Zero-Knowledge in the Applied Pi-calculus and Automated
Verification of the Direct Anonymous Attestation Protocol

Michael Backes, Matteo Maffei, and Dominique Unruh
Saarland University, Saarbriicken, Germany
{backes,maffei,unruh }@cs.uni-sb.de

Abstract

We devise an abstraction of zero-knowledge protocols that is accessible to a fully
mechanized analysis. The abstraction is formalized within the applied pi-calculus
using a novel equational theory that abstractly characterizes the cryptographic se-
mantics of zero-knowledge proofs. We present an encoding from the equational
theory into a convergent rewriting system that is suitable for the automated proto-
col verifier ProVerif. The encoding is sound and fully automated. We successfully
used ProVerif to obtain the first mechanized analysis of the Direct Anonymous At-
testation (DAA) protocol. The analysis in particular required us to devise novel
abstractions of sophisticated cryptographic security definitions based on interactive
games.

1 Introduction

Proofs of security protocols are known to be error-prone and, owing to the distributed-
system aspects of multiple interleaved protocol runs, awkward to make for humans. In
fact, vulnerabilities have accompanied the design of such protocols ever since early au-
thentication protocols like Needham-Schroeder [T, 24], over carefully designed de-facto
standards like SSL and PKCS [28, 8], up to current widely deployed products like Mi-
crosoft Passport [[3] and Kerberos [I0)]. Hence work towards the automation of such
proofs has started soon after the first protocols were developed; some important exam-
ples of automated security proofs are [23, 22 [I8, 21, 25, 27, B, B]. Language-based
techniques are now widely considered a particularly salient approach for formally analyz-
ing security protocols, dating back to Abadi’s seminal work on secrecy by typing [I]. The
ability to reason about security at the language level often allows for concisely clarifying
why certain message components are included in a protocol, how their entirety suffices
for establishing desired security guarantees, and for identifying ambiguities in protocol
messages that could be exploited by an adversary to mount a successful attack on the
protocol.

One of the central challenges in the analysis of complex and industrial-size protocols
is the expressiveness of the formalism used in the formal analysis and its capability to
model complex cryptographic operations. While such protocols traditionally relied only

on the basic cryptographic operations such as encryption and digital signatures, Modern
Cryptography has invented more sophisticated primitives with unique security features
that go far beyond the traditional understanding of cryptography to solely offer secrecy
and authenticity of a communication. Zero-knowledge proofs constitute the most promi-
nent and arguably most amazing such primitive. A zero-knowledge proof consists of a
message or a sequence of messages that combines two seemingly contradictory properties:
First, it constitutes a proof of a statement x (e.g, x = "the message within this ciphertext
begins with 0”) that cannot be forged, i.e., it is impossible, or at least computationally
infeasible, to produce a zero-knowledge proof of a wrong statement. On the other hand, a
zero-knowledge proof does not reveal any information besides the bare fact that consti-
tutes a valid statement. In particular, a proof about some ciphertext would not leak the
decryption key or the plaintext. Zero-knowledge proofs were introduced in [I7] and were
proven to exist for virtually all statements [I6]. Zero-knowledge proofs have since shown
to constitute very powerful building blocks for the construction of sophisticated crypto-
graphic protocols to solve demanding protocol task: they allow for commonly evaluating
a function on distributed inputs without revealing any inputs to the other protocol par-
ticipants [I5], they allow for developing encryption schemes that are secure under very
strong active attacks 12|, and many more.

Early general-purpose zero-knowledge proofs were mainly invented to show the mere
existence of such proofs for the class of statements under consideration. These proofs
were very inefficient and consequently of only limited use in practical applications. The
recent advent of efficient zero-knowledge proofs for special classes of statements changed
this. The unique security features that zero-knowledge proofs offer combined with the
possibility to efficiently implement some of these proofs have paved these proofs the way
into modern cryptographic protocols such as e-voting protocols and anonymity protocols.
The best known representative of these protocols is the widely-deployed Direct Anony-
mous Attestation (DAA) protocol [9]. DAA constitutes a cryptographic protocol that
enables the remote authentication of a Trusted Platform Module (TPM) while preserv-
ing the user’s privacy. More precisely, if the user talks to the same verifier twice, the
verifier is not able to tell if he communicates with the same user as before or with a dif-
ferent one. DAA achieves its anonymity properties by heavily relying on non-interactive
zero-knowledge proofs. Intuitively, these allow the TPM to authenticate with the verifier
without revealing the TPM’s secret identifier.

1.1 Owur Contributions

The contribution of the paper is threefold: First, we present an abstraction of non-
interactive zero-knowledge proofs within the applied pi-calculus using a novel equational
theory that abstractly characterizes the cryptographic semantics of these proofs. Sec-
ond, we transform our abstraction into an equivalent formalization that is accessible to
ProVerif [6], a well-established tool for the mechanized analysis of different security prop-
erties. Third, we apply our theory to the Direct Anonymous Attestation (DAA) protocol
[9], the widely deployed authentication scheme for Trusted Platform Modules (TPMs),
yielding its first mechanized security proof.

We express cryptographic protocols in the applied pi-calculus, an extension of the pi-
calculus with functions, that has proven to constitute a salient foundation for the analysis
of cryptographic protocols, see [2, 20, 6l [7, T4]. We devise a novel equational theory
that concisely and elegantly characterizes the semantic properties of non-interactive zero-
knowledge proofs, and that allows for abstractly reasoning about such proofs. The design
of the theory in particular requires to carefully address the important principles that
zero-knowledge proofs are based upon: the soundness and the completeness of the proof
verification as well as the actual zero-knowledge property, i.e., a verifier must not be able
to learn any new information from a zero-knowledge proof except for the validity of the
proven statement. The only prior work on abstracting zero-knowledge proofs aims at
formalizing in modal logic the informal prose used to describe the properties of these
proofs [19]. In contrast to our abstraction, the abstraction in [T9] has not been applied
to any example protocols, and no mechanization of security proofs is considered there.

The mechanization of language-based security proofs has recently enjoyed substantial
improvements that have further strengthened the position of language-based techniques
as a promising approach for the analysis of complex and industrial-size cryptographic
protocols. ProVerif [6] constitutes a well-established automated protocol verifier based
on Horn clauses resolution that allows for the verification of observational equivalence and
of different trace-based security properties such as authenticity. We present a mechanized
encoding of our equational theory into a finite specification that is suitable for ProVerif.
More precisely, the equational theory is compiled into a convergent rewriting system that
ProVerif can efficiently cope with. We prove that the encoding preserves observational
equivalence and a large class of trace-based security properties.

Finally, we exemplify the applicability of our theory to real-world protocols by an-
alyzing the security properties of the Direct Anonymous Attestation (DAA) protocol
[9]. DAA constitutes a cryptographic protocol that enables the remote authentication
of a hardware module called the Trusted Platform Module (TPM), while preserving the
anonymity of the user owning the module. Such TPMs are now widely included in end-
user hardware such as desktop PCs and notebooks. The DAA protocol relies heavily
on zero-knowledge proofs to achieve its anonymity guarantees. The occurrence of these
proofs in particular prevented a previous analysis of the protocol using abstraction or any
form of proof mechanization. Analyzing DAA first requires to devise novel abstractions of
sophisticated cryptographic security definitions based on interactive games between hon-
est participants and the adversary; comprehensive anonymity properties are of this form.
We formulate the intended anonymity properties in terms of observational equivalence,
we formulate authenticity as a trace-based property, and we prove these properties in the
presence of external active adversaries as well as corrupted participants. The proofs are
fully automated using ProVerif.

We are confident that the methodology presented in this paper is general and that the
principles followed in the analysis of DAA can be successfully exploited for the verification
of other cryptographic protocols based on non-interactive zero-knowledge proofs.

Table 1 Syntax of the applied pi-calculus

Terms

M,N,F,Z := sk,...,a,b,....,n,m names
z,Y,z vars
f(My,..., M) function

where f € ¥ and k is the arity of f.

Processes

P Q = 0 nil
vn.P res
if M = N then P else Q cond
a(x).P input
a(N).P output
P|Q par
P repl
Extended Processes

A = P plain
Ar | Az par
vn.A name res
vr. A var res
{M/x} subst

1.2 Outline of the Paper

We start by reviewing the applied pi-calculus in Section I Section Bl contains the equa-
tional theory for abstractly reasoning about non-interactive zero-knowledge proofs in the
applied pi-calculus. This equational theory is rewritten into an equivalent finite theory
in terms of a convergent rewriting system in Section Bl Section H and [l elaborate on the
analysis of DAA, the description of its security properties, and the use of ProVerif for
mechanizing the analysis. Section [d concludes and outlines future work.

2 Review of the Applied Pi-calculus

The syntax of the calculus is given in Table[ll Terms are defined by means of a signature
>, which consists of a set of function symbols, each with an arity. The set of terms
Ty, is the free algebra built from names, variables, and function symbols in ¥ applied
to arguments. We partition each signature into public and private function symbols.
The only difference is that private symbols are not available to the adversary. In the
following, functions symbols are public unless stated otherwise. We presuppose a sort
system for the set N of names: we let s,k (possibly with sub- and superscripts) range
over names of base type (e.g., Integer, Data, and so on), a, b over channel names, and n, m
over names of any sort. We let u range over names and variables. Terms are equipped

with an equational theory E, i.e., an equivalence relation on terms that is closed under
substitution of terms and under application of term contexts (terms with a hole). We
write E - M = N and E I/ M = N for an equality and an inequality, respectively,
modulo FE.

The grammar of processes (or plain processes) is defined as follows. The null
process 0 does nothing; vn.P generates a fresh name n and then behaves as P;
if M = N then P else @ behaves as P if E - M = N, and as @ otherwise; a(z).P
receives a message N from the channel a and then behaves as P{N/x}; a(N).P outputs
the message N on the channel a and then behaves as P; P | executes P and @ in
parallel; | P generates an unbounded number of copies of P.

Eztended processes are plain processes extended with active substitutions. An active
substitution {M/x} is a floating substitution that may apply to any process that it comes
into contact with. To control the scope of active substitutions, we can restrict the variable
x. Intuitively, vz.(P | {M/x}) constrains the scope of the substitution {M/z} to process
P. If the variable x is not restricted, as it is the case in the process (P | {M/z}), then
the substitution is exported by the process and the environment has immediate access to
M. As usual, the scope of names and variables is delimited by restrictions and by inputs.
We write fu(A) and fn(A) (resp. bv(A) and bn(A)) to denote the free (bound) variables
and names in an extended process A, respectively. We let free(A) := fv(A)U fn(A) and
bound(A) := bu(A) U bn(A). For sequences M = My, ..., My and @ = x1,...,x), we
let {M/Z} denote {My/x1} | ... | {Mj/zx}. We always assume that substitutions are
cycle-free, that extended processes contain at most one substitution for each variable,
and that extended processes contain exactly one substitution for each restricted variable.

A context is a process or an extended process with a hole. An evaluation context
is a context without private function symbols whose hole is not under a replication, a
conditional, an input, or an output. A context C| | closes A if C[A] is closed. A frame is
an extended process built up from 0 and active substitutions by parallel composition and
restriction. We let ¢ and 1 range over frames. The domain dom(¢) of a frame ¢ is the
set of variables that ¢ exports, i.e., those variables x for which ¢ contains a substitution
{M/x} not under a restriction on z. Every extended process A can be mapped to a
frame ¢(A) by replacing every plain process embedded in A with 0. The frame ¢(A) can
be viewed as an approximation of A that accounts for the static knowledge A exposes to
its environment, but not for A’s dynamic behavior.

The semantics is inherited from the applied pi-calculus and is defined in terms of
structural equivalence (=) and internal reduction (—). Structural equivalence states
which processes should be considered equivalent up to syntactic re-arrangement.

Definition 1 (Structural Equivalence) Structural equivalence (=) is the smallest
equivalence relation on extended processes that satisfies the rules in Table A and that
s closed under a-renaming, i.e., renaming of bound names and variables, and under
application of evaluation contexts.

Internal reduction defines the semantics for extended processes.

Definition 2 (Internal Reduction) Internal reduction (—) is the smallest relation on

Table 2 Structural Equivalence
PAR-0 A=A10
PAR-A A1 | (A2 | Ag) = (A1 | AQ) | Ag
PAR-C Al | A2 = A2 | Al

REPL \P=P|!P

RES-0 vn.0=0

REs-C vuvu' . A =vu .vu. A

RES-PAR A; | vu.As = vu.(4; | Ag) if u ¢ free(A;)

Arias ve{M/x} =0
SUBST {M/z} | A={M/z} | A{M/x}
REWRITE {M/z} ={N/z} it¥XF-M=N

Table 3 Internal reduction

THEN
CoMM

a(z).P | a(@)Q ~ P|Q st

if M = M then P else Q — P

ELSE
E/M=N M, N ground

if M = N then P else Q — @

extended processes that satisfies the rules in Table [and that is closed under structural
equivalence and under application of evaluation contexts.

We write A || a to denote that A can send a message on a, i.e., A —* Cla(M).P] for
some evaluation context C[] that does not bind a. Observational equivalence constitutes
an equivalence relation that captures the equivalence of processes with respect to their
dynamic behavior.

Definition 3 (Observational Equivalence) Observational equivalence (=) is the
largest symmetric relation R between closed extended processes with the same domain
such that ARB implies:

1. if Al a, then Bl a;
2. If A —* A, then B —* B' and A’RB’ for some B’;
3. C[A]RC|B] for all closing evalution contexts C[_].

3 An Equational Theory of Zero-Knowledge

In this section we define a signature and an equational theory for abstractly reasoning
about non-interactive zero-knowledge proofs. Our equational theory is parametric in that
it augments an arbitrary base equational theory.

