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Abstract. An Attribute Based Group Signature (ABGS) allows a ver-
ifier to request a signature from a member of a group who possesses
certain attributes. Therefore, a signature should authenticate a person
in a group and prove ownership of certain properties. The major dif-
ference between our scheme and previous group signatures, is that the
verifier can determine the role of the actual signer within the group.
In this paper we define the first ABGS scheme, and security notions such
as anonymity and traceability. We then construct the scheme and prove
it secure.

1 Introduction

Attribute Based Group Signature (ABGS) is a new paradigm of cryptography
and a new generation of group signatures. The idea behind it is authenticating
that a person has certain credentials. The following is a scenario where such a
scheme is needed:
Alice wants a document to be signed by an employee in Bob’s company. Alice re-
quires that employee to have certain properties such as being part of the IT staff
and at least a junior manager in the cryptography team or a senior manager in
the biometrics team.
A possible solution for implementing such a scheme would be using Identity
Based Group Signatures. An Identity Based Group Signature is a group signa-
ture where any member of the group could sign on behalf of the others and
the signature could be verified using the identity of the group. For example, all
members of the Cryptographic team in Bob’s company will belong to the same
group, where the public key is a template of the attribute “CryptoTeam” and
each member gets his own private key. When a verifier requests a signature of an
employee who satisfies certain attributes, a signer will use his different private
keys to sign a document according to the verifier’s request. However, there are
problems in such a solution. First of all, the verification algorithm is run as many
times as the number of attributes in the signature, thus compromising efficiency.
Moreover, there is a security flaw in using Identity Based Group Signature; it is
easy for different signers who do not satisfy the verifier’s request to collude and
create a valid signature if jointly they could satisfy the request. For example,
John is part of the Cryptographic team and Smith is a junior manager. They
could create a valid signature together on Alice’s document. A possible fix would
be to use the identity of the member but that compromises anonymity of the
signer. The shortcoming of identity based schemes makes ABGS a new crypto-
graphical problem that requires creating a new scheme.



Attribute based group signatures was designed to let the verifier request evidence
from the signer that they own certain attributes. In our scenario, Alice starts
building what we call an attribute tree. We adopt the idea of an attribute tree
from Goyal et al’s work in [16]. An attribute tree is a tree in which each interior
node is a threshold gate and the leaves are linked with attributes. A threshold
gate represents that the number m of n children branching from the current
node need to be satisfied for the parent to be considered satisfied. Satisfaction
of a leaf is achieved by owning an attribute. For further explanation, consider
the example in Figure 1, which demonstrates an attribute tree for the scenario
mentioned earlier.

Fig. 1. Attribute Tree

Public keys used to verify signatures are labeled with such attribute trees.
After Alice is done with building her attribute tree, she searches a corresponding
public key in a lookup list provided by a third party, the Key Generator. If she
doesn’t find it, she could request generating such a key. The Key Generator adds
every attribute tree and the corresponding verification key to the lookup list.
Alice sends Bob’s company the verification key. Only employees who satisfy the
attribute tree could reply with a signature. The reason for that is each employee
has a private key that implicitly contains the attributes he owns. For example,
an employee who is a senior manager in the biometrics team would authenticate
himself to the Key Generator. The Key Generator sends a private key that will
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help him prove possession of the attributes when signing. Note that the Key
Generator could be Bob’s company if Alice trusts it as a company.
To argue about the security of our scheme we define full anonymity and full
traceability in the ABGS context. Informally, a scheme is said to be anonymous
if given a signature, it is computationally hard to identify the signer unless you
are the manager, in this case the Key Generator. A scheme is traceable if the
group manager is able to open a signature and trace it to a signer. More precisely,
the major difference between our scheme and previous group signatures is that
the verifier can determine the role of the actual signer within the group (i.e.
which attributes are owned by the signer).

