ⇐ implication is similar and relies on the fact that ρ is injective whenapplied to terms in (F , h, l)-normal form with respect to φ.Exploiting that term equality is preserved under dynamic compilation, we proceed byshowing the preservation of process reduction. The following lemma also proves that thevalidity of extended processes is preserved by internal reduction and labelled transition,up to structural equivalence. In addition, Theorem 2 constitutes a direct consequence ofthis lemma.Lemma 2 (Preservation of Process Reduction) Let A be an extended pro-cess such that A ≡EZK
νñ.νỹ.({M̃/x̃}|P), for some (F , h, l)-valid extended process

νñ.νỹ.({M̃/x̃}|P), let σ be the (F , h, l) static compilation, and let ρ be the (F , h, l)-dynamic compilation. Then the following statements hold:1. For every B, A →EZK
B if and only if there exists an (F , h, l)-valid ex-tended process νñ.νỹ.({M̃ ′/x̃′}|P ′) ≡EZK

B such that νñ.νỹ.({M̃/x̃}ρ|Pσ) →
E

F,h,l
FZK

νñ.νỹ.({M̃/x̃}ρ|P ′σ).2. For every µ containing only terms in (F , h, l)-normal form with respect to
νñ.νỹ.{M̃/x̃} and every B, A µ

→EZK
B if and only if there exists an (F , h, l)-valid extended process νñ′.νỹ′.({M̃ ′/x̃′}|P ′) ≡EZK

B such that νñ.νỹ.({M̃/x̃}ρ|

Pσ)
µρ
→

E
F,h,l
FZK

νñ′.νỹ′.({M̃ ′/x̃′}ρ|P ′σ) where
• if µ = a(M), then ñ = ñ′, ỹ′ = ỹ, x, for some x /∈ {x̃}, and {M̃ ′/x̃′} =

{M̃/x̃} | {M/x}.
• if µ = a〈b〉, then ñ = ñ′, ỹ′ = ỹ, and {M̃ ′/x̃′} = {M̃/x̃}.
• if µ = νb.a〈b〉, then ñ = (ñ′, b), ỹ′ = ỹ, and {M̃ ′/x̃′} = {M̃/x̃}.
• if µ = νx.a〈x〉, then ñ = ñ′, ỹ′ = ỹ, and {M̃ ′/x̃′} = {M̃/x̃} | {M/x}, forsome (F , h, l)-valid M .Proof. We prove statement 1 by cases on the internal reduction rule. Let us �rst dealwith the �only if� implication.Comm By an inspection of Table 2, there exist M,x,Q,P1, P2 such that

νñ.νỹ.({M̃/x̃} | P) ≡EZK
νñ.νỹ.({M̃/x̃}| Q | a〈M 〉.P1 | a(x).P2) and

Q | a〈M 〉.P1 | a(x).P2 is (F , h, l)-valid. By α-renaming, we can assume that
x /∈ fv(P1). We also have that B ≡EZK

νñ.νỹ.({M̃/x̃}| Q | P1| P2{M/x}).By Alias, Res-Par, and Subst, we get νñ.νỹ.({M̃/x̃} | P) ≡EZK

νñ.νỹ.νx.({M̃/x̃} | {M/x} | Q | a〈x〉.P1| a(x).P2). Since σ behaves as the iden-tity function on variables and names and it is de�ned on (F , h, l)-valid terms and19

processes, we get νñ.νỹ.({M̃/x̃} ρ | Pσ) ≡
E

F,h,l
FZK

νñ.νỹ.νx.({M̃/x̃} ρ | {Mσ/x}

| Qσ | a〈x〉.P1σ| a(x).P2σ). By Comm, Subst, Res-Par, and Alias, we havethat νñ.νỹ.νx.({M̃/x̃} ρ | {Mσ/x} | Qσ | a〈x〉.P1σ| a(x).P2σ) → νñ.νỹ.({M̃/x̃} |
P1σ | P2{M/x}σ), as desired. Notice that internal reduction is closed by structuralequivalence. It is easy to see that P2{M/x} is (F , h, l)-valid since M occurs in the
(F , h, l)-valid process a〈M 〉.P1 and it is thus (F , h, l)-valid as well.Then By an inspection of Table 2, there exist M,N,Q,P1, P2 such that
νn.νỹ.({M̃/x̃} | P) ≡EZK

νn.νỹ.({M̃/x̃} | Q | if (M = N) then P1 else P2,for some M,N,P1, P2, Q such that the process Q | ifM = N then P1 else P2is (F , h, l)-valid and ΣZK ` M{M̃/x̃} = N{M̃/x̃}. We also have that
B ≡EZK

P2. Similarly, by applying Subst, we get νn.νỹ.({M̃/x̃}ρ | Pσ) ≡EZK

νn.νỹ.({M̃/x̃}ρ | Q{M̃/x̃}ρ | (if (M = N) then P1 else P2)σ{M̃/x̃}ρ). Since M̃is in (F , h, l)-normal form with respect to νn.νỹ.{M̃/x̃} and M is (F , h, l)-valid,it is easy to see that EF ,h,l
FZK ` (Mσ){M̃/x̃}ρ = (M{M̃/x̃})ρ and (M{M̃/x̃})ρ isin (F , h, l)-normal form with respect to νn.νỹ.{M̃/x̃}. The reasoning is the samefor N . By Lemma 1, we get EF ,h,l

FZK ` M{M̃/x̃}ρ = N{M̃/x̃}ρ. The result followsfrom Then and structural equivalence.Else The reasoning is similar to the one in the previous item.Notice that the previous cases cover both the application of evaluation contexts and theclosure by structural equivalence. The proof for the �if� implication is similar and relieson the fact that ρ is injective when applied to terms in (F , h, l)-normal form.We now prove that process reduction, as de�ned by the labelled transition systems,is preserved as well. We proceed by cases on the label µ:
µ = a(M) By an inspection of Table 7, there exist x, P ′, Q such that

νñ.νỹ.({M̃/x̃} | P) ≡EZK
νñ.νỹ.({M̃/x̃} | a(x).P ′ | Q) and B ≡EZK

νñ.νỹ.({M̃/x̃} | P ′{M/x} | Q). Similarly, we have that νñ.νỹ.({M̃/x̃}ρ | Pσ) ≡EZK

νñ.νỹ.({M̃/x̃}ρ | a(x).P ′σ | Qσ). By α-renaming, we can assume x /∈ x̃ and, byScope, we derive free(M) ∩ {ñ, ỹ} = ∅. By In, Alias, Subst, and Res-Par, weget νñ.νỹ.({M̃/x̃}ρ | a(x).P ′σ | Qσ)
µ
→ νñ.νỹ.νx.({M/x}ρ | {M̃/x̃}ρ | P ′σ | Qσ).

µ = a〈b〉 The output term is a free channel. We have that νñ.νỹ. ({M̃/x̃} | P) ≡EZK

νñ.νỹ.({M̃/x̃} | a〈b〉.P ′ | Q) and B ≡EZK
νñ.νỹ.({M̃/x̃} | P ′ | Q). By Scope,

a /∈ ñ, and b /∈ ñ. Similarly, we have that νñ.νỹ.({M̃/x̃}ρ | Pσ) ≡EZK

νñ.νỹ.({M̃/x̃}ρ | a〈b〉.P ′σ | Qσ). The result follows from Out-Atom and Scope.
µ = νb.a〈b〉 The output term is a private channel. We have that

νñ, b.νỹ.({M̃/x̃} | P) ≡EZK
νñ, b.νỹ.({M̃/x̃} | a〈b〉.P ′ | Q) and

B ≡EZK
νñ.νỹ.({M̃/x̃} | P ′ | Q). Similarly, νñ, b.νỹ. ({M̃/x̃}ρ | Pσ) ≡EZK

νñ, b.νỹ.({M̃/x̃}ρ | a〈b〉.P ′σ | Qσ). The result follows from Out-Atom andOpen-Atom. 20

µ = νx.a〈x〉 We have that νñ.νỹ.({M̃/x̃} | P) ≡EZK
νñ.νỹ. ({M̃/x̃} | a〈M 〉.P ′ | Q),and, by Alias, Res-Par, Out-Atom, and Open-Atom, B ≡EZK

νñ.νỹ.({M/x} | {M̃/x̃} | P ′ | Q), for some x /∈ x̃ and with fv(M) ⊆ x̃. Simi-larly, we have that νñ.νỹ.({M̃/x̃}ρ | Pσ) ≡EZK
νñ.νỹ.({M̃/x̃}ρ | a〈M 〉.P ′σ | Qσ).The result follows from Alias, Res-Par, Out-Atom, and Open-Atom.In all cases, it is easy to see that the resulting extended process is (F , h, l)-valid. Theproof for the �if� implication is similar and relies on the fact that ρ is injective whenapplied to terms in (F , h, l)-normal form.We are �nally ready to prove that the dynamic compilation preserves static equivalence.We �rst characterize a notion of similarity for frames. The crucial ingredient of thisde�nition is that the two frames coincide when restricted to bound variables, i.e., if theterms received as input by the corresponding extended processes coincide. This propertyis naturally ful�lled by the frames associated to labelled bisimilar extended processes.The next lemma says that a test succeeds if and only if its compilation does.Lemma 3 (Test Preservation) Let φ be an (F , h, l)-valid frame and ρ be the (F , h, l)-dynamic compilation. For every M,N in (F , h, l)-normal form with respect to φ suchthat (free(M) ∪ free(N)) ∩ bound(φ) = ∅, we have that (M = N)φ⇔ (Mρ = Nρ)φρ.Proof. The proof follows from Lemma 1 and Proposition 2.The next de�nition introduces the notion of similarity for frames.De�nition 15 (Frame Similarity) Two frames φ and ψ are similar, written φ ∼ ψ,if and only if the following conditions hold:1. There exist F , h, and l such that φ and ψ are (F , h, l)-valid frames.2. φ = νñ.νỹ.{M̃/x̃} and φ = νm̃.νỹ.{Ñ/x̃}.3. For every xi ∈ bv(φ), we have Mi = Ni.The next lemma says that for testing similar frames, it su�ces to only consider terms in