3.1 An Underlying Cryptographic Base Theory

The base equational theory we consider in this paper is given in Table Bl (Note again
though that any other base theory would work as well.) First, it consists of functions
for constructing and destructing pairs, encrypting and decrypting messages by symmet-
ric and asymmetric cryptography, signing messages and verifying signatures, modelling
public and private keys, hashing, and constructing and verifying blind signatures. In
blind signature schemes, the content of a message is disguised before it is signed while
still ensuring public verifiability of the signature against the unmodified message. These
functions have received prior investigation within the applied Pi-calculus, e.g., to analyze
the JFK protocol [2] and the electronic voting protocol FOO 92 [20]. Second, the theory
contains three binary functions eq, A, and V for modelling equality test, conjunction, and
disjunction, respectively; these functions allow for modelling monotone Boolean formu-
las. In our example theory, we do not consider additional functions for, e.g., negation
or specifying explicit inequalities. We shall often write = instead of eq and use infix
notation for the functions eq, A, and V.

3.2 The Equational Theory for Zero-Knowledge

Our equational theory for abstractly reasoning about non-interactive zero-knowledge
proofs is given in Table B its components are explained in the following. A non-interactive
zero-knowledge proof is represented as a term of the form ZK; ;(M, N, F), where M and
N denote sequences My, ..., M; and Ny,..., N, of terms, respectively, and where F' con-
stitutes a formula over those terms, see below. Hence ZK; ; is a function of arity i+ j + 1.
We shall often omit arities and write this statement as ZK(M ; N ;), letting semicolons
separate the respective components. The statement will keep secret the terms M , called
the statement’s private component, while the terms]\7, called the statement’s public com-
ponent, will be revealed to the verifier and to the adversary. The formula F' constitutes
a term without names and variables but additionally built upon distinguished nullary
functions «; and G; with i € N.

Definition 4 ((4, j)-formulas) We call a term an (i,j)-formula if the term contains
neither names nor variables, and if for every ay and (; occurring therein, we have k €
[1,7] and 1 € [1,].

The values «; and 3; in F' constitute placeholders for the terms M; and NN;, respectively.
For instance, the term

ZK(k ;o m, encsym(m’ k) ; ﬁ2 = encsym(ﬁl’al))

denotes a zero-knowledge proof that the term enceym(m, k) is an encryption of m with
k. More precisely, the statement reads: “There exists a key such that the ciphertext
enceym(m, k) is an encryption of m with this key”. As mentioned before, enceym(m, k)
and m are revealed by the proof while k is kept secret. This is formalized in general
terms by the following infinite set of equational rules:

Table 4 A base equational theory containing basic cryptographic primitives and logical
operators

pair, eNCsym, deCsym, €NCasym, d€Casym
sign, ver, msg, pk, sk, hash, blind,
unblind, blindsign, blindver, blindmsg,
A, V, eq, first, snd, true, false

Ebase =

ver and blindver of arity 3, pair, enceym, deCsym, €nCasym, deCasym, sign, blind, unblind,
blindsign, A, V and eq of arity 2, msg, pk, sk, hash, blindmsg, first and snd of arity 1, true
and false of arity 0.

El.se is the smallest equational theory satisfying the following equations defined over all
z,Y, 2

first(pair(z,y)) =
snd(pair(z,y)) =y
decsym (encsym(z, ¥),y) =z
decasym (encasym (z, pk(y)), sk(y)) = x
msg(sign(z,y)) =z
ver(sign(z, sk(y)), z, pk(y)) = true
blindver(unblind(blindsign(blind(z, 2),

sk(y)), 2), z, pk(y)) = true
blindmsg(unblind(blindsign(blind(z, z),y),2)) = =«
eq(z, x) = true
A(true, true) = true
V(true, x) = true
V(z,true) = true
Public,(ZK; j(M,N,F)) = N, withpe€ [1,j]

Formula(ZK; j(M,N,F)) = F
where Public, and Formula constitute functions of arity 1. Since there is no destructor

associated to the statement’s private component, the terms M are kept secret. This
models the zero-knowledge property discussed in the introduction. We define a state-
ment ZK; ;(M, N, F) to hold true if F'is an (4, j)-formula and the formula obtained by
substituting all az’s and §;’s in F' with the corresponding values M} and NV is valid. Ver-
ification of a statement ZK;; with respect to a formula is modelled as a function Ver; ;
of arity 2 that is defined by the following equational rule:

Ver; ;(F, ZKi,j(M7N,F)) = true iff
1) Ezx b F{M/a}{N/B} = true
2) Fisan (i,j)-formula

where {M /a}{N/B} denotes the substitution of each oy, with Mj and of each 3 with

Table 5 The equational theory for zero-knowledge, given a base theory (Xpase; Ebase)

ZK; j, Ver; ;, Public;, Formula,
a;, B, true | 4,5 € N

Z)ZK = 2base U {

ZK; ; of arity i + j + 1, Ver; ; of arity 2, Public; and Formula of arity 1, a;, 3; and true of
arity 0.

E7k is the smallest equational theory satisfying the equations of Fpase and the following
equations defined over all terms M, N, F:

Public,(ZK; ;(M,N,F)) = N, with p € [1,]
Formula(ZK; j(M,N,F)) = F
Ver; j(F,ZK; j(M,N,F)) = true iff

1) Ezx b F{M/a}{N/B} = true
2) Fis an (i,j)-formula

N;. This rule guarantees in the abstract model the soundness and correctness of zero-
knowledge protocols.

3.3 An Illustrating Example

We illustrate the zero-knowledge abstraction by means of the following example proto-
col. We keep the protocol simplistic in order to focus on the usage of zero-knowledge
proofs; in particular, we ignore vulnerabilities due to replay attacks and corresponding
countermeasures such as nonces and timestamps.

A B Si

A,B——>

%{A7B}ksl—

7 K-

Party B receives a signed message {A, B} from some server S; € {S1,...,S,}. (This
signed message might, e.g., serve as a certificate that allows B to prove that he has been
authorized to contact A.) While B should be able to convince A that he owns a signature
on this message issued by one of the possible n servers, the protocol should ensure that A
does not learn which server S; in fact issued the signature. This prevents B from simply
forwarding the signed message to A. Instead, B proves knowledge of such a signature by
a non-interactive zero-knowledge proof ZK.

We now carefully examine the proof of knowledge ZK. We aim at formalizing the
following statement: “There exists a such that « is a signature of A and B, and this
signature was created using one of the signature keys kg, ,...,kg,”. Coming up with a
formalization of this statement first requires us to tell the secret terms from the terms
leaked to the verifier. The identifiers of A and B clearly have to be revealed since the
proof intends to allow B to prove that he has been authorized to contact A. The signature

itself and the corresponding verification key pk(ks,), however, have to be kept secret to
preserve the anonymity of S;. These requirements are cast in our zero-knowledge notation
as follows:

sign(pair(A, B)v Sk(kSi))’ pk(kSi)§
ZK = ZKg oy pk(ks,), ..., pk(ks,), pair(A, B);
V az = ﬁi) Aver(at, Bnt1, a2))
i=1n
This statement captures that the signature sign(pair(A, B),sk(ks,)) and the public key
pk(ks;) used in the verification are kept secret (i.e., the identity of S; is not revealed)
while the proof reveals the public keys of all servers (this includes pk(kg,) but does not
tell it from the remaining public keys) as well as the identifiers of A and B. The formula
states that the verification key of the signature belongs to the set {pk(ks,),...,pk(ks,)},
and that the signed message consists of a pair composed of the identifiers of A and B.
We obtain the following description of a single protocol run:

A 2 a(y).if Test then b{ok) else b{errora)

B £ a(z).if (ver(z, pair(A, B), pk(ks,)))
then a(ZK) else b(errorp)

S; & alsign(pair(A, B),sk(ks,)))

Prot = I/k‘A.I/k‘B.I/k‘Sl VkSn'

a(pk(ks,)). ... a(pk(ks,)).(A | B | 5;)

where Test constitutes the following condition:

Verz,n+1<(V ag = ﬁz‘) /\ver(a1,ﬁn+1,a2),y) = true

i=1n

/\ Public;(y) = pk(ks,) A Public,+1(y) = pair(A, B)

i=1n

We wrote Test using conjunctions only to increase readability; Test can be straightfor-
wardly encoded in the syntax of the calculus by a sequence of conditionals.

4 Towards a Mechanized Analysis of Zero-Knowledge

The equational theory X7k defined in the previous section is not suitable for existing tools
for mechanized security protocol analysis. The reason is that the signature Yzk, and
consequently the number of equations in the specification, is infinite since, for instance,
we assume a different ZK; ; constructor for each possible arity. In this section, we specify
an equivalent equational theory in terms of a convergent rewriting system. This theory
turns out to be suitable for ProVerif [6], a well-established tool for mechanized verification
of different security properties of cryptographic protocols specified in a variant of the
applied pi-calculus.

10

4.1 A Finite Specification of Zero-Knowledge

The central idea of our equivalent finite theory is to focus on the zero-knowledge proofs
used within the process specification and to abstract away from the additional ones that
are possibly generated by the environment. This makes finite both the signature and the
specification of the equational theory.

Pinning down this conceptually elegant and appealing idea requires to formally charac-
terize the zero-knowledge proofs generated, verified, and read in the process specification.
First, we track the zero-knowledge proofs generated or verified in the process specification
by a set F of triples of the form (i, 7, F'), where i is the arity of the private component,
j the arity of the public component, and F' the formula. Second, we record the arity h
(resp. 1) of the largest private component (resp. public component) of zero-knowledge
proofs used in the process specification. For terms M and processes P, we let terms(M)
denote the set of subterms of M and terms(P) denote the set of terms in P. We can now
formally define the notion of (F, h,1)-validity of terms and processes.

Definition 5 (Process Validity) A term Z is (F,h,l)-valid if and only if the following
conditions hold:

1. for every ZKi,j(M,]\NT,F) € terms(Z) and Ver; ;(F, M) € terms(Z),
(a) F is an (i,7)-formula and (i,5,F) € F,

(b) F S TEbaseU{almﬁl |k€[17i}7l€[17j]}7
(¢) and for every (i,j, F') € F such that Ezx - F = F', we have F = F’.

2. For every k € N, oy, and By occur in Z only inside of the last argument of some
ZK; ; or Ver; ; function.

3. for every (i,7,F) € F, we have i € [0,h] and j € [0,1].
4. for every Public,(M) € terms(Z), we have p € [1,1].

A process P is (F, h,l)-valid if and only if M is (F, h,l)-valid for every M € terms(P),
the private arity of P is less or equal than h, and the public arity of P 1is less or equal
than .

We check that each zero-knowledge proof generation and verification is tracked in F
(condition [Tal). For the sake of simplicity, we prevent the occurrence of zero-knowledge
operators within formulas in the process specification (condition [H). Without loss of
generality, we also require that equivalent formulas occurring in zero-knowledge proofs
of the same arity are syntactically equal (condition [[d) and that the o;’s and ;’s only
occur within formulas (condition BJ). Finally, we check that the arity of private and
public components of zero-knowledge proofs used in the process specification is less or
equal than h and [, respectively (conditions Bl and H).

Given an (F, h,l)-valid process, we can easily define a finite equational theory EFfz?(l
for (F,h,l)-valid terms by a convergent rewriting system. For any (i,j,F) € F, we

11

Table 6 The finite equational theory for zero-knowledge with respect to an (F, h,[)-valid

process, given a base theory (Zpase, Ebase)
ZK{;, PZK];, Ver! FakeZKy, Public,,
Efz’?(’l = Ypase U ¢ Formula, FakeCollect, FakePublic, FakeVer, ay, 3,

PZK[; of arity i + j + 1, ZK[; of arity i + j, FakeZK;, of arity k + 2, FakeVer of arity 4,
FakePublic and FakeCollect of arity 2, Verf:j, Public,, and Formula of arity 1, agy and
of arity 0. PZKfj is private.

E,:lelzl is the smallest equational theory satisfying the equations of Ejp,ee and the following
equations for every (7,4, F) € F:

ZK}(Z,7) = PZK[(.5, F{z/a}{y/B})
Veri,j(PZKf?j(E, y,true)) = true
Publicp(PZKf-(ﬁf, U,2)) = Y p€[1,7]
Formula(PZK;;(z,y,2)) = F
Public,(FakeZKy(z,y,2)) = pe [l k], kel0,]]
Formula(FakeZKy(z,y,2)) = =z k€ 0,l]

include in the signature Efz’?(’l the function symbols ZKfj ; and Verfj ; of arity 7 + j and

1, respectively. We then replace every term ZKi,j(Jf\\/.f/,N,F) and Ver; j(F, M) in the
process specification by ZKf J(M N) and Verf ;(M), respectively. Since formulas are
uniquely determined by the ZKf ; function symbol, they can be omitted from the protocol
specification. Furthermore, we need in the equational theory only those functions a; and
B; that satisfy i € [1,h] and j € [1,l]; the remaining ones can be safely omitted since
they do not offer the adversary any additional capabilities. For finitely modelling the

verification of zero-knowledge proofs, we include in Efz’?(’l the function symbols PZKf? ; of

arity i+j+1. A term ZKfj(/]\Z, N) is equivalent to PZKfj(/]\Z, N, F{M/&}{]\NT/B}) This
can be captured using a finite description, since the number of formulas in the process
specification is finite:

ZK (@) = PZKI(@. 5, F{F/ay/s})

For verifying a zero-knowledge proof, it thus suffices to check whether the last argument
of the PZKfj is true or not:

Ver[,(PZKE, (%7, true)) = true
The rule for extracting the public component is defined in the expected manner. Extract-

ing the formula from a zero-knowledge proof PZKfj(/]\Z, N,F{M/&}{]\NT/B}) requires
an additional thought: for preserving the secrecy of private components, the function

12

Formula yields the formula F (without the substitution {M /&}{N/3}) in order to pre-
vent the adversary from deriving the formula instantiated with private terms.

Public,(PZK{,(%,7.2)) = y, pe€|[L,]]
Formula(PZKm(ﬁf,@,z)) = F

We obtain a finite set of rules since the number of ZKf j and Verf j

sponds to the (finite) number of formulas occurring in the process specification. The

PZKf? ; functions are private; hence they cannot be used by the adversary to derive terms

of the form ZKf J(M ,]v ,true), which would be successfully verified by trusted partici-
pants regardless of the value of F{M /&@}{N/3}. The possibility to construct such terms
would break the soundness property of zero-knowledge proofs.