1.1 Related Work:

Since Chaum and van Heist’s work, Group signatures have been of interest to
cryptographers. Researchers have worked hard to add a variety of features to
the scheme, defining different security notions and improving the performance
of the scheme.
For instance, security notions such as Unforgeability, Anonymity, Unlinkability,
Exculpability, Traceability, Coalition-Resistance, and Separatability were intro-
duced. In [5] the authors tried to unify and simplify all these security notions
by defining two core requirements: Full Anonymity and Full Traceability. They
proved their definitions implicitly include all of the other security notions. Their
proofs are specific to groups which have a group manager. In our work, since the
group is also centralized, we prove the scheme to be Fully Anonymous and Fully
Traceable.
A separate line of research was trying to add extra features to the scheme. In [12,
9, 18, 1, 10, 13, 8, 15, 21, 14] work was done to move group signatures from being
static to more dynamic. In other words, we could add members anytime and
revoke them if needed. Other cryptographers thought of creating Identity Based
Group Signatures where the verification key is an identity of a group [23, 25, 27,
4]. In [19, 17, 28] Blind Group Signatures were proposed to be used in e-cash sys-
tems. In our paper we enable the verifier to decide the role of the signer within
a group.

1.2 Outline:

The rest of the paper is organized as follows. We start with giving precise defi-
nitions and security models in 2. We describe certain preliminaries in Section 3.
Our ABGS scheme is presented in Section 4. Section 5 gives conclusions and
some open problems. The Appendix contains a more detailed discussion on the
security proofs.

2 Definitions

Attribute Based Group Signature Schemes: An Attribute Based Group
Signature (ABGS) scheme is specified by five algorithms: Setup, KeyGen, Sign,
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V erify, Open. As a prerequisite to describing the algorithms we define certain
notations.
Γ will be used as a description to our attribute tree. The tree is read in a
Top-Down-Left-Right manner. An interior node is written as (m,n) which rep-
resents a threshold gate m of n. For example, to represent the tree in Figure
1, Γ = {(2, 2), IT department, (1, 2), (2, 2), (2, 2), Cryptography Team, (1, 2),
Biometric Team, Senior Manager, Senior Manager, Junior Manager}. κ is the
number of leaves in the tree.
Υi is a set describing all private keys a member owns. For example, if Smith
is a Junior Manager in the IT department, ΥSmith = {Junior Manager, IT
department}. The size of Υi is represented by µ.
ζi is a set that describes the set of attributes which a signer uses to create his
signature. In other words, ζi ⊆ Υi, where elements in ζi are enough to satisfy Γ .
For example, if the verifier is using Γ = {(1, 2), Junior Manger, Senior Manger},
Smith could sign with ζSmith = {Junior Manager}. τ is the size of ζi.
After having defined the notations we require, we could describe the algorithms
as follows:

– Setup: A randomized algorithm that takes a security parameter as an in-
put. It outputs a set of parameters Spara and a tracing key gmsk. Spara will
be used in the KeyGen algorithm. gmsk will be used in the Open algorithm.

– KeyGen(Spara, n): KeyGen is an algorithm that takes the system param-
eters, and a number n that defines the number of users. It generates what
is called private key bases gsk[i]base for any user i. It generates public keys
and private keys using two sub-algorithms: KeyGenpublic,KeyGenpriv.
KeyGenpublic(Γ ): This algorithm generates public keys gpk for attribute
trees described in Γ (See Figure 1 as an example).
KeyGenpriv(gsk[i]base, Υi): Creates the private key gsk[i] for user i to en-
able him to authenticate himself and his properties which are described in Υi.

– Sign(gpk, gsk[i],M): Given a public key of an attribute tree, a private key
of a user i and a message, output a signature σ and ζi.

– V erify(gpk,M, σ, ζi): Given a message, a public key of a certain attribute
tree, a signature and a set ζi, output either an acceptance or a rejection for
the signature.

– Open(Spara, gmsk,M, σ, ζi): The Open algorithm is given a specific signa-
ture, a public key and the tracing key as inputs. Trace to the signer i even if
it is a member in forging coalition. You could also trace the attributes that
belong to ζi.

Definition 1. (ABGS Scheme is Correct:)We say an ABGS Scheme is correct
if and only if honestly-generated signatures verify and open correctly.
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2.1 Security Notions of the ABGS scheme

Anonymity and Traceability are the standard acceptable notions of security for
Group Signatures [5, 7, 6]. Hence, it is natural to require that Attribute Based
Group Signatures satisfy these security notions. However, the definition of those
notions must be strengthened, to adjust to the fact that the verifier decides the
role of a signer in a group. In our security model, the adversary could issue
private key oracles for any attribute set Υ . The adversary chooses the attribute
tree Γ in which he would like to be challenged upon. Finally, the adversary could
issue signature oracles and decide the ζi of the signer. This section will describe
the new definitions of Anonymity and Traceability.