(F , h, l)-normal form.Lemma 4 (Valid Tests) Let φ and ψ be two (F , h, l)-valid and similar frames. Forevery M,N such that (M = N)φ holds and (M = N)ψ does not hold, there exist M ′, N ′in (F , h, l)-normal form with respect to φ and ψ such that (M ′ = N ′)φ holds and (M ′ =
N ′)ψ does not hold.Proof. We �rst show that it is possible to replace M by a term M ′ such that everysubterm of the form Publicj(Z) is in (F , h, l)-normal form with respect to φ.
M = T [Publicj(Z)] and EZK ` Zφ = ZKi, j′(M̃, Ñ , F), with j′ ≥ j > l. By an inspectionof the equational theory, we have two cases:21

• There exists Z ′ = ZKi, j′(M̃ ′, Ñ ′, F ′) ∈ terms(Z) such that EZK ` Z ′φ =

ZKi, j′(M̃, Ñ , F). Therefore, EZK ` Publicj(Z)φ = N ′
jφ. If EZK `

Publicj(Z)ψ = N ′
jψ, then we can replace Publicj(Z) by N ′

j. Otherwise, wehave that (Z = Z ′)φ holds and (Z = Z ′)ψ does not hold, as desired.
• There exists a variable x ∈ terms(Z) such that ZKi, j′(M̃ ′, Ñ ′, F ′) ∈ terms(xφ)and EZK ` ZKi, j′(M̃ ′, Ñ ′, F ′) = ZKi, j′(M̃ , Ñ , F). By de�nition 13 andde�nition 15, there exists a variable y ∈ bound(φ) ∩ bound(ψ) and a term
Z bound to y in φ and ψ such that ZKi, j′(M̃ ′′, Ñ ′′, F ′′) ∈ terms(Z),
free(Z) ∩ bound(φ) = ∅, and N ′′

j φ = Nj. If EZK ` Publicj(Z)ψ = N ′′
j ψ,then we can replace Publicj(Z) by N ′′

j . Otherwise, (Z = ZKi, j′(M̃ ′′, Ñ ′′,

F ′′))φ holds and (Z = ZKi, j′(M̃ ′′, Ñ ′′, F ′′))ψ does not hold, as desired. ByDe�nition 13, ZKi, j′(M̃ ′′, Ñ ′′, F ′′) and N ′′
j are in normal form with respect to

φ and ψ.We can similarly prove that it is possible to remove every subterm of the form Veri,j(F,Z)that is not in (F , h, l)-normal form. At the end of such a process, possibly applied to N ,we get two terms M ′ and N ′ in (F , h, l)-normal form with respect to φ and ψ such that
(M ′ = N ′)φ holds and (M ′ = N ′)ψ does not hold, as desired.We can now formulate the theorem stating that verifying static equivalence on framesobtained by the encoding su�ces to prove static equivalence on the original frames.Lemma 5 (Preservation of Static Equivalence) Let φ and ψ be similar and (F , h, l)-valid frames such that dom(φ) = dom(ψ). Let ρ be the (F , h, l)-dynamic compilation. If
φρ ≈s

E
F,h,l
FZK

ψρ then φ ≈s
EZK

ψ.Proof. By De�nition 10, we have to prove that EZK ` (M = N)φ ⇔ EZK ` (M = N)ψ,for every M,N ∈ TΣZK
, only if EF ,h,l

FZK ` (M ′ = N ′)φρ ⇔ EF ,h,l
FZK ` (M ′ = N ′)ψρ, forevery M ′, N ′ ∈ T

ΣF,h,l
FZK

. Suppose that there exist M,N such that (M = N)φ holdsand (M = N)ψ does not hold. By Lemma 4, we can assume that M and N are in
(F , h, l)-normal form with respect to φ and ψ. By Lemma 3, (Mρ = Nρ)φρ holds and
(Mρ = Nρ)ψρ does not hold. Therefore, φρ and ψρ are not statically equivalent, yieldinga contradiction.The following lemma asserts that the equivalence of the terms occurring in input labelsdoes not a�ect labelled bisimilarity.Lemma 6 (Equivalent Labels) Let A and B be extended processes such that A a(M)

→ A′,
B

a(M)
→ B′, and φ(A) ≈s

EZK
φ(B). Then for every N such that EZK ` Mφ(A) = Nφ(A)and A a(N)

→ A′, we have that B a(N)
→ B′. 22

Proof. Since the frames of the two extended processes are statically equivalent, we havethat EZK ` Mφ(B) = Nφ(B) and dom(φ(A)) = dom(φ(B)). Possibly after applying α-renaming on bound names, we get the result by applying In, Scope, and Struct.We can �nally show that verifying labelled bisimilarity on extended processes obtained bythe compilation su�ces to prove labelled bisimilarity on the original extended processes.With Theorem 3, this proves Theorem 1 as desired. In the following, for every (F , h, l)-valid A = νñ.νỹ.({M̃/x̃}|P), we write Aρσ to denote νñ.νỹ.({M̃/x̃}ρ|Pσ).Lemma 7 (Preservation of Labelled Bisimilarity) Let A,B be extended processessuch that A = νñ.νỹ.({M̃/x̃}|P), B = νñ′.νỹ.({M̃ ′/x̃}| P ′), for some (F , h, l)-valid Pand P ′ and νñ.νỹ.{M̃/x̃} ∼ νñ′.νỹ.{M̃ ′/x̃}. Let σ be the (F , h, l) static compilation and
ρ be the (F , h, l)-dynamic compilation. If Aρσ ≈l

E
F,h,l
FZK

Bρσ, then A ≈l
EZK

B.Proof. Since Aρσ ≈l

E
F,h,l

FZK

Bρσ, we can consider the smallest symmetric relation
R′ ⊆≈l

E
F,h,l
FZK

satisfying the conditions 1, 2, and 3 of De�nition 11 and such that
AρσR′Bρσ. Given ρ and σ, let us de�ne the relation R as the smallest symmetricrelation satisfying the following conditions:1. for every (F , h, l)-valid A,B such that AρσR′Bρσ and φ(Aρσ) ∼ φ(Bρσ), we havethat ARB.2. for every A,B,A′, B′ such that ARB, A ≡EZK

A′ and B ≡EZK
B′, we have that

A′RB′.We want to prove that R satis�es the conditions 1, 2, and 3 of De�nition 11.Condition 1 We want to prove that for every A,B such that ARB, we have that
φ(A) ≈s

EZK
φ(B). If ARB, then there exist (F , h, l)-valid A′ and B′ such that

A ≡EZK
A′, B ≡EZK

B′, and A′ρσR′B′ρσ. By de�nition of R′, φ(A′ρσ) ∼ φ(B′ρσ)and φ(A′ρσ) ≈s

E
F,h,l

FZK

φ(B′ρσ). It is easy to see that φ(A′) ∼ φ(B′). By Lemma5, φ(A′) ≈s
EZK

φ(B′). Since structural equivalence preserves static equivalence,
φ(A) ≈s

EZK
φ(B), as desired.Condition 2 We want to prove that for every A,B such that ARB, we have that (if

A → A1, then B →∗ B1 and A1RB1 for some B′). If ARB, then there exist
(F , h, l)-valid A′ and B′ such that A ≡EZK

A′, B ≡EZK
B′, and A′ρσR′B′ρσ. ByLemma 2, for every A1 such that A → A1, there exists a (F , h, l)-valid A′

1 suchthat A′ → A′
1, A′

1 ≡EZK
A1, and A′ρσ → A′

1ρσ; we can �nd similar B1 and B′
1for B and B′, respectively. By Lemma 2 and De�nition 15, it is easy to see that

φ(A′
1ρσ) ∼ φ(B′

1ρσ). By de�nition ofR, A′
1RB

′
1 and, since ρ is closed by structuralequivalence, A1RB1, as desired. 23

Condition 3 We want to prove that for every A,B such that ARB, we have that (if
A

µ
→ A1 and fv(µ) ⊆ dom(A) and bn(µ) ∩ fn(B) = ∅, then B →∗ µ

→→∗ B1 and
A1RB1 for some B1). If ARB, then there exist (F , h, l)-valid A′ and B′ such that
A ≡EZK

A′, B ≡EZK
B′, and A′ρσR′B′ρσ. By Lemma 2 and Lemma 6, for every A1such that A µ

→ A1, there exists a (F , h, l)-valid A′
1 such that A′ µ

→ A′
1, A′

1 ≡EZK
A1,and A′ρσ → A′

1ρσ; we can �nd similar B1 and B′
1 for B and B′, respectively. ByLemma 2 and De�nition 15, it is easy to see that φ(A′

1ρσ) ∼ φ(B′
1ρσ). By de�nitionof R, A′

1RB
′
1 and, since ρ is closed by structural equivalence, A1RB1, as desired.Therefore A ≈l