It now remains to encode the zero-knowledge proofs generated by the environment.
These proofs possibly contain formulas or have arities different from the ones specified

in the process. We include in Z,]::z’ﬁ’l a finite set of symbols FakeZKj of arity & + 2,

constructors corre-

where k € [0,{]. The term FakeZKy(M,N,F) never occurs in process specifications
and represents zero-knowledge statements forged by the adversary; here M constitutes a
distinguished term that uniquely refers to the zero-knowledge proof and that plays a role
only in the proof of soundness, N denotes the first k elements of the public component,
and F is the formula. The equational rules for extracting the public components and the
formula from FakeZKj terms are specified as follows:

Public,(FakeZKy(z, ¥, 2)) Yk
Formula(FakeZKy(z,y,2)) = =z

for any p € [1,k] and k € [0,1]. We additionally include in Zfz’]f(’l functions FakeCollect,
FakePublic, and FakeVer. These functions are only used for proving the finite theory
equivalent to the infinite one in the next section; the functions are free in that they do
not occur in any equations.

4.2 Compilation into Finite Form
We now define the static compilation of terms and processes.
Definition 6 (Static Compilation) The (F,h,[)-static compilation is the partial func-

tion o : Tx, — Tyrn1 recursively defined as follows:
FZK

ZK;;(M,N,F)o = ZKI(Mo,No) V(i,j,F)eF

Ver, ;(F, M)o = Ver/;(Mo) Y(i,j,F) € F
Public,(M)o = Public,(Mo) Vp € [1,1]
Formula(M)o = Formula(Mo)

f(My,...,M;)c = f(Mo,...,M;o) Yf € Zpase
zo =z Vo

no = n Vn

13

Table 7 Labelled transition system

IN OPEN-ATOM

M e Ter Out-Arom A atu) A uta
a(u).p ™ p
a(M) CL<'LL> - vu.afu)
a(x).P — P{M/z} vu.A = A
ScoPE PAR
AL A u does not occur in AL A bound(u) N free(B) = ()
vu. AL vu. Al A|BL A B
STRUCT
A=B B& B B =A
AL A

Notation: ¥7 contains the public function symbols in 3. In OUT-ATOM, u is either a
channel name or a variable.

The (F, h,l)- static compilation constitutes a total function when restricted to (F,h,l)-
valid terms. The first equations deal with the compilation of zero-knowledge proofs and
operators acting on them. The static compilation acts component-wise on the remaining
terms and behaves as the identity function on names and variables. The compilation of
a process P, written Po, is defined by the compilation of the terms occurring therein.
The following theorem finally states that observational equivalence is preserved under
static compilation and hence asserts the soundness of the encoding from the infinite
specification into the finite specification. Its proof is given in the next section.

Theorem 1 (Preservation of Observational Equivalence) Let P and @Q be
(F, h,l)-valid processes and o be the (F,h,l)-static compilation. If P =g, Q, then

Po %Ef,h,l QO’.
FZK

We additionally prove that a comprehensive class of trace-based properties is preserved
under static compilation. We first define the notion of an execution trace. This requires
to review the labelled operational semantics that extends the semantics given in Table
by allowing us to reason about processes that interact with their environment. The
labelled transition system is given in Table [1

Definition 7 (Execution Traces) The set of execution traces of an extended process
A, written traces(A), is defined as follows:

traces(A) = {p1d(A1), ..., pnd(An) | A =5 A >3 4}

In the following, we let s range over execution traces. We now introduce the notion
of trace-based security property. We assume the existence of a special channel ¢ that
is never restricted by the process. In the following, we let B(My,..., M,) denote a

14

boolean formula over the terms Mi,..., M,: such terms are meant to express trace-
based security properties. For instance, the notion of authenticity can be formalized as
pair(end, z) = pair(begin, z), where end and begin are special nullary functions.

Definition 8 (Trace-based Security Property) A trace s satisfies the event M with
substitution &, written s ¢ M if and only if there ewist s1,s2,N,§ such that s = s1
¢(N) :: s and Ezx = N = ME.

A trace s satisfies the property B(My, ..., M,) with substitution &, written s ¢
B(M;,...,My,), if and only if B(s k¢ My,...,sF¢ My).

A process satisfies the property B(My, ..., M,), written P t¢ B(My,. .., M,), if and
only if for every trace s € traces(P), there exists £ such that s b¢ B(My, ..., M,)

Finally, we can state the theorem of preservation for trace-based security properties.

Theorem 2 (Trace-based Security Property Preservation) Let P be a (F,h,l)-
valid process, o be the (F, h,l)-static compilation, and My, ..., M, be (F, h,l)-valid terms.
If Po = B(Mo,...,M,o0), then P+ B(My,...,M,).

4.3 Preservation of Observational Equivalence and Trace-based Secu-
rity Properties

Instead of proving that observational equivalence is preserved under static compilation,
we show preservation of an equivalent formulation of observational equivalence based on
static equivalence and labelled bisimilarity. We first review these notions.

Definition 9 (Term Equality in Frames) Two terms M and N are equal in a frame ¢,
written (M = N)¢, if and only if = vn.o, Mo = No, and {n}N(fn(M)U fn(N)) =10
for some names n and substitution o.

Definition 10 (Static Equivalence) Two closed frames ¢ and 1) are statically equiv-
alent, written ¢ ~* 1 if and only if dom(¢p) = dom(¢) and for all terms M and N, it
holds that (M = N)¢ if and only if (M = N).

We say that two closed extended processes are statically equivalent, written A ~° B if
and only if their frames are statically equivalent.

We now define the notion of labelled bisimilarity, which constitutes an equivalent no-
tion of observational equivalence. Labelled bisimilarity does not rely on the universal
quantification over evalution contexts used in the definition of observational equivalence.

Definition 11 (Labelled Bisimilarity) Labelled bisimilarity (=') is the largest sym-
metric relation R on closed extended processes such that ARB implies:

1. A=* B;

2. if A— A, then B —* B" and ARB’ for some B’;

3. if AL A and fo(p) C dom(A) and bn(p) N fn(B) =0, then B —*%—* B and
A'RB’ for some B’.

15

We finally state the well-known equivalence between observational equivalence and la-
belled bisimilarity.

Theorem 3 (Observational Equivalence and Labelled Bisimilarity) Observa-

tional equivalence coincides with labelled bisimilarity: ~=~!.

It hence remains to be shown that labelled bisimilarity is preserved under static compi-
lation. In the following, we write P =g Q) to emphasize that P and) are structurally
equivalent with respect to an equational theory E. Furthermore, we write M ¢ for the
ground term obtained by repeated application of the substitution in ¢ to M, where we
assume that fu(M) C fo(¢) U bu(¢). This notation is well-defined since frames do not
contain substitutions with cyclic dependencies. The next definition introduces a normal
form for terms. Intuitively, a term is in (F, h,l)-normal form if the subterms generated
by the environment cannot be further simplified (conditions [l and B) and, in the case of
zero-knowledge proofs, they either comply with the process specification or belong to a
different equivalence class (condition).

Definition 12 (Normal Form) A term M € T, is in (F,h,l)-normal form with
respect to a frame ¢ if and only if the following conditions hold:

1. for every Public;(Z) € terms(M), i,j’,M,N,F such that j > 1 and Ezx - Z¢ =
ZK; j(M, N, F), we have j' < j.

2. for every Ver; ;(F,Z) € terms(M), M,N such that Exx - Z¢ = ZKZ',]-(M,]\N/',F),
we have that (i,7,F) € F.

3. for every ZKZ-,]-(M,]\NT,F) € terms(M), F'" such that (i,7,F') € F and Yzx b F =
F', we have F = F’.

For any term there exists an equivalent term in normal form.

Proposition 1 (Normal Form) For any term M € Tx,, and frame ¢, there ezists a
term N € Ts,, in (F,h,l)-normal form with respect to ¢ such that Ezx = (M = N)¢.

Proof. By an inspection of the equational rules in Table B and Definition 21 O

We now characterize the notion of validity of extended processes. Intuitively, an extended
process is (F, h,l)-valid if it can be separated into an (F, h,[)-valid process and a frame
where free variables, referring to output messages, are associated to (F, h,l)-valid terms,
and bound variables, referring to input messages, are associated to terms in (F,h,l)-
normal form that only contain free names and free variables.

Definition 13 (Extended Process Validity) A frame ¢ is (F,h,l)-valid if and only
if there exist n,y,{Z/T}, with y C T, such that the following conditions hold:

1. ¢ =vnvy{Z/7}.

2. for every xy € fv(¢), we have that Zy is (F, h,l)-valid.

16

3. for every xp € bu(¢), we have that Zy is in (F,h,l)-normal form with respect to ¢
and free(Zy) N bound(¢) = 0.

An eztended process A is (F, h,l)-valid if and only if there exist n,y, {M/E}, withy C z,
such that the following conditions hold:

1. A=vivy.({Z/Z}|P).
2. vy {Z)%} is (F, h,1)-valid.
3. P is (F,h,l)-valid.

In the following, we use FakeCollect(M) for M = M, ..., M, as an abbreviation for the
term FakeCollect(M;, FakeCollect(Ma, . .., FakeCollect(M,,—1, My,))). We further consider
a countable set of names that are meant to represent natural numbers, denoted ¢, j, and
nullary functions «; and §; with ¢ > h and j > [, denoted f,, and fﬁj, respectively.
Without loss of generality, we discipline a-renaming to guarantee that such names are
never restricted in the process.

We now introduce the dynamic compilation of terms at run-time.

Definition 14 (Dynamic Compilation) The (F,h,l)-dynamic compilation is the

function p : T, — Torn1 recursively defined as follows:
FZK

Public;(M)p = Public;(Mp) if 7 €[1,1]
FakePublic(j, M p) otherwise
ZK; ;(M,N,F)p = ZKL,(Mp, Np) if (1,5, F) € F
FakeZKy(g, Nkp, F)p) otherwise
(k = min(j,1),
g = FakeCollect(, j, M p, Np))
Formula(M)p = Formula(Mp)
a;p = if i € [1,h]
Jo, otherwise
Bip = B if je[L,1]
fﬁj otherwise
Veri j(F,M)p = Ver[;(Fp, Mp) if (1.4, F) € F

FakeVer(i, 7, Fp, Mp) otherwise
'F(Ml,...,Mi)p = f(Mlp,,Mlp) Vi € Ypase
xp =z YV

np =n Vn

The next proposition states that p is closed under variable substitution.

17

Proposition 2 (Closure of Dynamic Compilation) Let p be the (F,h,l)-dynamic
compilation. For every frame ¢ and every term M in (F, h,l)-normal form with respect
to ¢, we have (Mp)pp = (M¢)p

Proof. By an inspection of Definition [[4 and Definition [[2 O
We next lemma states that term equality is preserved by dynamic compilation.

Lemma 1 (Preservation of Term Equality) Let ¢ be an (F,h,l)-valid frame and
p be the (F,h,l)-dynamic compilation. Then for any ground terms My, My € Tx,, in
(F, h,l)-normal form with respect to ¢, we have Ezx &= My = My < EFfz’ﬁ’l F Mip = Msp.

Proof. We prove the = implication by induction on the length of the derivation of M.
We first discuss the interesting base cases:

M, = Publick(ZKm(M,]v, F)), My = N We have two cases:

1. (i,j,F) € F: By definition of p (cf. Definition []), we get Mip =
Public,(ZKY;(Mp,Np)). By definition of E5%' (cf. Table B), we get
E;Tz?(l F Publick(ZKfj(JTéf/p, Np)) = Nip, as desired.

2. (i,5,F) ¢ F: By definition of p, we can derive that Myp =
Publicy (FakeZK yin(j,1) (FakeCollect (i, j, M p, N p), Nimin(j,1), F'p). By definition
of E,:fz’]&’l, E;Tzﬁl F Mip = Ngp, as desired.

M, = FormuIa(ZKi,j(M,]\N/',F)), My = F We have two cases:

1. (4,4, F) € F: By definition of p, we get M1p = Formula(ZKfj(]Téf/p,]\~fp)) By
definition of E,fz’ﬁ’l, we get E,Z:Z’ﬁ’l F Formula(ZKfj(Mp, Np)) = F and, since
M; is in (F,h,l)-normal form with respect to ¢, by definition of p we have
that Fp = F, as desired.

2. (4,5, F) ¢ F: By Definition [, we obtain M;p = Formula(
FakeZKmin(;,1) (FakeCollect (i, j, M p, Np), Nimin(j1), F'p). By an inspection of
Table B, we have EFfzﬁl F Mip = Fp, as desired.

M, = Ver(F, ZKZ-,]-(M,]V, F)) and My = true It must be the case that (i, j, F') € F, oth-

erwise M is not in (F,h,l)-normal form with respect to ¢. By definition of p,
Myp = Verfj(ZKfj(]Téf/p, Np)) By the equational theory of Table [, E;Tzﬁl -
M p = true, as desired.

We prove the induction step by cases:

Symmetry We have that Fzx = M = Ms is proved by symmetry from Fzx = My = M;.

By induction hypothesis, EFfzﬁl F Mop = Mip. The result follows by symmetry of
E}-’h’l,
FZK

18

Transitivity The result follows directly from the induction hypothesis.

The proof of the <= implication is similar and relies on the fact that p is injective when
applied to terms in (F, h,l)-normal form with respect to ¢. O

Exploiting that term equality is preserved under dynamic compilation, we proceed by
showing the preservation of process reduction. The following lemma also proves that the
validity of extended processes is preserved by internal reduction and labelled transition,
up to structural equivalence. In addition, Theorem B constitutes a direct consequence of
this lemma.