Anonymity: We say that an Attribute Based Group Signature Scheme is
anonymous if no polynomially bounded adversary Adam has a non-negligible
advantage against the Challenger in the following game:

– Init:Adam chooses the attribute tree Γ he would like to be challenged upon.
– Setup: Challenger runs the Setup andKeyGen algorithms without running

sub-algorithm KeyGenpriv.
Challenger produces a public key for the attribute tree Γ and n private key
bases gpkbases.

– Phase 1:Challenger runs a signature oracle and a private key oracle. Adam
issues a certain number of queries to the signature oracle, sending in each
time a message M , index of user i and a set of attributes ζi. Challenger
responds with a signature σ. Challenger also runs a private key oracle.
Adam sends an index i and a set of attributes Υi. Challenger responds with
a private key. This oracle is equivalent to the KeyGenpriv.

– Challenge: Adam decides when to request his challenge. He sends the
Challenger two indices (i0, i1), a message M and ζ. The triple 〈i0,M, ζ〉
and 〈i1,M, ζ〉 should not have been queried before in Phase 1 and should
not be queried after this point in Phase 2. Challenger replies with a sig-
nature σb where b ∈ {0, 1} and σb is the result of signing with the triple
〈ib,M, ζ〉

– Phase 2: Phase two is exactly the same as phase one.
– Guess:Adam tries to guess b̀ ∈ {0, 1}. If b = b̀, Adam succeeds otherwise he

fails.

We refer to an adversary like Adam as the selective anonymity attack (SAA)
adversary and we define the advantage of attacking the scheme as AdvSAA =
Pr[b = b̀]− 1/2.

Definition 2. (Selective Anonymity:)
We say a scheme is secure under an SAA attack if for any polynomial time
SAA-Adversary Adam, the advantage of winning the game is negligible. In other
words, AdvSAA < ε where ε is negligible.
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Traceability: We say that an Attribute Based Group Signature Scheme is trace-
able if no polynomially bounded adversary Adam has a non-negligible advantage
against the Challenger in the following game:

– Init: Adam chooses the attribute tree Γ he would like to be challenged upon.
– Setup: Challenger runs the two algorithms: Setup and KeyGen algorithm

except for the sub-algorithm KeyGenpriv. Challenger produces a public key
gpk for the attribute tree and n private key bases gsk[i]base.

– Querying a Signature/Private key Oracle:
Challenger runs two oracles: a signature oracle and a private key oracle.
Adam issues a number of queries to both oracles. He sends in every query to
the signature oracle a message M , index of user i and a set of attributes ζi.
Challenger responds back with a signature σ. When querying the private
key oracle Adam sends an index i and a set of attributes Υi. Challenger
responds with a valid private key gsk[i].

– Output: IfAdam is successful it outputs a forged signature σ that Challenger
fails to trace using the open algorithm. Otherwise Adam fails.

We refer to Adam’s attack as the Un-Traceability Attack (UTA). We represent
the advantage of the adversary in winning the attack as AdvUTA.

Definition 3. (Traceability:) An ABGS scheme is secure under a UTA attack
if for any polynomial time UTA-Adversary, Adam, the advantage of winning the
game is negligible. That is AdvUTA < ε where ε is negligible.

In proving traceability, we need to show that a group of colluding members
can not generate a valid signature, which does not trace to any member of the
colluding group. That definition implicitly includes unforgeability and collision-
resistance [5].

3 Preliminaries

In this section we will explain some of the preliminaries that are used in con-
structing the ABGS scheme and proving it secure.

3.1 The Strong Diffie-Hellman Assumption

This section defines q-Strong Diffie-Hellman and states the Boneh-Boyen Lemma
which are two concepts that will be used in section 4.1 to prove traceability of
the constructed scheme. Let G1, G2 be cyclic groups of prime order p, with
a computable isomorphism ψ or possibly G1 = G2. Assuming the generators
g1 ∈ G1, and g2 ∈ G2 consider the following [6]:

Definition 4. (q-Strong Diffie-Hellman Problem)
The q-SDH problem in (G1, G2) is defined as follows: given a (q + 2) tuple

(g1, g2, g
γ
2 , g

γ2

2 , ..., gγq

2 ) as an input, output what is called a SDH pair (g1/(γ+x)
1 , x)

6



where x ∈ Z∗
p . An algorithm A has an advantage ε in solving q-SDH in (G1, G2)

if:
Pr[A(g1, g2, g

γ
2 , g

γ2

2 , ..., gγq

2 ) = (g1/(γ+x)
1 , x)] ≥ ε,

where the probability is over a random choice of a generator g2 (with g1 ←
ψ(g2)), of γ ∈ Z∗

p and of random bits of A [6].