EZK
B, as desired.Theorem 1 then follows directly from Lemma 7 since ≈l and ≈ coincide in the appliedpi-calculus.In some cases, the analysis of observational equivalence using the tool ProVerif [6]does not terminate due to the presence of the constructors ∧ and ∨ and their equations.In these cases, it is useful to remove ∧ and ∨ from the equational theory if they are notused in the protocol. Protocols often contain these constructors only in the formulas ofzero-knowledge proofs. Then, after compilation, the protocol does not contain ∧ and ∨any more, but the equational theory produced by the compiler does. In these cases, thefollowing theorem often allows to modify the equational theory produced by the compilerin such a way that ∧ and ∨ do not occur any more:Theorem 4 (Unfolding) Given F , h, l, let EF ,h,l

FZK
be the equational theory de�nedin Table 6. Let F ′ ⊆ F and τ̃1

i,j,F , . . . , τ̃
n
i,j,F be tuples of arity i + j associated toeach (i, j, F) ∈ F ′, where n = ni,j,F . Assume that for every (i, j, F) and tuples

M̃ = M1, . . . ,Mi+j of arity i + j, we have that (∃k, σ such that M̃ = τ̃k
i,j,Fσ ⇔

EF ,h,l
FZK ` F{M̃1,i/α1,i}{M̃i+1,i+j/β1,j} = true), where M̃1,i = M1, . . . ,Mi and M̃i+1,i+j =

Mi+1, . . . ,Mi+j . Let E be obtained by replacing all the rules containing PZKF
i,j, for every

(i, j, F) ∈ F ′, by the following set of rules:
VerFi,j(ZKF

i,j(τ̃
1
i,j,F)) = true, . . . ,VerFi,j(ZKF

i,j(τ̃
n
i,j,F)) = true

Publick(ZKF
i,j(x̃, ỹ)) = yk

Formula(ZKF
i,j(x̃, ỹ)) = FThen EF ,h,l

FZK
\{(M,N) | PZKF

i,j occurs in M or N ∧ (i, j, F) ∈ F ′} = E.Note that EF ,h,l
FZK

\{(M,N) | PZKF
i,j occurs in M or N ∧ (i, j, F) ∈ F ′} = E triviallyimplies the preservation of observational equivalence, since PZKF

i,j is a private constructornot used in the protocol and thus never appears in terms produced by the protocol orthe adversary.Proof. All the equations de�ning EF ,h,l
FZK and depending on PZKF

i,j have a direct coun-terpart in the de�nition of E. The only subtlety concerns the equations for the veri�-cation of zero-knowledge proofs: for every (i, j, F) ∈ F ′, M̃, Ñ such that F{M̃1i/α1i,24

M̃i+1,j/β1j} = true, EF ,h,l
FZK

` VerFi,j(PZKF
i,j(M̃, Ñ , true)) = true can be exploited to prove

VerFi,j(ZKF
i,j(M̃ , Ñ)) = true. However, for every (i, j, F) ∈ F ′, M̃, Ñ there exist τk

i,j,F , σsuch that M̃ , Ñ = τkσ if and only if EF ,h,l
FZK

` F{M̃1i/α1i, M̃i+1,j/β1j} = true. Therefore
EF ,h,l

FZK
` VerFi,j(ZKF

i,j(M̃, Ñ)) = true if and only if E ` VerFi,j(ZKF
i,j(M̃ , Ñ)) = true.Additionally, after having removed all occurrences of ∧ and ∨, we need to be able toremove their equational rules. The soundness of this transformation is shown by thefollowing simple lemma:Lemma 8 (Removal of ∧ and ∨) Let E0 be an equational theory with signature Σ0and ∧,∨ /∈ Σ0 and true ∈ Σ0. Let Σ1 := Σ0 ∪ {∧,∨} and let E1 be the smallest equa-tional theory over Σ1 containing E0 and the equations {∧(true, true) = true,∨(true, x) =

true,∨(x, true) = true}. Let Σ2 := Σ1 and let E2 be the smallest equational theory over
Σ2 containing E0. Then for all processes P and Q not containing ∧ or ∨, we have that
P ≈E1

Q if and only if P ≈E2
Q.Proof. The proof has the same structure as the proof of Theorem 1. We �rst de�nea notion of normal form for TΣ1

terms with respect to φ, requiring that for any termof the form ∧(M1,M2) (resp. ∨(M1,M2)) occurring therein, EZK 0 M1φ = true or
EZK 0 M2φ = true (resp. EZK 0 M1φ = true and EZK 0 M2φ = true). We then de�nea notion of validity for terms and plain processes, which requires that ∧ and ∨ do notoccur therein. The de�nition of validity for frames and extended processes is similar toDe�nition 13, where the new de�nition of normal form and validity for terms and plainprocesses is taken into account. Finally, the compilation from TΣ1

to TΣ2
is simply de�nedas the identity function. It is easy to see that Proposition 1, Proposition 2, and Lemma1 still hold. Since the identity function is bijective, we have the double implication inLemma 5 and Lemma 7, as desired.The previous proof shows that the framework proposed in this section provides a method-ology for proving the soundness of any transformation of equational theories for whichProposition 1, Proposition 2, and Lemma 1 hold.5 Case Study: Direct Anonymous AttestationTo exemplify the applicability of our theory to real-world protocols, we analyze the secu-rity properties of the Direct Anonymous Attestation (DAA) scheme [9]. DAA constitutesa cryptographic protocol that enables the remote authentication of a hardware modulecalled the Trusted Platform Module (TPM), while preserving the privacy of the userowning the module. Such TPMs are now widely included in end-user hardware such asdesktop PCs and notebooks.The goal of the DAA protocol is to enable the TPM to sign arbitrary messages andto send them to an entity called the veri�er in such a way that the veri�er will onlylearn that a valid TPM signed that message, but without revealing the TPM's identity.The DAA protocol relies heavily on zero-knowledge proofs to achieve anonymity. The25

occurrence of these proofs in particular prevented a previous analysis of the protocolusing abstract veri�cation.The DAA protocol is composed of two subprotocols: the join protocol and the DAA-sign protocol. The join protocol allows a TPM to obtain a certi�cate from an entitycalled the issuer. The protocol ensures that even the issuer cannot link the TPM toits subsequently produced signatures. The DAA-sign protocol enables a TPM to sign amessage. This signed message is then veri�ed by the veri�er.We assume that every TPM has a unique id as well as a secret signature key called theendorsement key (EK). The issuer is assumed to know the public keys corresponding tothe secret EKs. We assume further a publicly known string bsnI called the basename ofthe issuer, as well as a publicly known unique string bsnV for each veri�er V . Every TPMhas a secret seed daaseed id that allows for deriving secret values fcnt := H(daaseed id , cnt)where H is some hash function. We will call fcnt the f-value for counter cnt . Each suchf-value represents a virtual identity with respect to which the TPM can execute the joinand the DAA-sign protocol.5.1 Join protocolIn the join protocol, the TPM can receive a certi�cate for one of its f-values f from theissuer. Such a certi�cate is basically just a signature on f of the TPM. However, sincewe do not want the issuer to learn f , we have to use blind signatures, i.e., the requestfrom the TPM to the issuer contains blind(f, v), for some random v, instead of just
f . Furthermore, for reasons that will become clear in the description of rogue-taggingbelow, the TPM is required to also send the hash value NI := exp(ζI , f) along withits request where ζI is a value derived from the issuer's basename bsnI . The function
exp constitutes an exponentation in the original speci�cation of DAA; we model it asa hash function with two arguments. Since we do not want the TPM to use di�erentf-values in the computation of NI and of blind(f, v), we have to attach a ZK proof thatthe same f-value has been used in both cases. After checking the proof, the issuer signsthe blinded f-value blind(f, v) and returns this signature x := blindsign(blind(f, v), skI).Then cert := unblind(x, v) is a valid blind signature on f . This certi�cate cert will beused for the DAA-sign protocol. Since we want to guarantee that only valid TPMs canreceive certi�cates, the TPM authenticates all its communication to the issuer using itsendorsement key ekid. The join protocol has the following overall shape:TPM Issuer

id , sign(ZK(f,v;blind(f,v),NI ,ζI ;Fjoin), ekid) //

oo blindsign(blind(f,v),skI)with Fjoin := (β1 = blind(α1, α2) ∧ β2 = exp(β3, α1)). In our calculus, we can modelthe behavior of the TPM in the join protocol as follows:
26

tpmjoin := let f = hash(pair(daaseed(id), cnt)) in

νv.
let U = blind(f, v) in

let ζI = hash(pair(n1, bsnI)) in

let NI = exp(ζI , f) in

let zkp = ZK(f, v;U,NI , ζI ;Fjoin) in

pub〈pair(id), sign(zkp, sk(ek(id)))〉.
pub(x).
let cert = unblind(x, v) in

if blindver(cert , f, pk(issuerK)) = true then

event JOINED(id , cnt , cert).och〈cert 〉Here we use let x = M in P as syntactic sugar for P{M/x}. The occurence of an event
M is modeled as c〈M 〉 where c is a distinguished channel used only for events. Given theexplanations above, most steps in this process should be self-explanatory, however, a fewpoints merit further explanation: The secret seed daaseedid is modelled by the privateconstructor daaseed taking as input id. In the computation of ζI := hash(pair(n1, bsnI)),
n1 is a free name. In the original DAA protocol [9], the integer 1 is used here. Forcommunication with the issuer, we use the channel pub. The secret key ekid and thepublic key sk I are modeled as sk(ek(id)) and pk(issuerK) where ek and issuerK are privateconstructors. That is, by ek(id) we model a secret function mapping a TPM's identityto the endorsement secret/public key pair. We then use the operators sk and pk toaccess the secret and the public key. The function issuerK is nullary since, for the sakeof simplicity, we model a single issuer. The private channel och will later be modeled asa secret channel to pass the received certi�cate to the DAA-sign process.Accordingly, we model the issuer's part in the join protocol as follows:

issuer := ! pub(msg).
let id = first(msg) in

let sig = snd(msg) in

let zkp = msg(sig) in

if ver(sig, zkp, pk(ek(id)) = true then

if Ver2,3(Fjoin; zkp) = true then

let U = Public1(zkp) in

let N = Public2(zkp) in

let ζ = Public3(zkp) in

if rogue = true then 0 else

if rogueid = true then 0 else

if ζ = hash(pair(n1, bsnI)) then

let cert = blindsign(U, sk(issuerK)) in

pub〈cert 〉In this process, rogue and rogueid represent predicates depending on N , ζ and id . These27

are used for the detection of rogue TPMs. We will specify rogue and rogueid in moredetail below when we discuss rogue detection.5.2 DAA-sign protocolAfter successfully executing the join protocol, the TPM has a valid certi�cate cert for itsf-value f signed by the issuer. Since we only want valid TPMs to be able to DAA-sign amessage m, the TPM will have to convince a veri�er V that it possesses a valid certi�cate
cert. Of course, the TPM cannot directly send cert to the veri�er V , since this wouldreveal f . Instead, the TPM produces a zero-knowledge proof zkp that it knows a validcerti�cate. If the TPM, however, would just send (zkp,m) to the veri�er, the protocolwould be subject to a trivial message substitution attack. We instead combine m withthe proof such that one can only replace m if one redoes the proof (and this again canonly be done by knowing a valid certi�cate). Fortunately, this can easily be done inour formalism by including m in the public parameters of the zero-knowledge proof zkp(there is no condition that a parameter included in the proof actually has to be used bythe formula). In this fashion we produce a kind of zero-knowledge signature that canonly be forged if the attacker is able to produce a valid proof. Furthermore, we againinclude a value N := exp(ζ, f) whose importance will become clear below. The overallshape of the DAA-sign protocol is hence as follows:TPM Veri�er

ZK(f,cert ;N,ζ,pkI ,m;Fsign) //with
Fsign := β1 = exp(β2, α1) ∧ blindver(α2, α1, β3).An interesting point here is the choice of ζ. By prescribing di�erent derivations of ζ, weget di�erent modes of DAA-signing: an anonymous and a pseudonymous one. In caseof anonymous DAA-signing, ζ is a fresh name chosen by the veri�er. In this case, twosignatures by the same TPM will contain values N = exp(ζ, f) and N ′ = exp(ζ ′, f) fordi�erent ζ, ζ ′, so the attacker will not be able to link these signatures. In the case ofpseudonymous DAA-signatures, however, we derive ζ in a deterministic fashion from thebasename bsnV of the veri�er. Then any two signatures for the same veri�er using thesame f-value will have the same value of N ; hence these signatures can be linked. It willnot be possible, however, to link these signatures to the execution of the join-protocol orto signatures for other veri�ers. N takes the role of a veri�er-speci�c pseudonym.We now discuss how to write this protocol in our calculus. We start with the anony-

28

mous variant where ζ is a fresh name:
daasigna := νζ.

let f = hash(pair(daaseed(id), cnt)) in

let N = exp(ζ, f) in

let zkp = ZK(f, cert ;N, ζ, pk(issuerK),m;Fsign) in

event DAASIGNEDA(id , cnt ,m).

pub〈zkp〉

daavera := pub(zkp).

if Ver2,4(Fsign; zkp) = true then

let N = Public1(zkp) in

let ζ = Public2(zkp) in

if Public3(zkp) = pk(issuerK) then

let m = Public4(zkp) in

if rogue = true then 0 else

event DAAVERIFIEDA(m)As in the case of the issuer process, rogue is a predicate depending on ζ and N thatwe will elaborate upon further when we discuss rogue detection below.The pseudonymous variants of these processes are similarly de�ned: The pseudony-mous DAA-signing process daasignp is de�ned like daasigna, except that νζ is re-placed by let ζ = hash(pair(n1, bsnV)) in . The corresponding veri�cation pro-cess daaverp is de�ned like daavera, except that after let ζ = Public2(zkp) inwe insert if ζ = H(pair(n1, bsnV)) then . Furthermore, to be able to formu-late a more �ne-grained authenticity property below, we output the more infor-mative events DAASIGNEDP(id, cnt, bsnV ,m) and DAAVERIFIEDP(m, bsnV , N) instead ofDAASIGNEDA(id, cnt,m) and DAAVERIFIEDA(m), respectively. These changes yield the fol-

29

lowing two processes:
daasignp := let ζ = hash(pair(nV , bsnV)) in (∗)

let f = hash(pair(daaseed(id), cnt)) in

let N = exp(ζ, f) in

let zkp = ZK(f, cert ;N, ζ, pk(issuerK),m;Fsign) in

event DAASIGNEDP(id , cnt , bsnV ,m).

pub〈zkp〉

daaverp := pub(zkp).

if Ver2,4(Fsign; zkp) = true then

let N = Public1(zkp) in

let ζ = Public2(zkp) in

if ζ = hash(pair(nV , bsnV)) then (∗)
if Public3(zkp) = pk(issuerK) then

let m = Public4(zkp) in

if rogue = true then 0 else

event DAAVERIFIEDP(m, bsnV , N)with nV := n1. The most important changes with respect to the anonymous DAA-signprotocol are marked with (∗). Note that we parametrized these processes with respectto the value nV := n1 used in the computation of ζ. This is to be able to express thechanges needed for circumventing the attack described in [26], see below.5.3 Rogue-taggingSo far, we presented the DAA protocol under the assumption that no TPM is compro-mised. A TPM is a single chip so that it is very di�cult to extract private informationfrom a TPM. Extracting such private information is however not impossible, so we haveto expect that a few TPMs can get compromised. But as soon as a single TPM is com-promised, the attacker can sign arbitrary messages, and these signatures even cannot betraced to this speci�c TPM. Even worse, the attacker could release the f-value and a cor-responding certi�cate on the Internet; this would allow everyone to fake DAA-signatures.To capture this last case, a so-called rogue list is introduced that contains all f-valuesthat have been published on the Internet. Furthermore, the issuer maintains a list ofrevoked TPM ids. Since the communication with the issuer is authenticated, the issuercan refuse to issue certi�cates to a revoked TPM. Already issued certi�cates stay valid.To address this problem � note that in every protocol execution (join or DAA-sign) basedon some f-value f � the TPM sends a pair (ζ,N) with N = exp(ζ, f). So given a listof rogue f-values F := (f1, . . . , fn), we can check whether f ∈ F by checking whether
N = exp(ζ, fi) for some i ∈ [1, n]. Thus the attacker cannot use a certi�cate relative toan f-value that has been marked rogue. 30

To model this mechanism in our calculus, we introduce two predicates rogueid and
rogue in the issuer and veri�er processes above. The predicate rogueid (used only be theissuer) is de�ned to evaluate to true i� the TPM id is marked rogue. So if, e.g., the ids
id1, id2, id3 are marked rogue, we would set rogueid := (id = id1 ∨ id = id2 ∨ id = id3).The predicate rogue checks whether N = exp(ζ, f ′) for some f ′ on the rogue list, so if, e.g.,the f-values f1, f2, f3 were rogue-listed, we would de�ne rogue := (N = exp(ζ, f1) ∨N =
exp(ζ, f2) ∨N = exp(ζ, f3).5.4 Security properties of DAAWe will now discuss the main security properties of DAA and how to model them in ourcalculus.5.4.1 AuthenticityThe �rst property we would like to model is authenticity: If the veri�er accepts a message
m, then some TPM has DAA-signed this message m. To model this, we consider thefollowing process:

issuer|pub〈pk(issuerK)〉|!pub(id).TPMs|!daavera|!daaverpThe output pub〈pk(issuerK)〉 re�ects that the public key pk(issuerK) is publicly known.if we omitted this output, the adversary could not generate this term, since issuerK is aprivate name (otherwise the adversary would know sk(issuerK)). The subprocess TPMsre�ects that we require authenticity to hold even if the adversary controls an arbitrarynumber of TPMs in an arbitrary fashion (except for learning their secrets). We modelthis process as follows:
TPMs :=!pub(cnt).νoch .(tpmjoin|

(och(cert).!pub(m).(daasigna|pub(bsnV).daasignp))).Thus for any pair of id , cnt received from the adversary, this process performs a join,and with the certi�cate cert received from the issuer, it DAA-signs any message manonymously or pseudonymously with respect to arbitrary basenames bsnV . Note howwe used inputs to bind the free variables id , cnt , och ,m, bsnV in tpmjoin, daasigna, and
daasignp.Given this process, authenticity is de�ned as the ful�llment of the following two traceproperties: DAAVERIFIEDP(m, bsn, N) ⇒ DAASIGNEDP(id , cnt , bsn ,m)DAAVERIFIEDA(m) ⇒