Lemma 2 (Preservation of Process Reduction) Let A be an extended pro-
cess such that A =g, VﬁVﬁ({M/i}‘P), for some (F,h,l)-valid extended process
yﬁ.u@.({ﬂ/:fHP), let o be the (F,h,l) static compilation, and let p be the (F,h,l)-
dynamic compilation. Then the following statements hold:

1. For every B, A —g, B if and only if there exists an (F,h,l)-valid ex-

tended process vn.vy.({M'/x'}|P") =g, B such that vi.vy.({M [T}p|Po) — pr.n.
—~ FZK
vnwvy.({M/z}p|P'o).

2. For every p containing only terms in (F,h,l)-normal form with respect to
vnvy{M/z} and every B, A ﬁ’EZK B if and only if there exists an (F, h,l)-
valid extended process vn'.vy .({M'/x'}|P") =g, B such that vn.vy.({M/z}p|
Po) M—p>E]-",h,L vn! vy .({M'/z'}p|P'c) where

FZK

o if p = a(M), then n = n',y = y,x, for some v ¢ {Z}, and {Mv’/:;’} =
{M/z} [{M]z}.

e if u=1alb), thenn=n',y' =y, and {M'/2'} = {M/z}.

e if u=uvbalb), then i = (n',b),y =g, and {M'/z'} = {M/Z}.

o if p = vzalz), then n = ',y =y, and {M'/2'} = {M/z} | {M/z}, for
some (F,h,l)-valid M.

Proof. We prove statement [Il by cases on the internal reduction rule. Let us first deal
with the “only if” implication.

CoMM By an_inspection of Table Bl there exist M,z,Q,P;, P such that
vnvy.({M/z} | P) =g, vnvy.({M/z}| Q@ | a(M).P. | a(z).P2) and
Q| a(M).P | a(z).Py is (F,h,l)-valid. By o-renaming, we can assume that
x ¢ fu(Pr). We also have that B =g, vy ({M)z} Q | Py| Po{M/z}).
By ALIAS, RES-PAR, and SUBST, we get vi.j.({M/Z} | P) =Ep
vivgve.({M/z} | {M/z} | Q | a(z).Py| a(z).P,). Since o behaves as the iden-
tity function on variables and names and it is defined on (F, h,[)-valid terms and

19

processes, we get vi.vy.({M/Z} p | Po) =pTh vivjve.({M/z} p | {Mo/x}
| Qo | a(x).Pio| a(z).Pyo). By CoMmM, SUBST, RES-PAR, and ALIAS, we have
that viivg.ve.({M/Z} p | {Mc/z} | Qo | alz).Pio| a(z).Peo) — vitwy.({M/Z} |
Pyo | Po{M/z}0), as desired. Notice that internal reduction is closed by structural

equivalence. It is easy to see that Po{M/x} is (F, h,l)-valid since M occurs in the
(F, h,l)-valid process a(M).P; and it is thus (F, h,l)-valid as well.

THEN By an inspection of Table B there exist M,N,Q,P;,P, such that
vnwf.({M/Z} | P) =g, vnvi.({M/Z} | Q | if (M = N) then Py else Py,
for some M, N, Py, P,,Q such that the process @ | if M = N then P, else P,
is (F,h,D)-valid and Szx + M{M/Z} = N{M/Z}. We also have that
B =g, P>. Similarly, by applying SUBST, we get Vn.yg.({ﬂ/i}p | Po) =g,
vnvi.({M /T}p | Q{M/Z}p | (if (M = N) then Py else Py)o{M /Z}p). Since M
is in (F,h,l)-normal form with respect to ynuﬂ{ﬂ/ﬁf} and M is (F, h,l)-valid,
it is easy to see that E,Z:Zﬁl F (Mo){M/Z}p = (M{M/Z})p and (M{M/Z})p is
in (F,h,1)-normal form with respect to vn.vj.{M/Z}. The reasoning is the same
for N. By Lemma [l we get E,:lelzl - M{M /Z}p = N{M/Z}p. The result follows
from THEN and structural equivalence.

ELSE The reasoning is similar to the one in the previous item.

Notice that the previous cases cover both the application of evaluation contexts and the
closure by structural equivalence. The proof for the “if” implication is similar and relies
on the fact that p is injective when applied to terms in (F, h,l)-normal form.

We now prove that process reduction, as defined by the labelled transition systems,
is preserved as well. We proceed by cases on the label pu:

uw=a(M) By __an inspection of Table EI,’ there exist x,P’,Q such that
vnvy.({M/z} | P) =g, vavy.({M/z} | a(@).P' | Q) and B =g,
vnwy.{M/z} | P'{M/z} | Q). Similarly, we have that vn.vy.({M /Z}p | Po) =g,
vivi.({M/Z}p | a(z).P'c | Qo). By a-renaming, we can assume z ¢ % and, by
Scoprk, we derive free(M) N {n,y} = 0. By IN, ALIAS, SUBST, and RES-PAR, we
get vi.LVy.({M/Z}p | a(z).Po | Qo) L viavjve.({M/z}p | {M/Z}p | P'o | Qo).

= a(b) The output term is a free channel. We have that vii.vg. ({M/Z} | P) =
viwg.({M)z} | a(b).P' | Q) and B =g, viwy.({M/Z} | P' | Q). By Scopk,
a ¢ 7, and b ¢ 7. Similarly, we have that vi.vg.({M/Z}p | Po) =
vivi.({M /Z}p | a(b).P'c | Qo). The result follows from OUT-ATOM and SCOPE.

w = vb.a(b) The output term is a private channel. We have that
vn,bvy.{M/z} | P) =g, vnbvy({M/z} | ab).P’ | Q) and
B =g, vivy.({M/Z} | P' | Q). Similarly, vi,bvg. ({M/Z}p | Po) =g,
vn, b.yﬂ.({M/ﬁf}p | a(b).P'oc | Qo). The result follows from OuT-ATOM and
OPEN-ATOM.

20

i = vr.a(z) We have that vi.vg.({M/Z} | P) =g, VN.VY. ({M/Z} | a(M).P' | Q),
and, by Arias, REs-PArR, Ovur-AroM, and OPEN-ATOM, B =g,
viv.({M/z} | {M/Z} | P' | Q), for some = ¢ ¥ and with fo(M) C Z. Simi-
larly, we have that vi.vg.({M/Z}p | Po) =g, vi.vy.({M/Z}p | a(M).P'o | Qo).
The result follows from ALIAS, RES-PAR, OUuT-ATOM, and OPEN-ATOM.

In all cases, it is easy to see that the resulting extended process is (F,h,[)-valid. The
proof for the “if” implication is similar and relies on the fact that p is injective when
applied to terms in (F, h,[)-normal form.

O

We are finally ready to prove that the dynamic compilation preserves static equivalence.

We first characterize a notion of similarity for frames. The crucial ingredient of this

definition is that the two frames coincide when restricted to bound variables, i.e., if the

terms received as input by the corresponding extended processes coincide. This property

is naturally fulfilled by the frames associated to labelled bisimilar extended processes.
The next lemma says that a test succeeds if and only if its compilation does.

Lemma 3 (Test Preservation) Let ¢ be an (F,h,l)-valid frame and p be the (F,h,l)-
dynamic compilation. For every M, N in (F,h,l)-normal form with respect to ¢ such
that (free(M) U free(N)) N bound(¢) = 0, we have that (M = N)¢ < (Mp = Np)pp.

Proof. The proof follows from Lemma [l and Proposition P21 O
The next definition introduces the notion of similarity for frames.

Definition 15 (Frame Similarity) Two frames ¢ and v are similar, written ¢ ~ 1,
if and only if the following conditions hold:

1. There exist F, h, and | such that ¢ and ¢ are (F,h,l)-valid frames.
2. ¢ = I/ﬁl/ﬂ{ﬂ/lf} and ¢ = vin.vi.{N/Z}.
3. For every x; € bu(¢), we have M; = N;.

The next lemma says that for testing similar frames, it suffices to only consider terms in
(F, h,l)-normal form.

Lemma 4 (Valid Tests) Let ¢ and ¢ be two (F,h,l)-valid and similar frames. For
every M, N such that (M = N)¢ holds and (M = N)v does not hold, there exist M', N’
in (F,h,l)-normal form with respect to ¢ and v such that (M' = N")¢ holds and (M' =
N") does not hold.

Proof. We first show that it is possible to replace M by a term M’ such that every
subterm of the form Public;(Z) is in (F, h,l)-normal form with respect to ¢.

M = T[Public;(Z)] and Ezx - Z¢ = ZKi,j'(M, N, F), with j/ > j > I. By an inspection
of the equational theory, we have two cases:

21

e There exists Z' = ZKi,j/(M',N',F') € terms(Z) such that Ezx - Z'¢ =
ZKi,j’(M,]v,F). Therefore, Ezx b Public;(Z)¢ = Nj¢. If Ezx
Public;(Z)i) = N, then we can replace Public;(Z) by NJ. Otherwise, we
have that (Z = Z')¢ holds and (Z = Z’)1 does not hold, as desired.

o There exists a variable z € terms(Z) such that ZKi,j/(Z\Af’, N, F') € terms(x¢)
and Ezx H ZKi,j’(Mv’,ﬁ,F’) = ZKi,j’(M, N,F). By definition and
definition M3 there exists a variable y € bound(¢) N bound(z)) and a term
Z bound to y in ¢ and v such that ZKz’,j’(W,]W’,F”) € terms(Z),
free(Z) N bound(¢) = 0, and Ni¢ = N;. If Ezx & Public;(Z)y = N4,
then we can replace Public;(Z) by N. Otherwise, (Z = ZKi,j’(m,ﬁ’,
F"))¢ holds and (Z = ZKi, j'(M", N", F""))i does not hold, as desired. By
Definition [[3], ZKz’,j’(W, N, F") and N} are in normal form with respect to
¢ and 1.

We can similarly prove that it is possible to remove every subterm of the form Ver; ;(F, Z)
that is not in (F, h,l)-normal form. At the end of such a process, possibly applied to NV,
we get two terms M’ and N’ in (F, h,l)-normal form with respect to ¢ and v such that
(M' = N")¢ holds and (M’ = N')y does not hold, as desired. O

We can now formulate the theorem stating that verifying static equivalence on frames
obtained by the encoding suffices to prove static equivalence on the original frames.

Lemma 5 (Preservation of Static Equivalence) Let ¢ and 1 be similar and (F, h,1)-
valid frames such that dom(p) = dom(v). Let p be the (F, h,l)-dynamic compilation. If

Op X Up then 6 N, V.

FZK

Proof. By Definition [, we have to prove that Ezx F (M = N)¢ < Ezx - (M = N),
for every M,N € T, only if ELY = (M' = N')¢p & ELE' = (M = N')p, for
every M',N' € Tgrni. Suppose that there exist M, N such that (M = N)¢ holds
FZK

and (M = N)y does not hold. By Lemma H we can assume that M and N are in
(F, h,l)-normal form with respect to ¢ and 1. By Lemma Bl (Mp = Np)¢pp holds and
(Mp = Np)p does not hold. Therefore, ¢pp and 1)p are not statically equivalent, yielding
a contradiction.

O

The following lemma asserts that the equivalence of the terms occurring in input labels
does not affect labelled bisimilarity.

Lemma 6 (Equivalent Labels) Let A and B be extended processes such that A aaf) A,
B B, and $(A) =g, #(B). Then for every N such that Ezx = M¢(A) = N¢(A)

and A" A’, we have that B W) pr

22

Proof. Since the frames of the two extended processes are statically equivalent, we have
that Ezx - M@(B) = N¢(B) and dom(p(A)) = dom(p(B)). Possibly after applying a-
renaming on bound names, we get the result by applying IN, SCOPE, and STRUCT. [J

We can finally show that verifying labelled bisimilarity on extended processes obtained by
the compilation suffices to prove labelled bisimilarity on the original extended processes.
With Theorem Bl this proves Theorem [[as desired. In the following, for every (F,h,1)-
valid A = vii.vy.({M/Z}|P), we write Apo to denote vi.vg.({M /% }p|Po).

Lemma 7 (Preservation of Labelled Bisimilarity) Let A, B be extended processes
such that A = Uﬁ.uﬂ.({ﬂ/ﬁfﬂP), B = yﬁ’.uﬂ.({ﬁ’/iﬂ P), for some (F,h,l)-valid P
and P' and v {M T} ~ uﬁﬁyﬁ.{]\?’/i}. Let o be the (F, h,l) static compilation and
p be the (F,h,l)-dynamic compilation. If Apo RﬁlEf’h,l Bpo, then A ’A"ZEZK B.

FZK

Proof. Since Apo RﬁlE #n, Bpo, we can consider the smallest symmetric relation
FZK

R QzlE #n satisfying the conditions [, B, and B of Definition [Il and such that
FZK

ApoR'Bpo. Given p and o, let us define the relation R as the smallest symmetric

relation satisfying the following conditions:

1. for every (F, h,l)-valid A, B such that ApcR’'Bpo and ¢p(Apo) ~ ¢(Bpo), we have
that ARB.

2. for every A, B, A’, B’ such that ARB, A =g, A" and B =g, B’, we have that
A'RB.

We want to prove that R satisfies the conditions [l B and Bl of Definition [l

Condition [We want to prove that for every A, B such that ARB, we have that
¢(A) =g, ¢(B). If ARB, then there exist (F,h,l)-valid A" and B’ such that
A=p, A, B=pg, B, and A'pcR'B'po. By definition of R', ¢(A'pc) ~ ¢(B'po)
and ¢(A'po) A F ¢(B'pc). It is easy to see that ¢(A’) ~ ¢(B’). By Lemma

FZK

B ¢(A) N ¢(B'). Since structural equivalence preserves static equivalence,
#(A) =% ¢(B), as desired.
Ezk

Condition @] We want to prove that for every A, B such that ARB, we have that (if
A — Ay, then B —* By and A1RB; for some B’). If ARB, then there exist
(F,h,l)-valid A" and B’ such that A =g, A, B =g, B’, and A'pcR'B’'po. By
Lemma B for every A; such that A — A;, there exists a (F,h,l)-valid A} such
that A" — A}, A} =g, A1, and A'poc — Alpo; we can find similar By and Bj
for B and B’, respectively. By Lemma Bl and Definition [[[it is easy to see that
d(Alpo) ~ ¢(B]po). By definition of R, A|RBj and, since p is closed by structural
equivalence, A1R By, as desired.