This problem is considered hard to solve in polynomial time and ε should be
negligible [6].

Theorem 1. (Boneh-Boyen SDH Equivalence)
Given a q-SDH instance (g̀1, g̀2, g̀

γ
2 , g̀

γ2

2 , ..., g̀γq

2 ), and then applying the Boneh
and Boyen’s Lemma found in [6] we can obtain g1 ∈ G1, g2 ∈ G2, w = gγ

2 and
(q − 1) SDH pairs (Ai, xi) (such that e(Ai, wg

xi
2 ) = e(g1, g2)) for each i. Any

SDH pair besides these (q − 1) ones can be transformed into a solution to the
original q-SDH instance [6].

3.2 Linear Encryption

In this section we will define an encryption scheme which depends on the dif-
ficulty of the Decision Linear Diffie-Hellman Assumption [7]. This scheme will
be used in the construction of our ABGS scheme and will lead to ensuring
anonymity(See Section 4.1) of the scheme.

Definition 5. (Decision Linear Problem in G1)
Let G1 be a group of prime order p and u, v, h be generators in that group. Given
u, v, h, ua, vb, hc ∈ G1 as an input,it is hard to decide whether or not a + b = c
[7].

Definition 6. (A Linear Encryption Scheme)
In a Linear Encryption scheme a user’s public key is u, v, h ∈ G1 [7]. The
private key is the exponents ξ1, ξ2 ∈ Zp such that uξ1 = vξ2 = h. To en-
crypt a messsage M choose random elements α, β ∈ Zp and output the triple
〈C1, C2, C3〉 = 〈uα, vβ ,Mhα+β〉. To decrypt compute C3/(C

ξ1
1 C

ξ2
2 ).

LE has been proven to be IND-CPA secure under the Decision Linear Problem.

3.3 Bilinear Maps

Bilinear Maps are used in constructing our ABGS in section 4.

Definition 7. (Bilinear Maps) [3]:
Let G1,G2 and GT be three groups of order p for some large prime p. A bilinear
map ê : G1 ×G2 → GT must satisfy the following properties:

– Bilinear: We say that a map ê : G1 × G2 → GT is bilinear if ê(ga
1 , g

b
2) =

ê(g1, g2)ab for any generator g1 ∈ G1, g2 ∈ G2 and any a, b ∈ Zp.
– Non-degenerate: The map does not send all pairs in G1 ×G2 to the identity

in GT .
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– Computable: There is an efficient algorithm to compute ê(g1, g2) for any
g1 ∈ G1 and g2 ∈ G2.

A bilinear map satisfying the three properties above is said to be an admissible
bilinear map.

3.4 Forking Lemma

Pointcheval and Stern [24], developed the Forking Lemma as a method to prove
certain security notions of a digital signature scheme. We will be using it in
proving our scheme to be traceable(See Section B). Assume a signature scheme
produces the triple 〈σ1, h, σ2〉 where σ1 takes its values randomly from a set. h
is the result of hashing the message M together with σ1. σ2 depends only on
(σ1, h,M). The Forking Lemma is as follows [24]:

Theorem 2. (The Forking Lemma)
Let A be a Probabilistic Polynomial Time Turing machine, given only the pub-
lic data as input. If A can find, with non-negligible probability, a valid signa-
ture (M,σ1, h, σ2) then, with non-negligible probability, a replay of this machine,
with the same random tape but a different oracle, outputs new valid signatures
(M,σ1, h, σ2) and (M,σ1, h̀, σ̀2) such that h 6= h̀.

4 Construction of an ABGS Scheme

In this section we construct an ABGS scheme based on Boneh et al’s. work in
Short Group Signatures in [7].

– Setup: Consider a bilinear pair (G1, G2) with a computable isomorphism ψ
between them. Suppose that SDH assumption holds on (G1, G2) and the
linear assumption holds on G1. Define the bilinear map ê : G1 ×G2 → GT .
All three groups G1, G2, GT are multiplicative and of a prime order p. Se-
lect a hash function H : {0, 1}∗ → Zp. Select a generator g2 ∈ G2 at
random and then set g1 ← ψ(g2). Select h ∈ G1 and ξ1, ξ2 randomly
from Zp. gmsk = 〈ξ1, ξ2〉 will be used later in the open algorithm. Set
u, v ∈ G1 such that uξ1 = vξ2 = h. Select a random γ from Zp and set
w = gγ

2 . Define a universe of attributes U = {1, 2, ...,m} and for each
attribute j ∈ U choose a number tj at random from Zp. Let Spara =
〈G1, G2, GT , ê, H, g1, g2, h, u, v, gmsk, γ, w〉.