(DAASIGNEDA(id , cnt ,m) ∨DAASIGNEDP(id , cnt , bsn,m)
)
.Intuitively, the �rst property means that if an event DAAVERIFIEDP(m, bsn , N) occurs,then also DAASIGNEDP(id , cnt , bsn ,m) occurs in that trace with the same values of bsn and31

m, i.e., when a veri�er accepts a pseudonymously signed message m, then a valid TPMactually sent that message m for that veri�er. Similarly, the second property guaranteesthat if a veri�er accepts a message as anonymously signed, that message has been signedanonymously or pseudonymously by some valid TPM. (An inspection of the protocolreveals that we cannot expect pseudonymously signed messages not to be accepted byanonymous veri�cation.) We refer to De�nition 8 for a formal de�nition of these traceproperties.Trace properties such as the above authenticity properties can be veri�ed with themechanized prover ProVerif [6]. We applied the compilation described in Section 4 andfeed the output � now a process in a �nitely generated equational theory � to ProVerif.ProVerif successfully veri�es the authenticity properties. The running time of this proofis 3 seconds on a Pentium 4, 3GHz. A more detailed description of the necessary steps isgiven in Section 6.2. The tool implementing the compiler from Section 4.1 can be foundat [4]. So far, we have not investigated the case that some TPMs are rogue-listed (i.e.,
rogue = rogueid = false). An analysis of this case can be found in Section 6.2.3.5.4.2 AnonymityThe second property we would like to examine is the anonymity of the anonymous DAA-sign operation. In other words, if two TPMs T1, T2 might have signed a given message, theattacker should not be able to distinguish which TPM has signed the message. Obviously,this can be formalized as observational equivalence between two processes P1, P2, wherein Pi the TPM Ti signed the concerned message. E.g., a natural formulation would beto de�ne P1 and P2 as follows:

Pi := leak |

(let (id , cnt , och) = (id1, n1, int1) in tpmjoin) |

(let (id , cnt , och) = (id2, n1, int1) in tpmjoin) |

(int1(cert1).int2(cert2).

let (id , cnt , cert) = (id i, n1, cert i) in daasigna)with leak :=
(
!pub(id).pub〈pk(ek(id))〉

)
|pub〈pk(issuerK)〉 | pub〈sk(issuerK)〉, where

id1, id2, n1 are free names and int1, int2 are private channels for transmitting the cer-ti�cate from the tpmjoin process to the daasigna process. The leak process leaks allpublic information and all secrets of the issuer. This models the case that the issuer iscorrupted, thus making the security property stronger since anonymity holds even whenthe issuer colludes with the attacker. The two invocations of tpmjoin request certi�catesfor di�erent ids id1 and id2. These certi�cates are then assigned to the variables cert1and cert2. Then a message m (m is a free name in daasigna) is signed with respect toeither id1 and cert1 or id2 and cert2, depending on whether we consider the process P1or P2. Anonymity is then de�ned as the statement that P1 and P2 are observationallyequivalent.Although we can successfully prove this fact using our compiler and ProVerif, closerinspection reveals that this property is not very general. For example, it does not cover32

Table 8 The processes P1 and P2 in the de�nition of anonymity. The numbers in squarebrackets refer to the steps in the description of the security property.
[1] Pi := leak | (pub(x). let id = corrupt(x) in pub〈daaseed(id)〉.pub〈sk(ek(id))〉) | (1)
[3] (let (id , cnt , och) = (id1, cnt1, int1) in tpmjoin) | (2)
[3] (let (id , cnt , och) = (id2, cnt2, int2) in tpmjoin) | (3)
[4] (let id = id1 in TPMs) | (let id = id2 in TPMs) | (4)
[3] (

int1(cert1).int2(cert2). (5)
[5] (

(!pub(m). let (id , cnt , cert) = (id i, cnt i, cert i) in daasigna) | (6)
[4] (!pub(m). let (id , cnt , cert) = (id1, cnt1, cert1) in daasigna) | (7)
[4] (!pub(m). let (id , cnt , cert) = (id2, cnt2, cert2) in daasigna) | (8)
[4] (!pub(m). pub(bsnV). let (id , cnt , cert) = (id1, cnt1, cert1) in daasignp) |(9)
[4] (!pub(m). pub(bsnV). let (id , cnt , cert) = (id2, cnt2, cert2) in daasignp)

)(10)the case that the TPM T1 �rst signs a few messages, and then either T1 or T2 sendsanother message (so that the adversary can try to link messages). Further it does not takeinto account that the adversary might in�uence (i.e., choose) the messages to be signed,or that the Ti signs several messages, or that additionally pseudonymous signatures areproduced. To capture all these cases, we need a much more complex security de�nitionwhich is captured by the following game:1. The issuer and an arbitrary number of TPMs are corrupted (i.e., their secrets leak).2. Two challenge TPM ids id1, id2 are chosen. Two cnt-value cnt1, cnt2 are chosen.3. The TPMs id1, id2 join with respect to cnt-value cnt1, cnt2, respectively.4. The adversary may ask both challenge TPMs to execute the join protocol andto sign messages chosen by the adversary anonymously or pseudonymously withrespect to either the certi�cates obtained in Step 3 or the certi�cates obtained inthis step. This may happen arbitrarily often.5. The adversary may ask the challenge TPM id i to sign a message chosen by theadversary with respect to the certi�cate cert i. Here i ∈ {1, 2} depending on whetherwe are running the process P1 or P2 (and the adversary has to distinguish whether
i = 1 or i = 2). This may happen arbitrarily often.We model this by the processes P1, P2 given in Table 8. These processes constitute aformalization of the game depicted above. Note that although the adversary's possibilitiesin lines (7�10) seem to be subsumed by the invocations of the subprocess TPMs in line (4),there is a slight di�erence: The process TPMs does not allow the attacker to sign messageswith the certi�cates obtained in Step 3. The constructor corrupt in (1) is used to generate33

Table 9 The processes P1 and P2 in the de�nition of pseudonymity. Compare also withTable 8.
Pi := leak | (pub(x). let id = corrupt(x) in pub〈daaseed(id)〉.pub〈sk(ek(id))〉) | (11)

(let (id , cnt , och) = (id1, cnt1, int1) in tpmjoin) | (12)
(let (id , cnt , och) = (id2, cnt2, int2) in tpmjoin) | (13)
(let id = id1 in T̃PMs) | (let id = id2 in T̃PMs) | (14)(
int1(cert1).int2(cert2). (15)(
(!pub(m). let (id , cnt , cert) = (id i, cnt i, cert i) in daasigna) | (16)(
(!pub(m).pub(x). let (id , cnt , cert , bsnV) =

(id i, cnt i, cert i, bsnVch(x)) in daasignp) | (17)
(!pub(m). let (id , cnt , cert) = (id1, cnt1, cert1) in daasigna) | (18)
(!pub(m). let (id , cnt , cert) = (id2, cnt2, cert2) in daasigna) | (19)
(!pub(m).pub(x). let (id , cnt , cert , bsnV) =

(id1, cnt1, cert1, bsnVoth(x)) in daasignp) | (20)
(!pub(m).pub(x). let (id , cnt , cert , bsnV) =

(id2, cnt2, cert2, bsnVoth(x)) in daasignp)
) (21)with

TPMs :=!pub(cnt).νoch.(tpmjoin|(och(cert).!pub(m).

(daasigna|pub(x).let bsnV = bsnVoth(x) in daasignp))).an in�nite supply of ids of corrupted TPMs.The property of anonymity is then formalized as the statement that P1 and P2 areobservationally equivalent, which is a statement accessible to ProVerif. When directly ap-plying ProVerif to the output of the compiler described in Section 4.1, however, ProVerifdoes not terminate. Instead, we additionally have to rewrite the resulting theory usingthe technique given by Theorem 4 and Lemma 8. After this additional step, ProVerifsuccessfully veri�es that P1 and P2 are observationally equivalent. The running time is149 seconds on a Pentium 4, 3GHz. More details can be found in Section 6.2.3. Notethat in the case of anonymity, we do not need to consider the case of rogue-listing, sinceneither the issuer nor the veri�er appear in corrupted form.5.4.3 PseudonymityModeling the pseudonymity requirements is similar to anonymity; however, there area few additional subtleties to be considered. A naive approach of modeling the security34

of the pseudonymous signatures would be to take the process described in Table 8, butreplace daasigna by daasignp in line (6) and let the adversary choose the value of bsnV inthat line. This denotes the fact that the adversary can now ask the challenge TPM id i toperform a pseudonymous signature. The resulting security property, however, cannot beexpected to hold since the adversary could request a pseudonymous DAA-signature fromthe challenge TPM id i via line (6) and a pseudonymous from the TPM id1 via line (9).Then the adversary could compare whether both signatures carry the same pseudonym
N , if so we have i = 1, otherwise we have i = 2. Instead, we must require that thesignatures produced in lines (9,10) to use a di�erent basenames than those in line (6).We do this using two di�erent sets of basenames. The basenames allowed for requestinga signature from the challenge TPM id i are of the form bsnVch(x) and those allowed forall other DAA-sign requests are of the form bsnVoth(x) where bsnVch and bsnVoth areconstructors of arity 1. The resulting processes P1, P2 are depicted in Table 9. Note thatwe allow the adversary to request both anonymous and pseudonymous DAA-signaturesfrom the challenge TPM id i.Using our compiler and ProVerif, we can show that P1 and P2 are observationallyequivalent.1 The veri�cation of this fact takes 56 seconds on a Pentium 4, 3GHz.Our modelling in Table 9 implicitly assumes that it is guaranteed that the basename
bsnI of the issuer does not equal any of the basenames of the veri�ers. (The basename
bsnI of the issuer is modelled as a free name.) It is known that if the basename ofthe issuer may coincide with one of the veri�ers basenames there is an attack on thepseudonymity of the system [26]: If bsnI = bsnV , the values ζ computed by the tpmjoinand the daasignp processes are equal. If further both processes use the same f-value f ,the resulting pseudonym N = exp(ζ, f) will also be equal. This allows to link signaturesand joins. To model this, we model bsnI as a term of the form bsnVch(x). More exactly,we set