23

Condition Bl We want to prove that for every A, B such that ARB, we have that (if
A5 Ay and fo(p) C dom(A) and bn(p) N fn(B) = 0, then B —*5—* B and
A1 R B for some By). If ARB, then there exist (F, h,[)-valid A" and B’ such that
A=g, A, B=g, B, and A'pcR'B'po. By Lemma @l and Lemma [for every A;
such that A %5 A, there exists a (F, h,[)-valid A} such that A’ % A}, A} =g, Aj,
and A'poc — Al po; we can find similar B; and Bj for B and B’, respectively. By
Lemma P and Definition [T it is easy to see that ¢(A)po) ~ ¢(B]po). By definition
of R, A{RBj and, since p is closed by structural equivalence, A;RBj, as desired.

Therefore A zlE B, as desired.
ZK D

[Theorem 1] then follows directly from Lemma [@ since ~; and ~ coincide in the applied
pi-calculus.

In some cases, the analysis of observational equivalence using the tool ProVerif [6]
does not terminate due to the presence of the constructors A and V and their equations.
In these cases, it is useful to remove A and V from the equational theory if they are not
used in the protocol. Protocols often contain these constructors only in the formulas of
zero-knowledge proofs. Then, after compilation, the protocol does not contain A and V
any more, but the equational theory produced by the compiler does. In these cases, the
following theorem often allows to modify the equational theory produced by the compiler
in such a way that A and V do not occur any more:

Theorem 4 (Unfolding) Given F,h,l, let E,:lelzl be the equational theory defined
in Table M. Let ' C F and 7} i ,?Z”]F be tuples of arity i + j associated to
each (i,j,F) € F', where n = n;jp. Assume that for every (i,j, F) and tuples
M = My, ...,M;y; of arity i + j, we have that (Elk: o such that M = ”FU &
ELI - F{M, /o1 }{M;11.1;/B1,} = true), where My ; = My, ..., M; and MZHW
M;iiq,...,M;yj. Let E be obtained by replacing all the rules containing PZKE. for every
(1,5, F) € F', by the following set of rules:

i,j7

Ver[;(ZK[(715) = true, ..., Ver[,(ZK[; (7,) = true

Publlck(ZKL (Z,9) = yk
Formula(ZK; ;(7,y)) = F

Then EFfzﬁl\{(M, N) | PZKf:j occurs in M or N A (i,j,F) € F'} = E.

Note that Efzﬁl\{(M N) | PZKF- occurs in M or N A (i,j,F) € F'} = E trivially
implies the preservation of observatlonal equivalence, since PZK ; Is a private constructor
not used in the protocol and thus never appears in terms produced by the protocol or
the adversary.

Proof. All the equations defining EFfZ’K’ and depending on PZK - have a direct coun-

terpart in the definition of E. The only subtlety concerns the equatlons for the verifi-
cation of zero-knowledge proofs: for every (i,j,F) € F', M, N such that F{M;/ay;,

24

J\Zﬂ,j/ﬂlj} = true, E,:lelzl F Verfj(PZKfj(M, N, true)) = true can be exploited to prove
Verfj(ZKfj(M,N)) = true. However, for every (i,j,F) € F/, M, N there exist Ti’fLF,J
such that M,N = 75 if and only if EFfzﬁl [F{Mu/au,]\ZJrl,j/ﬂU} = true. Therefore
B = Verl ,(ZKI, (M, N)) = true if and only if E - Ver!,(ZKF,(M,N)) = true. O

Additionally, after having removed all occurrences of A and V, we need to be able to
remove their equational rules. The soundness of this transformation is shown by the
following simple lemma:

Lemma 8 (Removal of A and V) Let Ey be an equational theory with signature ¥
and \,V & Yo and true € Xg. Let X1 := Yo U {A,V} and let Ey be the smallest equa-
tional theory over X1 containing Ey and the equations {A(true,true) = true, V(true,z) =
true, V(z, true) = true}. Let 3o := X1 and let E5 be the smallest equational theory over
Yo containing Eg. Then for all processes P and @ not containing A or V, we have that
P ~pg, Q if and only if P =g, Q.

Proof. The proof has the same structure as the proof of Theorem Ml We first define
a notion of normal form for Ty, terms with respect to ¢, requiring that for any term
of the form A(M;y, M3) (resp. V(Mi, M3)) occurring therein, Fzgx ¥ Mj¢ = true or
Ezk ¥ Ms¢p = true (resp. Ezx ¥ Mi¢ = true and Ezk ¥ Ms¢p = true). We then define
a notion of validity for terms and plain processes, which requires that A and V do not
occur therein. The definition of validity for frames and extended processes is similar to
Definition M3 where the new definition of normal form and validity for terms and plain
processes is taken into account. Finally, the compilation from T%, to T, is simply defined
as the identity function. It is easy to see that Proposition [Proposition Pl and Lemma
[still hold. Since the identity function is bijective, we have the double implication in
Lemma B and Lemma [1 as desired. O

The previous proof shows that the framework proposed in this section provides a method-
ology for proving the soundness of any transformation of equational theories for which
Proposition [[, Proposition Bl, and Lemma [hold.

5 Case Study: Direct Anonymous Attestation

To exemplify the applicability of our theory to real-world protocols, we analyze the secu-
rity properties of the Direct Anonymous Attestation (DAA) scheme [9]. DAA constitutes
a cryptographic protocol that enables the remote authentication of a hardware module
called the Trusted Platform Module (TPM), while preserving the privacy of the user
owning the module. Such TPMs are now widely included in end-user hardware such as
desktop PCs and notebooks.

The goal of the DAA protocol is to enable the TPM to sign arbitrary messages and
to send them to an entity called the verifier in such a way that the verifier will only
learn that a valid TPM signed that message, but without revealing the TPM’s identity.
The DAA protocol relies heavily on zero-knowledge proofs to achieve anonymity. The

25

occurrence of these proofs in particular prevented a previous analysis of the protocol
using abstract verification.

The DAA protocol is composed of two subprotocols: the join protocol and the DAA-
sign protocol. The join protocol allows a TPM to obtain a certificate from an entity
called the issuer. The protocol ensures that even the issuer cannot link the TPM to
its subsequently produced signatures. The DAA-sign protocol enables a TPM to sign a
message. This signed message is then verified by the verifier.

We assume that every TPM has a unique id as well as a secret signature key called the
endorsement key (EK). The issuer is assumed to know the public keys corresponding to
the secret EKs. We assume further a publicly known string bsny called the basename of
the issuer, as well as a publicly known unique string bsny for each verifier V. Every TPM
has a secret seed daaseed ;q that allows for deriving secret values f.,; := H(daaseed ;q, cnt)
where H is some hash function. We will call f.,; the f-value for counter cnt. Each such
f-value represents a virtual identity with respect to which the TPM can execute the join
and the DAA-sign protocol.

5.1 Join protocol

In the join protocol, the TPM can receive a certificate for one of its f-values f from the
issuer. Such a certificate is basically just a signature on f of the TPM. However, since
we do not want the issuer to learn f, we have to use blind signatures, i.e., the request
from the TPM to the issuer contains blind(f,v), for some random v, instead of just
f. Furthermore, for reasons that will become clear in the description of rogue-tagging
below, the TPM is required to also send the hash value Nj := exp((s, f) along with
its request where (7 is a value derived from the issuer’s basename bsny. The function
exp constitutes an exponentation in the original specification of DAA; we model it as
a hash function with two arguments. Since we do not want the TPM to use different
f-values in the computation of Ny and of blind(f,v), we have to attach a ZK proof that
the same f-value has been used in both cases. After checking the proof, the issuer signs
the blinded f-value blind(f,v) and returns this signature = := blindsign(blind(f, v), skr).
Then cert := unblind(x,v) is a valid blind signature on f. This certificate cert will be
used for the DAA-sign protocol. Since we want to guarantee that only valid TPMs can
receive certificates, the TPM authenticates all its communication to the issuer using its
endorsement key ek;y. The join protocol has the following overall shape:

TPM Issuer
—id, sign(ZK(f,v;blind (f,v),N1,(15Fjoin), ekia) >

<——blindsign(blind(f,v),skr)

with Fioin = (61 = blind(a1,2) A P2 = exp(fs,1)). In our calculus, we can model
the behavior of the TPM in the join protocol as follows:

26

tpmjoin := let f = hash(pair(daaseed(id), cnt)) in

V.
let U = blind(f,v) in
let ¢r = hash(pair(ny, bsny)) in

let Ny =exp((r, f) in

let zkp = ZK(f,v; U, N1, (15 Fioin) in
pub(pair(id),sign(zkp, sk(ek(id)))).
pub(x).

let cert = unblind(z,v) in

if blindver(cert, f, pk(issuerK)) = true then
event JOINED(id, cnt, cert).

och(cert)

Here we use let x = M in P as syntactic sugar for P{M/x}. The occurence of an event
M is modeled as ¢(M) where c is a distinguished channel used only for events. Given the
explanations above, most steps in this process should be self-explanatory, however, a few
points merit further explanation: The secret seed daaseed;; is modelled by the private
constructor daaseed taking as input id. In the computation of {; := hash(pair(nq, bsny)),
ny is a free name. In the original DAA protocol [9], the integer 1 is used here. For
communication with the issuer, we use the channel pub. The secret key ek;; and the
public key sk are modeled as sk(ek(id)) and pk(issuerK) where ek and issuerK are private
constructors. That is, by ek(id) we model a secret function mapping a TPM’s identity
to the endorsement secret/public key pair. We then use the operators sk and pk to
access the secret and the public key. The function issuerK is nullary since, for the sake
of simplicity, we model a single issuer. The private channel och will later be modeled as
a secret channel to pass the received certificate to the DAA-sign process.

Accordingly, we model the issuer’s part in the join protocol as follows:

issuer := | pub(msg).
let id = first(msg) in
let sig = snd(msg) in
let zkp = msg(sig) in
if ver(sig, zkp, pk(ek(id)) = true then
if Verg 3(Fioin; 2kp) = true then
let U = Publici (zkp) in
let N = Publicy(zkp) in
let ¢ = Publicg(zkp) in
if rogue = true then 0 else
if rogueid = true then 0 else
if ¢ = hash(pair(ny, bsny)) then
let cert = blindsign(U, sk(issuerK)) in
pub(cert)

In this process, rogue and rogueid represent predicates depending on N, ¢ and #d. These

27

are used for the detection of rogue TPMs. We will specify rogue and rogueid in more
detail below when we discuss rogue detection.

5.2 DAA-sign protocol

After successfully executing the join protocol, the TPM has a valid certificate cert for its
f-value f signed by the issuer. Since we only want valid TPMs to be able to DAA-sign a
message m, the TPM will have to convince a verifier V' that it possesses a valid certificate
cert. Of course, the TPM cannot directly send cert to the verifier V| since this would
reveal f. Instead, the TPM produces a zero-knowledge proof zkp that it knows a valid
certificate. If the TPM, however, would just send (zkp,m) to the verifier, the protocol
would be subject to a trivial message substitution attack. We instead combine m with
the proof such that one can only replace m if one redoes the proof (and this again can
only be done by knowing a valid certificate). Fortunately, this can easily be done in
our formalism by including m in the public parameters of the zero-knowledge proof zkp
(there is no condition that a parameter included in the proof actually has to be used by
the formula). In this fashion we produce a kind of zero-knowledge signature that can
only be forged if the attacker is able to produce a valid proof. Furthermore, we again
include a value N := exp((, f) whose importance will become clear below. The overall
shape of the DA A-sign protocol is hence as follows:

TPM Verifier

ZK(fvCerthCvpk[vm;Fsign)

with
Fggn = (1 =exp(fB2,01) A blindver(az, a1, 33).

An interesting point here is the choice of . By prescribing different derivations of , we
get different modes of DAA-signing: an anonymous and a pseudonymous one. In case
of anonymous DAA-signing, ¢ is a fresh name chosen by the verifier. In this case, two
signatures by the same TPM will contain values N = exp((, f) and N’ = exp({’, f) for
different ¢, (’, so the attacker will not be able to link these signatures. In the case of
pseudonymous DA A-signatures, however, we derive (in a deterministic fashion from the
basename bsny of the verifier. Then any two signatures for the same verifier using the
same f-value will have the same value of N; hence these signatures can be linked. It will
not be possible, however, to link these signatures to the execution of the join-protocol or
to signatures for other verifiers. N takes the role of a verifier-specific pseudonym.

We now discuss how to write this protocol in our calculus. We start with the anony-

28

mous variant where (is a fresh name:

daasigna := (.
let f = hash(pair(daaseed(id), cnt)) in
let N =exp(C, f) in
let zkp = ZK(f, cert; N, C, pk(issuerK), m; Fyign) in
event DAASIGNEDA(id, cnt, m).
pub(zkp)

daavera := pub(zkp).
if Verg 4(Fiign; 2kp) = true then
let N = Publicy(zkp) in
let ¢ = Publicy(zkp) in
if Public3(zkp) = pk(issuerK) then
let m = Publicy(zkp) in
if rogue = true then 0 else
event DAAVERIFIEDA(m)

As in the case of the issuer process, rogue is a predicate depending on { and N that
we will elaborate upon further when we discuss rogue detection below.