– KeyGen(Spara, n): This algorithm generates a public key for a specific ac-
cess structure and a private key for each user.
Using γ generate for each user i, 1 ≤ i ≤ n a private key base gsk[i]base =
〈Ai, xi〉. The gsk[i]base should be a SDH pair were xi is chosen randomly
from Z∗

p and Ai = g
1/(γ+xi)
1 ∈ G1.

KeyGenpublic(Γ ): To generate a public key for a certain attribute tree Γ we
will need to choose a polynomial qnode of degree dnode = knode − 1 for each
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node in the tree, where knode is the threshold gate. That is done in a top-down
manner. Starting from the root qroot(0) = γ and other points in the polyno-
mial will be random. The other nodes we set qnode(0) = qparent(index(node))
and choose the rest of the points of the polynomial randomly. Once all poly-
nomials have been decided the public key for a certain structure will be
gpk=〈g1, g2, h, u, v, w, Dleaf1 ,...,Dleafκ

, h1,...,hκ〉
where Dleafj = g

qleafj
(0)/tleafj

2 , hj = htj .

KeyGenpriv(gsk[i]base, Υi) For every attribute j that user i owns (i.e. j ∈ Υi)
calculate Ti,j = g

tj/(γ+xi)
1 . The private key for a user i will be the tuple

gsk[i] = 〈Ai,xi,Ti,1,...,Ti,µ〉.

– Sign(gpk, gsk[i],M): For signing user i, needs to do the following:
Choose randomly a α, β, rnd ∈ Zp

Compute the linear encryption of Ai and Ti,j where j ∈ ζ. The ciphertext
of the encryption will equal
C1 = uα, C2 = vβ , C3 = Aih

α+β , CTj = (Ti,jh
α+β
j )rnd.

Let δ1 = xiα, δ2 = xiβ.
Choose randomly rα,rβ ,rx,rδ1 and rδ2 .
Calculate R1 = urα , R2 = vrβ , R4 = Crx

1 u−rδ1 ,

R3 = ê(C3, g2)
rx ê(h, w)−rα−rβ .ê(h, g2)

−rδ1−rδ2 and R5 = Crx
2 v−rδ2 .

Let c = H(M, C1, C2, C3, R1, R2, R3, R4, R5) ∈ Zp.

Construct the values sα = (rα + cα), sβ = (rβ + cβ), sx = (rx + cx), sδ1 =

(rδ1 + cδ1), andsδ2 = (rδ2 + cδ2).

Let η = wrnd The Signature will be σ = 〈C1, C2, C3, c, CT1,...,CTτ , sα, sβ , sx,

sδ1 , sδ2 , η〉

– Verify(gpk,M, σ, ζ): To verify the signature we first define a recursive al-
gorithm V erNode. If the node we are currently on is a leaf in the tree the
algorithm returns the following:

V erNode(leaf) =
{

If (j ∈ zeta); return ê(CTleafj
, Dleafj

)
Otherwise; return ⊥

Notice that ê(CTleafj , Dleafj ) = ê(Aih
α+β , grnd

2 )
qleafj

(0)
.

For a node ρ which is not a leaf the algorithm proceeds as follows: For all
children z of the node ρ it calls V erNode and stores output as Fz. Let Sρ be
an arbitrary kρ sized set of child nodes z such that Fz 6= ⊥ and if no such
set exist return ⊥. Otherwise let ∆Sρ,index(z) = Π(−j/(index(z) − j)), where
j ∈ {index(z) : z ∈ Sρ − index(z)}and compute

Fρ = Πz∈SρF
∆Sρ,index(z)
z

Fρ = Πz∈Sρ ê(Aih
α+β , grnd

2 )
qz(0).∆Sρ,index(z)
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Fρ = Πz∈Sρ ê(Aih
α+β , grnd

2 )
qparent(z)(index(z)).∆Sρ,index(z)

Fρ = ê(Aih
α+β , grnd

2 )qρ(0)

To verify the signature calculate Froot. If the tree is satisfied then Froot =
ê(C3, η) according to Lagrange interpolation.
Calculate R̄1 = usαC−c

1 , R̄2 = vsβ C−c
2 , R̄4 = Csx

1 u−sδ1 , R̄5 = Csx
2 v−sδ2 ,

R̄3=ê(C3, g2)
sx .ê(h, w)−sα−sβ .ê(h, g2)

−sδ1−sδ2 .( ê(C3,w)
ê(g1,g2)

)c.