P̃i := let bsnI := bsnVch(n0) in Piand ask whether P̃1 and P̃2 are observationally equivalent. As expected, the combinationof our compiler and ProVerif successfully detects the attack and outputs that P̃1 and
P̃2 are not observationally equivalent. The veri�cation takes 40 seconds on a Pentium 4,3GHz.In [26] it is proposed to �x the protocol by using di�erent integers in the computationof ζ in the processes tpmjoin and daasignp. We do this by de�ning nV := n0 instead of
nV := n1 in the de�nition of daasignp. Using this change, our compiler together withProVerif successfully determines that P̃1 and P̃2 are observationally equivalent. Theveri�cation takes 62 seconds on a Pentium 4, 3GHz.6 Mechanized Security Proofs for DAAIn this section, we will examine the practical applicability of the results of the previoussections to mechanized security proofs. Instead of designing a new tool from scratch,1As with the proof of anonymity, we have to apply Theorem 4 and Lemma 8 to ensure termination.35

we implemented a compiler that generates input for the automated prover ProVerif [6]according to the description given in Section 4.1. This compiler together with exampleinputs can be found at [4]. To show how our theory is applied, we analyze two protocols,namely the simple example protocol from Section 3.3 and the DAA protocol [9]. Wewill describe how to prove di�erent security properties of these protocols and also whatpitfalls occurred in our investigation and how to avoid these.6.1 Example ProtocolWe �rst examine the example protocol from 3.3. Many of the techniques described herewill also be used in the more complex example of DAA below. We model the exampleprotocol as follows (omitting the speci�cation of the base theory here):2free pub,A,B.private free priv,s1,s2,s3.define zkproof =land(or(or(eq(alpha2,beta1),eq(alpha2,beta2)),eq(alpha2,beta3)),sigver(alpha1,beta4,alpha2)).let server = event GAVEAUTHFOR(s,A,B); out(priv,sign(pair(A,B),sk(s))).let B = in(priv,sig); if sigver(sig,pair(A,B),pk(s))=true thenout(pub,zk(sig,pk(s);pk(s1),pk(s2),pk(s3),pair(A,B);zkproof)).let A = in(pub,zkp); if zkver(2;4;zkproof;zkp)=true thenif public1(zkp)=pk(s1) thenif public2(zkp)=pk(s2) thenif public3(zkp)=pk(s3) thenif fst(public4(zkp))=A thenevent GOTAUTHFOR(snd(public4(zkp))).let leakpublic = out(pub,pk(s1)) | out(pub,pk(s2)) | out(pub,pk(s3)).The syntax of this protocol should be mostly self-explanatory. It is the syntax of ProVerifwith a few additions particular to our tool. The define statement de�nes an abbreviationzkproof for the formula we use in all ZK proofs and veri�cations (we use land insteadof and since and is a reserved keyword in proVerif). The process server produces asignature on pair(A,B) using the secret key sk(s) and sends it to B over a secret channel.All server processes Si are modelled using this single process server by instantiating swith di�erent identities.The process B then waits for a message from a server, checks whether this messageconstitutes a valid signature of pair(A,B) and then sends a ZK proof to A that it knowsa signature sig that is valid with respect to one of the keys pk(s1), pk(s2), pk(s3) (with-out revealing which one). Note the syntax of the ZK constructor: It takes arguments2[4], �le simple.pvi. 36

(α1, . . . , αi;β1, . . . , βj ;F); the placement of the semicolons indicate which arguments areprivate (αµ), which are public (βµ) and which is the formula to be proven (F).The process A waits for the proof sent by B and assigns it to the variable zkp. It�rst veri�es whether zkp is actually a valid proof of the correct arity (2;4) for the rightformula zkproof. Further it veri�es that the public keys given in the ZK proof are theright ones and that the message m of which B claims to know a signature is indeed apair having A as its �rst component. If so, A claims to have received authorization tocommunicate with the process whose identity is given in the second component of m.Finally, we need to model a fourth process. This is due to the fact that we hadto declare the server ids s1, s2, s3 as private free names since otherwise the adversarywould know the secret keys sk(s1), sk(s2), sk(s3). Since the adversary should howeverknow pk(s1), pk(s2), pk(s3), we de�ne a process leakpublic that outputs these valueson a public channel.So far these processes stand by themselves and are not executed in a common context.How these processes are actually executed depends on the property we want to prove.We will now model the �rst security property. We require that A will not acceptto communicate with B unless some server has signed an authorization. Or in theparlance of the events de�ned in the protocol description above, we want that if theevent GOTAUTHFOR(sender) occurs, then the event GAVEAUTHFOR(server , recipient , sender)occurred earlier with the same value of sender . This is modelled by the following codefragment:3compiler ZK.passthrough query ev:GOTAUTHFOR(sender)==> ev:GAVEAUTHFOR(server,A,sender).process leakpublic |(let s=s1 in server) |(let s=s2 in server) |(let s=s3 in server) |(let s=s1 in B) |AHere we see how we instantiate the value s to di�erent server ids, so that we can use thesingle de�nition of server for all occurrences of the server: We runs several instancesof server, and in each of them we substitute s with a di�erent server id using the letstatement. Similarly, we instantiate the process B so that it expects a message fromserver s1. The �rst line of the code fragment indicates which property we would like toprove. The keyword passthrough simply indicates that this command should be passedthrough directly to ProVerif and not be parsed by our compiler.Finally, we have to tell our compiler what to do with our code. This is done by thestatement compiler ZK which instructs our tool to implement the compiler as described3[4], �le simple-auth.pvz. 37

in Section 4.1.If we compile and execute this code (see the README �le in [4] for instructions) ProVerifsuccessfully determines that the required property is indeed ful�lled (the running timeis less than one second on a Pentium 4, 3GHz). This property intuitively depends bothon the soundness of the ZK proof (i.e., we cannot prove a wrong statement) and on theunforgeability of the signatures.We will now investigate a more complex property: We require that given the publiccommunication between A and B, we cannot determine which server authorized the com-munication. In other words, we want observational equivalence between a process whereserver s1 authorizes B and a process where server s2 authorizes B. This can be modelledas follows:4process leakpublic |(let s=choice[s1,s2] in server) |(let s=choice[s1,s2] in B) |AIn the language of ProVerif, the choice operator is used to check for observationalequivalence. The code given here speci�es two processes P1, P2, where Pi results fromreplacing every occurrence of choice[t1, t2] by ti, and ProVerif tries to prove that P1and P2 are observationally equivalent. In the present case, ProVerif tries to prove ob-servational equivalence between processes P1 and P2 where P1 is an execution of ourexample protocol where B gets its authorization from server s1, and P2 is an executionwhere B gets its authorization from server s2. Unfortunately, however, on the input de-scribed above, ProVerif does not seem to terminate. Experiments show that we needto get rid of the constructors land and or to allow for termination. Unfortunately, wecannot just remove them from our equational theory, since our protocol actually usesthem (in zkproof). Even after applying our compiler, which removes all occurrences ofthe formula F := zkproof from the process itself, land and or are still contained in theequational theory generated by the compiler since this theory contains the following rule:
ZKF

2,4(x1, x2, y1, y2, y3, y4) = PZKF
2,4(x1, x2, y1, y2, y3, y4,

land(or(or(eq(x2, y1), eq(x2, y2)), eq(x2, y3)), sigver(x1, y4, x2))). (22)Theorem 4 allows us to remove this rule. It is easy to see that in our equational theoryTheorem 4 applies with n2,4,F = 3 and
τ̃1
2,4,F = (sign(x, sk(y)), pk(y), pk(y), p2, p3, x),

τ̃2
2,4,F = (sign(x, sk(y)), pk(y), p1, pk(y), p3, x),

τ̃3
2,4,F = (sign(x, sk(y)), pk(y), p1, p2, pk(y), x).4[4], �le simple-obseq-nonterm.pvz. 38

Application of Lemma 8 then removes the rule (22). Instead, the rules
VerF2,4(ZKF

2,4(sign(x, sk(y)), pk(y), pk(y), p2, p3, x) = true,
VerF2,4(ZKF

2,4(sign(x, sk(y)), pk(y), p1, pk(y), p3, x) = true,
VerF2,4(ZKF

2,4(sign(x, sk(y)), pk(y), p1, p2, pk(y), x) = trueare introduced (besides the obvious rules concerning the publicp constructor). Sincenow neither the process nor the equational theory contains land or or, by Lemma 8 wecan remove the corresponding equational rules.These additional transformations can also be performed using our tool. For this, wehave to add the following additional commands to the input �le:5compiler AlternativeZKVer(zkver(2;4;zkproof;zk(sign(x,sk(y)),pk(y);pk(y),p2,p3,x;zkproof)),zkver(2;4;zkproof;zk(sign(x,sk(y)),pk(y);p1,pk(y),p3,x;zkproof)),zkver(2;4;zkproof;zk(sign(x,sk(y)),pk(y);p1,p2,pk(y),x;zkproof))).compiler RemoveEquations(or).compiler RemoveEquations(land).(after the compiler ZK command). The �rst command corresponds to an applicationof Theorem 4. The tuples t1, . . . , tn are implicitly given by supplying terms of the form
Veri,j(F,ZKi,j(ti, F)). Finally, compiler RemoveEquations(c) for a constructor c re-moves all equations of the form c(. . .) = . . .Using the resulting modi�ed but equivalent (see Theorem 4 and Lemma 8) equationaltheory, ProVerif terminates and successfully proves observational equivalence, i.e., theadversary cannot distinguish which server authorizes B to communicate with A. Theveri�cation takes 16 seconds on a Pentium 4, 3GHz.6.2 Direct Anonymous AttestationWe will now describe the mechanized analysis of the DAA protocol [9] described inSection 5.6.2.1 JoinFirst, we describe the basic de�nition of the various components of the DAA protocol(join and DAA-sign). The join protocol is described by the following two processes
tpmjoin and issuer.6define joinproof = land(eq(beta1,blind(alpha1,alpha2)),eq(beta2,exp(beta3,alpha1))).5[4], �le simple-obseq.pvz.6[4], �le daa.pvi. 39