The pseudonymous variants of these processes are similarly defined: The pseudony-
mous DAA-signing process daasignp is defined like daasigna, except that v(is re-
placed by let ¢ = hash(pair(ni, bsny)) in . The corresponding verification pro-
cess daaverp is defined like daavera, except that after let ¢ = Publica(zkp) in
we insert if (= H(pair(ny,bsny)) then . Furthermore, to be able to formu-
late a more fine-grained authenticity property below, we output the more infor-
mative events DAASIGNEDP(id,cnt, bsny,m) and DAAVERIFIEDP(m,bsny, N) instead of
DAASIGNEDA(id, cnt, m) and DAAVERIFIEDA(m), respectively. These changes yield the fol-

29

lowing two processes:

daasignp := let ¢ = hash(pair(ny, bsny)) in (%)
let f = hash(pair(daaseed(id), cnt)) in
let N =exp((,f) in
let zkp = ZK(f, cert; N, ¢, pk(issuerK), m; Fyign) in
event DAASIGNEDP(id, cnt, bsny,m).

pub(zkp)

daaverp := pub(zkp).
if Verg 4(Fsign; 2kp) = true then
let N = Publicy(zkp) in
let ¢ = Publicy(zkp) in
if ¢ = hash(pair(ny, bsny)) then (%)
if Publics(zkp) = pk(issuerK) then
let m = Publicy(zkp) in
if rogue = true then 0 else
event DAAVERIFIEDP(m, bsny, N)

with ny := n;. The most important changes with respect to the anonymous DAA-sign
protocol are marked with (%). Note that we parametrized these processes with respect
to the value ny := n1 used in the computation of (. This is to be able to express the
changes needed for circumventing the attack described in [26], see below.

5.3 Rogue-tagging

So far, we presented the DAA protocol under the assumption that no TPM is compro-
mised. A TPM is a single chip so that it is very difficult to extract private information
from a TPM. Extracting such private information is however not impossible, so we have
to expect that a few TPMs can get compromised. But as soon as a single TPM is com-
promised, the attacker can sign arbitrary messages, and these signatures even cannot be
traced to this specific TPM. Even worse, the attacker could release the f-value and a cor-
responding certificate on the Internet; this would allow everyone to fake DA A-signatures.
To capture this last case, a so-called rogue list is introduced that contains all f-values
that have been published on the Internet. Furthermore, the issuer maintains a list of
revoked TPM ids. Since the communication with the issuer is authenticated, the issuer
can refuse to issue certificates to a revoked TPM. Already issued certificates stay valid.
To address this problem — note that in every protocol execution (join or DAA-sign) based
on some f-value f — the TPM sends a pair ({,N) with N = exp(¢, f). So given a list
of rogue f-values F' := (fi,..., fn), we can check whether f € F' by checking whether
N = exp((, f;) for some i € [1,n]. Thus the attacker cannot use a certificate relative to
an f-value that has been marked rogue.

30

To model this mechanism in our calculus, we introduce two predicates rogueid and
rogue in the issuer and verifier processes above. The predicate rogueid (used only be the
issuer) is defined to evaluate to true iff the TPM id is marked rogue. So if, e.g., the ids
idy,ids, ids are marked rogue, we would set rogueid := (id = idy V id = idy V id = id3).
The predicate rogue checks whether N = exp((, f’) for some f’ on the rogue list, so if, e.g.,
the f-values f1, f2, f3 were rogue-listed, we would define rogue := (N = exp((, f1) VN =
exp(C? f2) VN = exp(C? f3)

5.4 Security properties of DAA

We will now discuss the main security properties of DAA and how to model them in our
calculus.

5.4.1 Authenticity

The first property we would like to model is authenticity: If the verifier accepts a message
m, then some TPM has DAA-signed this message m. To model this, we consider the
following process:

issuer|pub (pk(issuerK))|!pub(id). TPMs|!daavera|!daaverp

The output pub(pk(issuerK)) reflects that the public key pk(issuerK) is publicly known.
if we omitted this output, the adversary could not generate this term, since issuerK is a
private name (otherwise the adversary would know sk(issuerK)). The subprocess TPMs
reflects that we require authenticity to hold even if the adversary controls an arbitrary
number of TPMs in an arbitrary fashion (except for learning their secrets). We model
this process as follows:

TPMs :=!pub(cnt).voch.(tpmjoin|
(och(cert).!pub(m).(daasigna|pub(bsny).daasignp))).

Thus for any pair of id, cnt received from the adversary, this process performs a join,
and with the certificate cert received from the issuer, it DAA-signs any message m
anonymously or pseudonymously with respect to arbitrary basenames bsny. Note how
we used inputs to bind the free variables id, cnt, och, m, bsny in tpmjoin, daasigna, and
daasignp.

Given this process, authenticity is defined as the fulfillment of the following two trace
properties:

DAAVERIFIEDP(m, bsn, N') = DAASIGNEDP(id, cnt, bsn, m)

DAAVERIFIEDA(m) = (DAASIGNEDA(id, cnt, m) V
DAASIGNEDP(id, cnt, bsn,m)).

Intuitively, the first property means that if an event DAAVERIFIEDP(m, bsn, N) occurs,
then also DAASIGNEDP(id, cnt, bsn, m) occurs in that trace with the same values of bsn and

31

m, i.e., when a verifier accepts a pseudonymously signed message m, then a valid TPM
actually sent that message m for that verifier. Similarly, the second property guarantees
that if a verifier accepts a message as anonymously signed, that message has been signed
anonymously or pseudonymously by some valid TPM. (An inspection of the protocol
reveals that we cannot expect pseudonymously signed messages not to be accepted by
anonymous verification.) We refer to for a formal definition of these trace
properties.

Trace properties such as the above authenticity properties can be verified with the
mechanized prover ProVerif [6]. We applied the compilation described in Section H and
feed the output — now a process in a finitely generated equational theory — to ProVerif.
ProVerif successfully verifies the authenticity properties. The running time of this proof
is 3 seconds on a Pentium 4, 3 GHz. A more detailed description of the necessary steps is
given in The tool implementing the compiler from Section can be found
at [4]. So far, we have not investigated the case that some TPMs are rogue-listed (i.e.,
rogue = rogueid = false). An analysis of this case can be found in [Section 6.2.3

5.4.2 Anonymity

The second property we would like to examine is the anonymity of the anonymous DAA-
sign operation. In other words, if two TPMs 77, T> might have signed a given message, the
attacker should not be able to distinguish which TPM has signed the message. Obviously,
this can be formalized as observational equivalence between two processes P, Py, where
in P; the TPM T; signed the concerned message. E.g., a natural formulation would be
to define P, and P as follows:

P; :=leak |
(let (id, cnt, och) = (id1,ny,inty) in tpmjoin) |
(let (id, cnt, och) = (id2,ny,inty) in tpmjoin) |
(intq(certy).inta(certs).

let (id, cnt, cert) = (id;, nq, cert;) in daasigna)

with leak := (lpub(id).pub(pk(ek(id)))) |pub(pk(issuerK)) | pub(sk(issuerK)), where
id1,ido,ny are free names and inty, inty are private channels for transmitting the cer-
tificate from the tpmjoin process to the daasigna process. The leak process leaks all
public information and all secrets of the issuer. This models the case that the issuer is
corrupted, thus making the security property stronger since anonymity holds even when
the issuer colludes with the attacker. The two invocations of tpmjoin request certificates
for different ids id; and ¢d2. These certificates are then assigned to the variables cert;
and certy. Then a message m (m is a free name in daasigna) is signed with respect to
either id; and cert; or ids and certs, depending on whether we consider the process P;
or P». Anonymity is then defined as the statement that P, and P, are observationally
equivalent.

Although we can successfully prove this fact using our compiler and ProVerif, closer
inspection reveals that this property is not very general. For example, it does not cover

32

Table 8 The processes P; and P; in the definition of anonymity. The numbers in square
brackets refer to the steps in the description of the security property.

M P :=leak | (pub(x). let id = corrupt(z) in pub(daaseed(id)).pub(sk(ek(id)))) |

1
2
3
4
)
6
7
8

(let (id, cnt, och) = (idy, cnty, inty) in tpmjoin) |

(let (id, cnt, och) = (ids, cnta, ints) in tpmjoin) |

(let id = idy in TPMs) | (let id = idy in TPMs) |

(mtl certy).into(certs).

(("pub(m). let (id, cnt, cert) = (id;, cnt;, cert;) in daasigna) |
(Ipub(m). let (id, ent, cert) = (idy, cnty, certy) in daasigna) |

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(Ipub(m). let (id, ent, cert) = (ida, cnta, certy) in daasigna) |

(Ipub(m). pub(bsny). let (id, ent, cert) = (idy, cnty, certy) in daasignp) |

(9)

(pub(m). pub(bsny). let (id, cnt, cert) = (idy, cnta, certs) in daasignp))
(10)

H EEEEEEHEE

the case that the TPM T first signs a few messages, and then either 77 or T5 sends
another message (so that the adversary can try to link messages). Further it does not take
into account that the adversary might influence (i.e., choose) the messages to be signed,
or that the T; signs several messages, or that additionally pseudonymous signatures are
produced. To capture all these cases, we need a much more complex security definition
which is captured by the following game:

1. The issuer and an arbitrary number of TPMs are corrupted (i.e., their secrets leak).

2. Two challenge TPM ids id1, ido are chosen. Two cnt-value cntq, cnty are chosen.

3. The TPMs idq, ids join with respect to cnt-value ecntq, cnto, respectively.

4. The adversary may ask both challenge TPMs to execute the join protocol and
to sign messages chosen by the adversary anonymously or pseudonymously with
respect to either the certificates obtained in Step Bl or the certificates obtained in
this step. This may happen arbitrarily often.

5. The adversary may ask the challenge TPM id; to sign a message chosen by the
adversary with respect to the certificate cert;. Herei € {1,2} depending on whether
we are running the process P; or P, (and the adversary has to distinguish whether
i =1 or ¢ = 2). This may happen arbitrarily often.

We model this by the processes Py, P, given in These processes constitute a
formalization of the game depicted above. Note that although the adversary’s possibilities
in lines ([HIM) seem to be subsumed by the invocations of the subprocess TPMs in line (@),
there is a slight difference: The process TPMs does not allow the attacker to sign messages
with the certificates obtained in Step[d. The constructor corrupt in ([I) is used to generate

33

Table 9 The processes P; and P» in the definition of pseudonymity. Compare also with
(1able &

P; := leak | (pub(x). let id = corrupt(z) in pub(daaseed(id)).pub(sk(ek(id)))) | (11)
(let (id, ent, och) = (idy, cntq,int1) in tpmjoin) | (12)
(let (id, ent, och) = (ida, cnte, inte) in tpmjoin) | (13)
(let id = idy in TPI\/IS) | (let id = idy in 'ﬁD\l\Ts) | (14)
(mtl certl inta(certs). (15)
(Ipub(m). let (id, cnt, cert) = (id;, ent;, cert;) in daasigna) | (16)

(Ipub(m pub(m). let (id, cnt, cert, bsny) =
(id;, cnt;, cert;, bsnVch(x)) in daasignp) | (17)
(Ipub(m). let (id, cnt, cert) = (idy, enty, certy) in daasigna) | (18)
(Ipub(m). let (id, cnt, cert) = (ida, cnta, certs) in daasigna) | (19)

(Ipub(m).pub(x). let (id, cnt, cert, bsny) =
(idy, enty, certy, bsnVoth(x)) in daasignp) | (20)

(Ipub(m).pub(x). let (id, cnt, cert, bsny) =
(ida, cnta, certa, bsnVoth(z)) in daasignp)) (21)

with

TPMs :=!pub(cnt).voch.(tpmjoin|(och(cert).!pub(m).
(daasigna|pub(z).let bsny = bsnVoth(z) in daasignp))).

an infinite supply of ids of corrupted TPMs.

The property of anonymity is then formalized as the statement that P, and P, are
observationally equivalent, which is a statement accessible to ProVerif. When directly ap-
plying ProVerif to the output of the compiler described in Bection 4.7, however, ProVerif
does not terminate. Instead, we additionally have to rewrite the resulting theory using
the technique given by Theorem H and Lemma B After this additional step, ProVerif
successfully verifies that P; and P» are observationally equivalent. The running time is
149 seconds on a Pentium 4, 3 GHz. More details can be found in Note
that in the case of anonymity, we do not need to consider the case of rogue-listing, since
neither the issuer nor the verifier appear in corrupted form.

5.4.3 Pseudonymity

Modeling the pseudonymity requirements is similar to anonymity; however, there are
a few additional subtleties to be considered. A naive approach of modeling the security

34

of the pseudonymous signatures would be to take the process described in [[able], but
replace daasigna by daasignp in line () and let the adversary choose the value of bsny in
that line. This denotes the fact that the adversary can now ask the challenge TPM id; to
perform a pseudonymous signature. The resulting security property, however, cannot be
expected to hold since the adversary could request a pseudonymous DA A-signature from
the challenge TPM id; via line () and a pseudonymous from the TPM id; via line ().
Then the adversary could compare whether both signatures carry the same pseudonym
N, if so we have i = 1, otherwise we have ¢ = 2. Instead, we must require that the
signatures produced in lines (@) to use a different basenames than those in line ({@).
We do this using two different sets of basenames. The basenames allowed for requesting
a signature from the challenge TPM id; are of the form bsnVch(z) and those allowed for
all other DAA-sign requests are of the form bsnVoth(x) where bsnVch and bsnVoth are
constructors of arity 1. The resulting processes P;, P, are depicted in [Table 9 Note that
we allow the adversary to request both anonymous and pseudonymous DA A-signatures
from the challenge TPM 1id;.

Using our compiler and ProVerif, we can show that P; and P, are observationally
equivalentﬂ The verification of this fact takes 56 seconds on a Pentium 4, 3 GHz.

Our modelling in implicitly assumes that it is guaranteed that the basename
bsny of the issuer does not equal any of the basenames of the verifiers. (The basename
bsny of the issuer is modelled as a free name.) It is known that if the basename of
the issuer may coincide with one of the verifiers basenames there is an attack on the
pseudonymity of the system [26]: If bsn; = bsny, the values ¢ computed by the tpmjoin
and the daasignp processes are equal. If further both processes use the same f-value f,
the resulting pseudonym N = exp((, f) will also be equal. This allows to link signatures
and joins. To model this, we model bsn; as a term of the form bsnVch(x). More exactly,
we set

P, := let bsny := bsnVch(ng) in P;

and ask whether P, and P, are observationally equivalent. As expected, the combination
of our compiler and ProVerif successfully detects the attack and outputs that P; and
P, are not observationally equivalent. The verification takes 40 seconds on a Pentium 4,
3 GHz.

In [26] it is proposed to fix the protocol by using different integers in the computation
of ¢ in the processes tpmjoin and daasignp. We do this by defining ny := ng instead of
ny = nj in the definition of daasignp. Using this change, our compiler together with
ProVerif successfully determines that P, and P, are observationally equivalent. The
verification takes 62 seconds on a Pentium 4, 3 GHz.

6 Mechanized Security Proofs for DAA

In this section, we will examine the practical applicability of the results of the previous
sections to mechanized security proofs. Instead of designing a new tool from scratch,

! As with the proof of anonymity, we have to apply Theorem Bl and Lemma B to ensure termination.

35

we implemented a compiler that generates input for the automated prover ProVerif [6]
according to the description given in Becfion 411 This compiler together with example
inputs can be found at [@]. To show how our theory is applied, we analyze two protocols,
namely the simple example protocol from and the DAA protocol [9]. We
will describe how to prove different security properties of these protocols and also what
pitfalls occurred in our investigation and how to avoid these.

6.1 Example Protocol

We first examine the example protocol from Many of the techniques described here
will also be used in the more complex example of DAA below. We model the example
protocol as follows (omitting the specification of the base theory here)E

free pub,A,B.
private free priv,sl,s2,s3.

define zkproof =
land(
or(or(eq(alpha2,betal),eq(alpha2,beta2)),eq(alpha2,betal)),
sigver(alphal,beta4,alpha2)).

let server = event GAVEAUTHFOR(s,A,B); out(priv,sign(pair(A,B),sk(s))).
let B = in(priv,sig); if sigver(sig,pair(A,B),pk(s))=true then

out (pub,zk(sig,pk(s);pk(sl),pk(s2),pk(s3),pair(4,B) ;zkproof)).
let A = in(pub,zkp); if zkver(2;4;zkproof;zkp)=true then

if publicl(zkp)=pk(sl) then

if public2(zkp)=pk(s2) then

if public3(zkp)=pk(s3) then

if fst(public4(zkp))=A then

event GOTAUTHFOR(snd(public4(zkp))).
let leakpublic = out(pub,pk(sl)) | out(pub,pk(s2)) | out(pub,pk(s3)).

The syntax of this protocol should be mostly self-explanatory. It is the syntax of ProVerif
with a few additions particular to our tool. The define statement defines an abbreviation
zkproof for the formula we use in all ZK proofs and verifications (we use land instead
of and since and is a reserved keyword in proVerif). The process server produces a
signature on pair(A, B) using the secret key sk(s) and sends it to B over a secret channel.
All server processes 5; are modelled using this single process server by instantiating s
with different identities.

The process B then waits for a message from a server, checks whether this message
constitutes a valid signature of pair(A4, B) and then sends a ZK proof to A that it knows
a signature sig that is valid with respect to one of the keys pk(s1), pk(s2), pk(s3) (with-
out revealing which one). Note the syntax of the ZK constructor: It takes arguments

[, file simple.pvi.

36

(0, ...,q4 01, ..., 0;; F); the placement of the semicolons indicate which arguments are
private (o), which are public (8,) and which is the formula to be proven (F').

The process A waits for the proof sent by B and assigns it to the variable zkp. It
first verifies whether zkp is actually a valid proof of the correct arity (2;4) for the right
formula zkproof. Further it verifies that the public keys given in the ZK proof are the
right ones and that the message m of which B claims to know a signature is indeed a
pair having A as its first component. If so, A claims to have received authorization to
communicate with the process whose identity is given in the second component of m.

Finally, we need to model a fourth process. This is due to the fact that we had
to declare the server ids s1,s2,s3 as private free names since otherwise the adversary
would know the secret keys sk(s1),sk(s2),sk(s3). Since the adversary should however
know pk(s1), pk(s2), pk(s3), we define a process leakpublic that outputs these values
on a public channel.

So far these processes stand by themselves and are not executed in a common context.
How these processes are actually executed depends on the property we want to prove.

We will now model the first security property. We require that A will not accept
to communicate with B unless some server has signed an authorization. Or in the
parlance of the events defined in the protocol description above, we want that if the
event GOTAUTHFOR(sender) occurs, then the event GAVEAUTHFOR(server, recipient, sender)
occurred earlier with the same value of sender. This is modelled by the following code
fragmentg

compiler ZK.
passthrough query ev:GOTAUTHFOR(sender)
==> ev:GAVEAUTHFOR(server,A,sender).

process
leakpublic |
(let s=s1 in server) |
(let s=s2 in server) |
(let s=s3 in server) |
(let s=s1 in B) |
A

Here we see how we instantiate the value s to different server ids, so that we can use the
single definition of server for all occurrences of the server: We runs several instances
of server, and in each of them we substitute s with a different server id using the let
statement. Similarly, we instantiate the process B so that it expects a message from
server s1. The first line of the code fragment indicates which property we would like to
prove. The keyword passthrough simply indicates that this command should be passed
through directly to ProVerif and not be parsed by our compiler.

Finally, we have to tell our compiler what to do with our code. This is done by the
statement compiler ZK which instructs our tool to implement the compiler as described

3[4, file simple-auth.pvz.

37

n

If we compile and execute this code (see the README file in [4] for instructions) ProVerif
successfully determines that the required property is indeed fulfilled (the running time
is less than one second on a Pentium 4, 3 GHz). This property intuitively depends both
on the soundness of the ZK proof (i.e., we cannot prove a wrong statement) and on the
unforgeability of the signatures.

We will now investigate a more complex property: We require that given the public
communication between A and B, we cannot determine which server authorized the com-
munication. In other words, we want observational equivalence between a process where
server sl authorizes B and a process where server s2 authorizes B. This can be modelled
as follows{]

process
leakpublic |
(let s=choice[s1,s2] in server) |
(let s=choice[s1,s2] in B) |
A

In the language of ProVerif, the choice operator is used to check for observational
equivalence. The code given here specifies two processes Pi, P, where P; results from
replacing every occurrence of choice[ty,ts] by ¢;, and ProVerif tries to prove that P;
and P, are observationally equivalent. In the present case, ProVerif tries to prove ob-
servational equivalence between processes P; and P, where P; is an execution of our
example protocol where B gets its authorization from server s1, and P» is an execution
where B gets its authorization from server s2. Unfortunately, however, on the input de-
scribed above, ProVerif does not seem to terminate. FExperiments show that we need
to get rid of the constructors land and or to allow for termination. Unfortunately, we
cannot just remove them from our equational theory, since our protocol actually uses
them (in zkproof). Even after applying our compiler, which removes all occurrences of
the formula F' := zkproof from the process itself, land and or are still contained in the
equational theory generated by the compiler since this theory contains the following rule:

ZK§,4($17$27917927937?J4) = PZK§,4($17$27917927937?J47
land(or(or(eq(z2,y1),eq(z2,y2)), eq(z2,y3)), sigver(x1,y4, x2))). (22)

[Theorem 4 allows us to remove this rule. It is easy to see that in our equational theory
[Theorem 4] applies with no 4 p = 3 and

Four = (sign(z,sk(y)), pk(y), Pk(y), p2, P3;),
7A;22,4,F = (Sign(‘T? Sk(y))7 pk(y), p1, pk(y), p3, x)?

7540 = (sign(z, sk(y)), pk(y), p1, P2, Pk(y), 7).

4@1, file simple-obseq-nonterm.pvz.

38

Application of then removes the rule ([22)). Instead, the rules

Verd 4 (ZK5 y(sign(z, sk(y)), pk(y), Pk(y), p2, p3, T) = true,
Ver§:4(ZK§:4(Sign($7 Sk(y))7 pk(y))pl) pk(y)v b3, .’L‘) = true,
Verd ,(ZKE ,(sign(z, sk(y)), pk(y), p1, p2, Pk(y),) = true

are introduced (besides the obvious rules concerning the public, constructor). Since
now neither the process nor the equational theory contains land or or, by lLemma & we
can remove the corresponding equational rules.

These additional transformations can also be performed using our tool. For this, we
have to add the following additional commands to the input ﬁleﬁ

compiler AlternativeZKVer(
zkver (2;4;zkproof ;zk(sign(x,sk(y)) ,pk(y) ;pk(y),p2,p3,x;zkproof)),
zkver(2;4;zkproof ;zk(sign(x,sk(y)) ,pk(y);pl,pk(y),p3,x;zkproof)),
zkver (2;4;zkproof ;zk(sign(x,sk(y)) ,pk(y);pl,p2,pk(y),x;zkproof))).

compiler RemoveEquations(or).
compiler RemoveEquations(land) .

(after the compiler ZK command). The first command corresponds to an application
of Mheorem 4l The tuples tq,...,t, are implicitly given by supplying terms of the form
Ver, ;(F,ZK; j(t;, F)). Finally, compiler RemoveEquations(c) for a constructor c re-
moves all equations of the form ¢(...) =.

Using the resulting modified but equlvalent (see[Theorem Aland [Cemma §) equational
theory, ProVerif terminates and successfully proves observational equivalence, i.e., the
adversary cannot distinguish which server authorizes B to communicate with A. The
verification takes 16 seconds on a Pentium 4, 3 GHz.

6.2 Direct Anonymous Attestation
We will now describe the mechanized analysis of the DAA protocol [9] described in
6.2.1 Join

First, we describe the basic definition of the various components of the DAA protocol
(join and DAA-sign). The join protocol is described by the following two processes
tpmjoin and issuer%

define joinproof = land(eq(betal,blind(alphal,alpha2)),
eq(beta2,exp(beta3,alphal))).

°[], file simple-obseq.pvz.
@), file daa.pvi.

39

let tpmjoin =
let f = hash(pair(daaseed(id),cnt)) in
new v;
let U = blind(f,v) in
let zetal = hash(pair(nl,bsnI)) in
let NI = exp(zetal,f) in
let zkp = zk(f,v;U,NI,zetal;joinproof) in
out (comm,pair(id,sign(zkp,sk(ek(id)))));
in(comm,A) ;
let cert = unblind(A,v) in
if blindver(cert,f,pk(issuerK))=true then
event JOINED(id,cnt,cert);
out (och,cert).

let issuer =
! in(comm,msg) ;
let id = fst(msg) in
let sig = snd(msg) in
let zkp = message(sig) in
if sigver(sig,zkp,pk(ek(id)))=true then
if zkver(2;3;joinproof;zkp)=true then
let U = publicl(zkp) in
let N = public2(zkp) in
let zeta = public3(zkp) in
if rogue=true then event ROGUEI(id) else
if rogueid=true then event ROGUEID(id) else
if zeta=hash(pair(nl,bsnI)) then
let cert = blindsign(U,sk(issuerK)) in
event CERTIFIED(id,N);
out (comm, cert) .

These processes are formalizations of the corresponding processes in We
added the additional events JOINED and CERTIFIED to have to possibility of formulating
additional properties. In contrast to Becfion 5.1l the communication channel is repre-
sented by the variable comm, which we then instantiate with the public channel pub or a
private channel, depending on the property we model. The predicates rogue and rogueid
can be defined using define rogue = ... and define rogue = ... depending on the
situation. In most cases we will set rogue = rogueid = false to model that no rogue
checking occurs. The term joinproof corresponds to Fjoin in Bection 571

For the analysis of protocols with rogue TPMs we will need an additional process.
The process issuer will never issue a certificate to a TPM that is detected to be rogue,
but we might want to model the case that some TPMs have already received a certificate
before they were marked rogue. In order to be able to model this situation, we introduce

40

the following process rogueissuer that issues a certificate for a given f-valuell

let rogueissuer =
! in(pub,v); out(pub,unblind(blindsign(blind(f,v),sk(issuerkK)),v)).

The variable £ will be assigned the correct value in our security properties using a let
directive. The nonce v used for blinding the signature is chosen by the adversary to
model that a rogue TPM is assumed to be completely under the control of the adversary.

Finally, we also need to model the fact that the issuer is corrupted. This is achieved
by giving all the issuer’s knowledge to the adversaryﬁ

let leakissuer =
('in(pub,id); out (pub,pk(ek(id)))) |
out (pub,pk(issuerK)) | out(pub,sk(issuerk)).

Similarly, we model that a given TPM is corruptedﬂ

let leaktpm =
out (pub,daaseed(id)) | out(pub,sk(ek(id))) | out(pub,pk(ek(id))).

Finally, besides leaking private information of corrupted principals, the adversary
should get all public information:

let leakpublic = out(pub,pk(issuerK)) | !in(pub,id); out(pub,pk(ek(id))).

6.2.2 DAA-Sign

We will now describe the modelling of the second part of the DAA protocol, namely the
DAA-sign protocol. The processes for performing an anonymous DAA-sign are defined
as follows@

define signproof = land(eq(betal,exp(beta2,alphal)),
blindver(alpha2,alphal,beta3)).

let daasigna =
new zeta;
let f = hash(pair(daaseed(id),cnt)) in
let N = exp(zeta,f) in
let zkproof = zk(f,cert;N,zeta,pk(issuerk) ,m;signproof) in
event DAASIGNEDA(id,cnt,m);
out (comm,zkproof) .

let daavera =

"4, file daa.pvi.
8], file daa.pvi.
%[, file daa.pvi.
9@, file daa.pvi.

41

in(comm,zkproof) ;

if zkver(2;4;signproof;zkproof)=true then
let N = publicl(zkproof) in

let zeta = public2(zkproof) in

if public3(zkproof)=pk(issuerK) then

let m = public4(zkproof) in

if rogue=true then event ROGUEAV(m) else
event DAAVERIFIEDA(m) .