let tpmjoin =let f = hash(pair(daaseed(id),cnt)) innew v;let U = blind(f,v) inlet zetaI = hash(pair(n1,bsnI)) inlet NI = exp(zetaI,f) inlet zkp = zk(f,v;U,NI,zetaI;joinproof) inout(comm,pair(id,sign(zkp,sk(ek(id)))));in(comm,A);let cert = unblind(A,v) inif blindver(cert,f,pk(issuerK))=true thenevent JOINED(id,cnt,cert);out(och,cert).let issuer =! in(comm,msg);let id = fst(msg) inlet sig = snd(msg) inlet zkp = message(sig) inif sigver(sig,zkp,pk(ek(id)))=true thenif zkver(2;3;joinproof;zkp)=true thenlet U = public1(zkp) inlet N = public2(zkp) inlet zeta = public3(zkp) inif rogue=true then event ROGUEI(id) elseif rogueid=true then event ROGUEID(id) elseif zeta=hash(pair(n1,bsnI)) thenlet cert = blindsign(U,sk(issuerK)) inevent CERTIFIED(id,N);out(comm,cert).These processes are formalizations of the corresponding processes in Section 5.1. Weadded the additional events JOINED and CERTIFIED to have to possibility of formulatingadditional properties. In contrast to Section 5.1, the communication channel is repre-sented by the variable comm, which we then instantiate with the public channel pub or aprivate channel, depending on the property we model. The predicates rogue and rogueidcan be de�ned using define rogue = ... and define rogue = ... depending on thesituation. In most cases we will set rogue = rogueid = false to model that no roguechecking occurs. The term joinproof corresponds to Fjoin in Section 5.1.For the analysis of protocols with rogue TPMs we will need an additional process.The process issuer will never issue a certi�cate to a TPM that is detected to be rogue,but we might want to model the case that some TPMs have already received a certi�catebefore they were marked rogue. In order to be able to model this situation, we introduce40

the following process rogueissuer that issues a certi�cate for a given f-value.7let rogueissuer =! in(pub,v); out(pub,unblind(blindsign(blind(f,v),sk(issuerK)),v)).The variable f will be assigned the correct value in our security properties using a letdirective. The nonce v used for blinding the signature is chosen by the adversary tomodel that a rogue TPM is assumed to be completely under the control of the adversary.Finally, we also need to model the fact that the issuer is corrupted. This is achievedby giving all the issuer's knowledge to the adversary:8let leakissuer =(!in(pub,id); out(pub,pk(ek(id)))) |out(pub,pk(issuerK)) | out(pub,sk(issuerK)).Similarly, we model that a given TPM is corrupted:9let leaktpm =out(pub,daaseed(id)) | out(pub,sk(ek(id))) | out(pub,pk(ek(id))).Finally, besides leaking private information of corrupted principals, the adversaryshould get all public information:let leakpublic = out(pub,pk(issuerK)) | !in(pub,id); out(pub,pk(ek(id))).6.2.2 DAA-SignWe will now describe the modelling of the second part of the DAA protocol, namely theDAA-sign protocol. The processes for performing an anonymous DAA-sign are de�nedas follows:10define signproof = land(eq(beta1,exp(beta2,alpha1)),blindver(alpha2,alpha1,beta3)).let daasigna =new zeta;let f = hash(pair(daaseed(id),cnt)) inlet N = exp(zeta,f) inlet zkproof = zk(f,cert;N,zeta,pk(issuerK),m;signproof) inevent DAASIGNEDA(id,cnt,m);out(comm,zkproof).let daavera =7[4], �le daa.pvi.8[4], �le daa.pvi.9[4], �le daa.pvi.10[4], �le daa.pvi. 41

in(comm,zkproof);if zkver(2;4;signproof;zkproof)=true thenlet N = public1(zkproof) inlet zeta = public2(zkproof) inif public3(zkproof)=pk(issuerK) thenlet m = public4(zkproof) inif rogue=true then event ROGUEAV(m) elseevent DAAVERIFIEDA(m).These are again direct encodings of the corresponding processes presented inSection 5.2, except that we have added a few more events and use comm for commu-nication. The term signproof corresponds to Fsign in Section 5.2.Similarly, we de�ne the pseudonymous DAA-sign protocol:define numberZetaV = n1.let daasignp =let zeta = hash(pair(numberZetaV,bsnV)) inlet f = hash(pair(daaseed(id),cnt)) inlet N = exp(zeta,f) inlet zkproof = zk(f,cert;N,zeta,pk(issuerK),m;signproof) inevent DAASIGNEDP(id,cnt,bsnV,m);out(comm,zkproof).let daaverp =in(comm,zkproof);if zkver(2;4;signproof;zkproof)=true thenlet N = public1(zkproof) inlet zeta = public2(zkproof) inif zeta=hash(pair(numberZetaV,bsnV)) thenif public3(zkproof)=pk(issuerK) thenlet m = public4(zkproof) inif rogue=true then event ROGUEPV(m,bsnV,N) elseevent DAAVERIFIEDP(m,bsnV,N).This formalizes the corresponding processes from Section 5.2 with the addition of eventsand the change of the communication channel.For convenience, we further implement the following processes:let daaverifier = (! daavera) | (! daaverp).This process represents a veri�cation server that waits for anonymous and pseudonymoussignatures, checks them, and outputs the corresponding events.let tpmcontrolled =let comm=pub in ! in(pub,cnt); new och; (tpmjoin | (in(och,cert);42

! in(pub,m); (daasigna | in(pub,bsnV); daasignp))).let tpmcontrolledall = ! in(pub,id); tpmcontrolled.The process tpmcontrolled corresponds to the process TPMs introduced on page 31and models a TPM that is under the control of the adversary without revealing anyof its secrets, i.e., the TPM joins and signs at the adversary's discretion. The processtpmcontrolledall represents the fact that all TPMs are under the control of the adver-sary.6.2.3 Security PropertiesThe authenticity property from Section 5.4.1 is encoded as follows:11passthrough query ev:DAAVERIFIEDP(xm,xbsn,xN)==> ev:DAASIGNEDP(xid,xcnt,xbsn,xm).passthrough query ev:DAAVERIFIEDA(xm)==> (ev:DAASIGNEDA(xid,xcnt,xm) | ev:DAASIGNEDP(xid,xcnt,xbsn,xm)).process(let comm=pub in issuer) | leakpublic |tpmcontrolledall |(let comm=pub in daaverifier).The passthrough directive is only necessary since our compiler is not able to parse thefull syntax of query. It does not have any semantic meaning. Applying the compiler andProVerif, the result is that the queried properties hold. The running time is 3 secondson a Pentium 4, 3GHz.To implement this security property in the presence of rogue TPMs, we have to choosesome rogue f-value and rogue TPM ids and de�ne the predicates rogue and rogueid toreturns true if a rogue f-value or id is being used. We choose to implement a testwith a �xed number of rogue ids rogueid1,rogueid2,rogueid3 and three �xed f-valuesrogueF1,rogueF2,rogueF3. These are de�ned using the following code:12free rogueid1,rogueid2,rogueid3.define rogueF1 = hash(pair(daaseed(rogueid1),n1)).define rogueF2 = hash(pair(daaseed(rogueid2),n1)).define rogueF3 = hash(pair(daaseed(rogueid2),n2)).fun roguetest/5.equation roguetest(zeta,exp(zeta,x),x,y,z) = true.equation roguetest(zeta,exp(zeta,y),x,y,z) = true.11[4], �le daa-verify-tpmcontrolled.pvz.12[4], �le daa-verify-tpmcontrolled-rogue3.pvz.43

equation roguetest(zeta,exp(zeta,z),x,y,z) = true.define rogue = roguetest(zeta,N,rogueF1,rogueF2,rogueF3).define rogueid = or(or(eq(id,rogueid1),eq(id,rogueid2)),eq(id,rogueid3)).Note that we did not use the somewhat more natural de�nitiondefine rogue = or(or(eq(exp(zeta,rogueF1)),eq(exp(zeta,rogueF2))),eq(exp(zeta,rogueF3))).but instead used a de�nition using a special constructor roguetest. Using the morenatural de�nition ProVerif fails to prove security; it seems that the rogue test is simplyignored. A minimal ProVerif example that reproduces this behaviour is given in [4, �leartifacts/or.pv].Furthermore, we have to model the fact that the rogue TPMs may already have joinedbefore they were rogue-listed, and that the adversary may know the secret informationof the rogue TPMs. This is done by adding the following processes (additionally to thosegiven in the authenticity property without rogue listing):13(let id=rogueid1 in leaktpm) |(let id=rogueid2 in leaktpm) |(let id=rogueid3 in leaktpm) |(let f=rogueF1 in rogueissuer) |(let f=rogueF2 in rogueissuer) |(let f=rogueF3 in rogueissuer)The authenticity property in this setting is proven in 63 seconds on a Pentium 4, 3GHz.The anonymity property from Section 5.4.2 is given by the following code(cf. Table 8):14free challengeid1,challengeid2.free challengecnt1,challengecnt2.define challengecnt = choice[challengecnt1,challengecnt2].define challengeid = choice[challengeid1,challengeid2].define challengecert = choice[challengecert1,challengecert2].private free int1,int2.fun corruptid/1.processleakpublic |leakissuer |13[4], �le daa-verify-tpmcontrolled-rogue3.pvz.14[4], �le daa-obseq-anonymity4.pvz. 44