These are again direct encodings of the corresponding processes presented in
Bection 5.2 except that we have added a few more events and use comm for commu-
nication. The term signproof corresponds to Fiign in

Similarly, we define the pseudonymous DA A-sign protocol:

define numberZetaV = nl.

let daasignp =
let zeta = hash(pair(numberZetaV,bsnV)) in
let f = hash(pair(daaseed(id),cnt)) in
let N = exp(zeta,f) in
let zkproof = zk(f,cert;N,zeta,pk(issuerK),m;signproof) in
event DAASIGNEDP(id,cnt,bsnV,m);
out (comm,zkproof) .

let daaverp =
in(comm,zkproof) ;
if zkver(2;4;signproof;zkproof)=true then
let N = publicl(zkproof) in
let zeta = public2(zkproof) in
if zeta=hash(pair(numberZetaV,bsnV)) then
if public3(zkproof)=pk(issuerK) then
let m = public4(zkproof) in
if rogue=true then event ROGUEPV(m,bsnV,N) else
event DAAVERIFIEDP(m,bsnV,N).

This formalizes the corresponding processes from [Section 5.2 with the addition of events
and the change of the communication channel.
For convenience, we further implement the following processes:

let daaverifier = (! daavera) | (! daaverp).

This process represents a verification server that waits for anonymous and pseudonymous
signatures, checks them, and outputs the corresponding events.

let tpmcontrolled =
let comm=pub in ! in(pub,cnt); new och; (tpmjoin | (in(och,cert);

42

! in(pub,m); (daasigna | in(pub,bsnV); daasignp))).

let tpmcontrolledall = ! in(pub,id); tpmcontrolled.

The process tpmcontrolled corresponds to the process TPMs introduced on page Bl
and models a TPM that is under the control of the adversary without revealing any
of its secrets, i.e., the TPM joins and signs at the adversary’s discretion. The process
tpmcontrolledall represents the fact that all TPMs are under the control of the adver-
sary.

6.2.3 Security Properties
The authenticity property from Rection 5.4.1lis encoded as follows

passthrough query ev:DAAVERIFIEDP (xm,xbsn,xN)
==> ev:DAASIGNEDP(xid,xcnt,xbsn,xm).
passthrough query ev:DAAVERIFIEDA (xm)
==> (ev:DAASIGNEDA(xid,xcnt,xm) | ev:DAASIGNEDP(xid,xcnt,xbsn,xm)).

process
(let comm=pub in issuer) | leakpublic |
tpmcontrolledall |
(let comm=pub in daaverifier).

The passthrough directive is only necessary since our compiler is not able to parse the
full syntax of query. It does not have any semantic meaning. Applying the compiler and
ProVerif, the result is that the queried properties hold. The running time is 3 seconds
on a Pentium 4, 3 GHz.

To implement this security property in the presence of rogue TPMs, we have to choose
some rogue f-value and rogue TPM ids and define the predicates rogue and rogueid to
returns true if a rogue f-value or id is being used. We choose to implement a test
with a fixed number of rogue ids rogueidl,rogueid2,rogueid3 and three fixed f-values
rogueF1,rogueF2 rogueF3. These are defined using the following codef

free rogueidl,rogueid2,rogueid3.

define rogueFl
define rogueF2
define rogueF3

hash(pair(daaseed(rogueidl),nl)).
hash(pair(daaseed(rogueid2),n1)).
hash(pair(daaseed(rogueid2),n2)).

fun roguetest/5.
equation roguetest(zeta,exp(zeta,x),x,y,z) = true.
equation roguetest(zeta,exp(zeta,y),x,y,z) = true.

"[E], file daa-verify-tpmcontrolled.pvz.
124, file daa-verify-tpmcontrolled-rogue3.pvz.

43

equation roguetest(zeta,exp(zeta,z),x,y,z) = true.

define rogue = roguetest(zeta,N,rogueFl,rogueF2,rogueF3).
define rogueid = or(or(eq(id,rogueidl),eq(id,rogueid2)),eq(id,rogueid3)).

Note that we did not use the somewhat more natural definition

define rogue = or(or(eq(exp(zeta,rogueFl)),eq(exp(zeta,rogueF2))),
eq(exp(zeta,rogueF3))).

but instead used a definition using a special constructor roguetest. Using the more
natural definition ProVerif fails to prove security; it seems that the rogue test is simply
ignored. A minimal ProVerif example that reproduces this behaviour is given in [4, file
artifacts/or.pv]|.

Furthermore, we have to model the fact that the rogue TPMs may already have joined
before they were rogue-listed, and that the adversary may know the secret information
of the rogue TPMs. This is done by adding the following processes (additionally to those
given in the authenticity property without rogue listing)

(let id=rogueidl in leaktpm) |
(let id=rogueid2 in leaktpm) |
(let id=rogueid3 in leaktpm) |
(let f=rogueFl in rogueissuer) |
(let f=rogueF2 in rogueissuer) |
(let f=rogueF3 in rogueissuer)

The authenticity property in this setting is proven in 63 seconds on a Pentium 4, 3 GHz.
The anonymity property from Rection 542 is given by the following code

(cf. Mable §)

free challengeidl,challengeid2.

free challengecntl,challengecnt2.

define challengecnt = choice[challengecntl,challengecnt2].
define challengeid = choicel[challengeidl,challengeid2].
define challengecert = choice[challengecertl,challengecert2].
private free intl,int2.

fun corruptid/1.

process
leakpublic |

leakissuer |

134, file daa-verify-tpmcontrolled-rogue3.pvz.
4[], file daa-obseq-anonymity4.pvz.

44

(in(pub,x); let id=corruptid(x) in leaktpm) |

(let (id,cnt,comm,och) (challengeidl,challengecntl,pub,intl)
in tpmjoin) |
(challengeid2,challengecnt2,pub,int?2)

in tpmjoin) |

(let (id,cnt,comm,och)

(let id=challengeidl in tpmcontrolled) |
(let id=challengeid2 in tpmcontrolled) |

(in(intl,challengecertl); in(int2,challengecert2);
((in(pub,m); let (id,cnt,comm,cert) =

(challengeid,challengecnt,pub,challengecert) in daasigna) |

('in(pub,m); let (id,cnt,comm,cert) =
(challengeidl,challengecntl,pub,challengecertl) in daasigna) |

('in(pub,m); let (id,cnt,comm,cert) =
(challengeid2,challengecnt2,pub,challengecert2) in daasigna) |

('in(pub,m); in(pub,bsnV); let (id,cnt,comm,cert) =
(challengeidl,challengecntl,pub,challengecertl) in daasignp)

(Yin(pub,m); in(pub,bsnV); let (id,cnt,comm,cert) =
(challengeid2,challengecnt2,pub,challengecert2) in daasignp)

)

The two processes to compare are implicitly given by the choice operator. The semantics
is that the process P is the one resulting from replacing choice[x,y] by z, and P; is the
one resulting from replacing choice[x,y] by y. Running our compiler and ProVerif one
this process directly does not lead to termination. The technique for removing the land
and or constructors that was already described in Becfion 6.1l helps to ensure termination.
In the case of DAA we apply [heorem 4 with na 3 £, = 1245, = 1 and

7:21’37131.&“ = (f,v;blind(f,v), exp(zeta, f), zeta)
7:21747F5ign = (unblind(blindsign(blind(z, 2), sk(y)), 2); exp(¢, f), ¢, pk(y), m)

Then we can remove the equations for land and or (by [Lemma J). These modification
of the equational theory are encoded as followsi]

compiler AlternativeZKVer(zkver(2;3;joinproof;
zk(f,v;blind(f,v) ,exp(zeta,f),zeta; joinproof))).

compiler AlternativeZKVer (zkver(2;4;signproof;
zk(x,unblind(blindsign(blind(x,z),sk(y)),z) ;exp(zeta,f) ,zeta,pk(y) ,m;

15[, file alternative-zk.pvi.

45

signproof))).

compiler RemoveEquations(land) .
compiler RemoveEquations(or).

After these changes, the proof terminates and we get the result that the two processes are
observationally equivalent, i.e., that we have anonymity, after 149 seconds on a Pentium
4, 3 GHz.

The remaining property is that of pseudonymity. Since the encoding of the processes
given in for modeling this property does not give any new insights, we refer
the reader to the files daa-obseq-pseudonymity6.pvz (for the processes P;, P» given
in [Table 9), daa-obseq-pseudonymity-attack.pvz (for the processes Py, Py capturing
the attack of [26]) and daa-obseq-pseudonymity-fix.pvz (modeling Py, P; in the fixed
version of the protocol with ny := ng) in [4].

7 Conclusion and Future Work

We have designed an abstraction of non-interactive zero-knowledge protocols in the
applied-pi calculus. A novel equational theory for terms characterizes the semantic prop-
erties of non-interactive zero-knowledge proofs. Additionally, we propose an encoding
into a finite specification in terms of a convergent rewriting system that is accessible to a
fully mechanized analysis. The encoding is sound and fully automated. We successfully
used the automated protocol verifier ProVerif to obtain the first mechanized analysis of
the Direct Anonymous Attestation (DAA) protocol. The analysis in particular required
us to come up with suitable abstractions of sophisticated cryptographic security defini-
tions that are based on interactive games; we consider these definitions of independent
interest.

Future work on this topic comprises the investigation of computational soundness
results, the analysis of other commonly employed protocols based on zero-knowledge, as
well as the investigation of interactive zero-knowledge proofs which have additional prop-
erties like the impossibility to reproduce a proof after the protocols ends. Furthermore,
other, more direct techniques for mechanizing the analysis directly in the original, infinite
equational theory might be worth investigating.

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749—
786, 1999.

[2] M. Abadi, B. Blanchet, and C. Fournet. Just fast keying in the pi calculus. ACM
Transactions on Information and System Security, 10(3):9, 2007.

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1-70, 1999.

46

14]

15]

6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Backes, M. Maffei, and D. Unruh, 2007. Implementation of the compiler from
zero-knowledge protocol descriptions into ProVerif-accepted specifications. Available
at http://www.infsec.cs.uni-sb.de/zk.zip.

D. Basin, S. Médersheim, and L. Vigano. OFMC: A symbolic model checker for
security protocols. International Journal of Information Security, 2004.

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
Proc. 14th IEEE Computer Security Foundations Workshop (CSFW), pages 82-96.
IEEE Computer Society Press, 2001.

B. Blanchet and C. Fournet. Automated verification of selected equivalences for
security protocols. In Proc. 20th Annual IEEE Symposium on Logic in Computer
Science (LICS), pages 331-340. IEEE Computer Society Press, 2005.

D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS. In Advances in Cryptology: CRYPTO ’98, volume 1462
of Lecture Notes in Computer Science, pages 1-12. Springer-Verlag, 1998.

E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In Proc.
11th ACM Conference on Computer and Communications Security, pages 132-145.
ACM Press, 2004.

F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and C. Walstad. Formal analysis
of kerberos 5. Theoretical Computer Science, 367(1):57-87, 2006.

D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Com-
munications of the ACM, 24(8):533-536, 1981.

D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on
Computing, 30(2):391-437, 2000.

D. Fisher. Millions of .Net Passport accounts put at risk. eWeek, May 2003. (Flaw
detected by Muhammad Faisal Rauf Danka).

C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization in
distributed systems. In Proc. 20th IEEE Symposium on Computer Security Founda-
tions (CSF), pages 31-45. IEEE Computer Society Press, 2007.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — or —
a completeness theorem for protocols with honest majority. In Proc. 19th Annual
ACM Symposium on Theory of Computing (STOC), pages 218-229, 1987.

O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing
but their validity or all languages in NP have zero-knowledge proof sys-
tems. Journal of the ACM, 38(3):690-728, 1991. Online available at
http://www.wisdom.weizmann.ac.il/ oded/X/gmwlj.pdf.

47

http://www.infsec.cs.uni-sb.de/zk.zip
http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186-207, 1989.

R. Kemmerer. Analyzing encryption protocols using formal verification techniques.
IEEE Journal on Selected Areas in Communications, 7(4):448-457, 1989.

S. Kramer. Logical Concepts in Cryptography. PhD thesis, Ecole Polytechnique
Fédérale de Lausanne, 2007.

S. Kremer and M. Ryan. Analysis of an electronic voting protocol in the applied
pi-calculus. In Proc. 14th European Symposium on Programming (ESOP), Lecture
Notes in Computer Science, pages 186-200. Springer-Verlag, 2005.

G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proc. 2nd International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), volume 1055 of Lecture Notes in Com-
puter Science, pages 147-166. Springer, 1996.

C. Meadows. Using narrowing in the analysis of key management protocols. In Proc.
10th IEEE Symposium on Security & Privacy, pages 138-147, 1989.

J. K. Millen. The interrogator: A tool for cryptographic protocol security. In Proc.
5th IEEE Symposium on Security & Privacy, pages 134-141, 1984.

R. Needham and M. Schroeder. Using encryption for authentication in large net-
works of computers. Communications of the ACM, 12(21):993-999, 1978.

L. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Cryptology, 6(1):85-128, 1998.

B. Smyth, L. Chen, and M. D. Ryan. Direct anonymous attestation: ensuring privacy
with corrupt administrators. In Proceedings of the Fourth European Workshop on
Security and Privacy in Ad hoc and Sensor Networks, number 4572 in Lecture Notes
in Computer Science, pages 218-A231. Springer-Verlag, 2007.

F. J. Thayer Fabrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a
security protocol correct? In Proc. 19th IEEE Symposium on Security & Privacy,
pages 160-171, 1998.

D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proc. 2nd USENIX
Workshop on Electronic Commerce, pages 2940, 1996.

48

	Introduction
	Our Contributions
	Outline of the Paper

	Review of the Applied Pi-calculus
	An Equational Theory of Zero-Knowledge
	An Underlying Cryptographic Base Theory
	The Equational Theory for Zero-Knowledge
	An Illustrating Example

	Towards a Mechanized Analysis of Zero-Knowledge
	A Finite Specification of Zero-Knowledge
	Compilation into Finite Form
	Preservation of Observational Equivalence and Trace-based Security Properties

	Case Study: Direct Anonymous Attestation
	Join protocol
	DAA-sign protocol
	Rogue-tagging
	Security properties of DAA
	Authenticity
	Anonymity
	Pseudonymity

	Mechanized Security Proofs for DAA
	Example Protocol
	Direct Anonymous Attestation
	Join
	DAA-Sign
	Security Properties

	Conclusion and Future Work