(in(pub,x); let id=corruptid(x) in leaktpm) |(let (id,cnt,comm,och) = (challengeid1,challengecnt1,pub,int1)in tpmjoin) |(let (id,cnt,comm,och) = (challengeid2,challengecnt2,pub,int2)in tpmjoin) |(let id=challengeid1 in tpmcontrolled) |(let id=challengeid2 in tpmcontrolled) |(in(int1,challengecert1); in(int2,challengecert2);((!in(pub,m); let (id,cnt,comm,cert) =(challengeid,challengecnt,pub,challengecert) in daasigna) |(!in(pub,m); let (id,cnt,comm,cert) =(challengeid1,challengecnt1,pub,challengecert1) in daasigna) |(!in(pub,m); let (id,cnt,comm,cert) =(challengeid2,challengecnt2,pub,challengecert2) in daasigna) |(!in(pub,m); in(pub,bsnV); let (id,cnt,comm,cert) =(challengeid1,challengecnt1,pub,challengecert1) in daasignp)(!in(pub,m); in(pub,bsnV); let (id,cnt,comm,cert) =(challengeid2,challengecnt2,pub,challengecert2) in daasignp)))The two processes to compare are implicitly given by the choice operator. The semanticsis that the process P1 is the one resulting from replacing choice[x,y] by x, and P2 is theone resulting from replacing choice[x,y] by y. Running our compiler and ProVerif onethis process directly does not lead to termination. The technique for removing the landand or constructors that was already described in Section 6.1 helps to ensure termination.In the case of DAA we apply Theorem 4 with n2,3,Fjoin
= n2,4,Fsign

= 1 and
τ̃1
2,3,Fjoin

= (f, v; blind(f, v), exp(zeta, f), zeta)

τ̃1
2,4,Fsign

= (unblind(blindsign(blind(x, z), sk(y)), z); exp(ζ, f), ζ, pk(y),m)Then we can remove the equations for land and or (by Lemma 8). These modi�cationof the equational theory are encoded as follows:15compiler AlternativeZKVer(zkver(2;3;joinproof;zk(f,v;blind(f,v),exp(zeta,f),zeta; joinproof))).compiler AlternativeZKVer(zkver(2;4;signproof;zk(x,unblind(blindsign(blind(x,z),sk(y)),z);exp(zeta,f),zeta,pk(y),m;15[4], �le alternative-zk.pvi. 45

signproof))).compiler RemoveEquations(land).compiler RemoveEquations(or).After these changes, the proof terminates and we get the result that the two processes areobservationally equivalent, i.e., that we have anonymity, after 149 seconds on a Pentium4, 3GHz.The remaining property is that of pseudonymity. Since the encoding of the processesgiven in Section 5.4.3 for modeling this property does not give any new insights, we referthe reader to the �les daa-obseq-pseudonymity6.pvz (for the processes P1, P2 givenin Table 9), daa-obseq-pseudonymity-attack.pvz (for the processes P̃1, P̃2 capturingthe attack of [26]) and daa-obseq-pseudonymity-fix.pvz (modeling P̃1, P̃2 in the �xedversion of the protocol with nV := n0) in [4].7 Conclusion and Future WorkWe have designed an abstraction of non-interactive zero-knowledge protocols in theapplied-pi calculus. A novel equational theory for terms characterizes the semantic prop-erties of non-interactive zero-knowledge proofs. Additionally, we propose an encodinginto a �nite speci�cation in terms of a convergent rewriting system that is accessible to afully mechanized analysis. The encoding is sound and fully automated. We successfullyused the automated protocol veri�er ProVerif to obtain the �rst mechanized analysis ofthe Direct Anonymous Attestation (DAA) protocol. The analysis in particular requiredus to come up with suitable abstractions of sophisticated cryptographic security de�ni-tions that are based on interactive games; we consider these de�nitions of independentinterest.Future work on this topic comprises the investigation of computational soundnessresults, the analysis of other commonly employed protocols based on zero-knowledge, aswell as the investigation of interactive zero-knowledge proofs which have additional prop-erties like the impossibility to reproduce a proof after the protocols ends. Furthermore,other, more direct techniques for mechanizing the analysis directly in the original, in�niteequational theory might be worth investigating.References[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749�786, 1999.[2] M. Abadi, B. Blanchet, and C. Fournet. Just fast keying in the pi calculus. ACMTransactions on Information and System Security, 10(3):9, 2007.[3] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spicalculus. Information and Computation, 148(1):1�70, 1999.46

[4] M. Backes, M. Ma�ei, and D. Unruh, 2007. Implementation of the compiler fromzero-knowledge protocol descriptions into ProVerif-accepted speci�cations. Availableat http://www.infsec.cs.uni-sb.de/zk.zip.[5] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model checker forsecurity protocols. International Journal of Information Security, 2004.[6] B. Blanchet. An e�cient cryptographic protocol veri�er based on Prolog rules. InProc. 14th IEEE Computer Security Foundations Workshop (CSFW), pages 82�96.IEEE Computer Society Press, 2001.[7] B. Blanchet and C. Fournet. Automated veri�cation of selected equivalences forsecurity protocols. In Proc. 20th Annual IEEE Symposium on Logic in ComputerScience (LICS), pages 331�340. IEEE Computer Society Press, 2005.[8] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSAencryption standard PKCS. In Advances in Cryptology: CRYPTO '98, volume 1462of Lecture Notes in Computer Science, pages 1�12. Springer-Verlag, 1998.[9] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In Proc.11th ACM Conference on Computer and Communications Security, pages 132�145.ACM Press, 2004.[10] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad. Formal analysisof kerberos 5. Theoretical Computer Science, 367(1):57�87, 2006.[11] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Com-munications of the ACM, 24(8):533�536, 1981.[12] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal onComputing, 30(2):391�437, 2000.[13] D. Fisher. Millions of .Net Passport accounts put at risk. eWeek, May 2003. (Flawdetected by Muhammad Faisal Rauf Danka).[14] C. Fournet, A. D. Gordon, and S. Ma�eis. A type discipline for authorization indistributed systems. In Proc. 20th IEEE Symposium on Computer Security Founda-tions (CSF), pages 31�45. IEEE Computer Society Press, 2007.[15] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game � or �a completeness theorem for protocols with honest majority. In Proc. 19th AnnualACM Symposium on Theory of Computing (STOC), pages 218�229, 1987.[16] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothingbut their validity or all languages in NP have zero-knowledge proof sys-tems. Journal of the ACM, 38(3):690�728, 1991. Online available athttp://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf.47

http://www.infsec.cs.uni-sb.de/zk.zip
http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf

[17] S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexity of interactiveproof systems. SIAM Journal on Computing, 18(1):186�207, 1989.[18] R. Kemmerer. Analyzing encryption protocols using formal veri�cation techniques.IEEE Journal on Selected Areas in Communications, 7(4):448�457, 1989.[19] S. Kramer. Logical Concepts in Cryptography. PhD thesis, École PolytechniqueFédérale de Lausanne, 2007.[20] S. Kremer and M. Ryan. Analysis of an electronic voting protocol in the appliedpi-calculus. In Proc. 14th European Symposium on Programming (ESOP), LectureNotes in Computer Science, pages 186�200. Springer-Verlag, 2005.[21] G. Lowe. Breaking and �xing the Needham-Schroeder public-key protocol usingFDR. In Proc. 2nd International Conference on Tools and Algorithms for the Con-struction and Analysis of Systems (TACAS), volume 1055 of Lecture Notes in Com-puter Science, pages 147�166. Springer, 1996.[22] C. Meadows. Using narrowing in the analysis of key management protocols. In Proc.10th IEEE Symposium on Security & Privacy, pages 138�147, 1989.[23] J. K. Millen. The interrogator: A tool for cryptographic protocol security. In Proc.5th IEEE Symposium on Security & Privacy, pages 134�141, 1984.[24] R. Needham and M. Schroeder. Using encryption for authentication in large net-works of computers. Communications of the ACM, 12(21):993�999, 1978.[25] L. Paulson. The inductive approach to verifying cryptographic protocols. Journalof Cryptology, 6(1):85�128, 1998.[26] B. Smyth, L. Chen, and M. D. Ryan. Direct anonymous attestation: ensuring privacywith corrupt administrators. In Proceedings of the Fourth European Workshop onSecurity and Privacy in Ad hoc and Sensor Networks, number 4572 in Lecture Notesin Computer Science, pages 218�Â231. Springer-Verlag, 2007.[27] F. J. Thayer Fabrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is asecurity protocol correct? In Proc. 19th IEEE Symposium on Security & Privacy,pages 160�171, 1998.[28] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proc. 2nd USENIXWorkshop on Electronic Commerce, pages 29�40, 1996.
48

	Introduction
	Our Contributions
	Outline of the Paper

	Review of the Applied Pi-calculus
	An Equational Theory of Zero-Knowledge
	An Underlying Cryptographic Base Theory
	The Equational Theory for Zero-Knowledge
	An Illustrating Example

	Towards a Mechanized Analysis of Zero-Knowledge
	A Finite Specification of Zero-Knowledge
	Compilation into Finite Form
	Preservation of Observational Equivalence and Trace-based Security Properties

	Case Study: Direct Anonymous Attestation
	Join protocol
	DAA-sign protocol
	Rogue-tagging
	Security properties of DAA
	Authenticity
	Anonymity
	Pseudonymity

	Mechanized Security Proofs for DAA
	Example Protocol
	Direct Anonymous Attestation
	Join
	DAA-Sign
	Security Properties

	Conclusion and Future Work