If c = H(M, C1, C2, C3, R̄1, R̄2, R̄3, R̄4, R̄5) then accept the signature, other-
wise reject it.

– Open(Spara, gmsk, t1, ..., tτ ,M, σ, ζ): This algorithm traces a signature to a
signer. To do so the key generator(i.e. our Group Manager) will be using:
The Spara=〈G1, G2, GT , ê, H, g1, g2, h, u, v, gmsk, γ, w〉. The group masters
tracing key gmsk = 〈ξ1, ξ2〉.
Step one in the tracing will be verifying the signature. Afterwards, the group
manager could recover Ai by calculating Ai = C3/(Cξ1

1 Cξ2
2 ). Now the manager

could look up the user with index Ai. After finding the user, the manager
could further up verify the attributes. For each attribute, he checks the
following equality ê(CTj , w) = ê((AiC

ξ1
1 Cξ2

2 )tj , η). If the equality holds for an
attribute j then the j is said to be traced to the same user i.
The reason behind limiting the possibility of being the group manager to
the key generator is the need to use tj when calculating Ti,j . This is a
minor drawback in our system where it is preferable to have some kind of
hierarchy. For example, it would be practical if a senior manager could trace
junior employees in his department rather than refering to the company
every time.

4.1 Security of the scheme

In this section we prove the scheme to be correct. We also prove it to be secure
under UTA and SAA attack(See section 2.1).

Theorem 3. The ABGS scheme is correct.

Proof. In order to do so we need to prove that R̄1 = R1, R̄2 = R2, R̄3 = R3, R̄4 =

R4, R̄5 = R5 because that leads c = H(M, C1, C2, C3, R̄1, R̄2, R̄3, R̄4, R̄5) which
means the signature is accepted.
R̄1=usαC−c

1 =urα+cα.(uα)−c=urα=R1

R̄2=vsβ C−c
2 =urβ+cβ .(vβ)−c=vrβ =R2

R̄4=Csx
1 .u−sδ1 =uα(rx+cx).u(−rδ1−cδ1)=Crx

1 .u−rδ1=R4

R̄5=Csx
2 .v−sδ2 =vβ(rx+cx).v(−rδ2−cδ2)=Crx

2 .v−rδ2 = R5

Finally,R̄3 = R3 holds for the following reasons:
ê(C3, g2)

sx .ê(h, w)−sα−sβ .ê(h, g2)
−sδ1 .−sδ2
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= ê(C3h
−α−β , wgx

2 )c.ê(C3, w)−c(R3)

= (ê(A, wgx
2 )/ê(C3, w))cR3

= (ê(g1, g2)/ê(C3, w))cR3

Theorem 4. If the linear encryption is IND-CPA secure then the ABGS scheme
is fully anonymous, under the same attribute set, under the Random Oracle
Assumption.

In other words, if there is an adversary Adam that breaks the scheme’s SSA
security then there exists an adversary Eve that breaks into the linear encryption
IND-CPA security. It makes sense to assume anonymity under the same attribute
set, otherwise you could easily distinguish between signatures from attributes
owned by each signer.
To prove Theorem 4, we run the adversarial model defined in section 2. We will
assume we have an adversary Adam performing an SSA attack on the ABGS
scheme. Let Eve be the adversary threatening the linear encryptions IND-CPA
security. Eve will play a role of a challenger with Adam. She will make use of
his talent to break the IND-CPA security. When Adam wants to Challenge, he
sends i0, i1, a Message M and a set ζ to Eve. Eve has the values Ai0 , Ai1 since
she is the one who ran the setup. She will give Ai0 , Ai1 as messages to challenge
the IND-CPA security of the linear encryption. She will get back a ciphertext of
one of them, Aib

. The ciphertext is in the form C̄ = 〈C1, C2, C3〉, where C1 = uα,
C2 = vβ , and C3 = Aib

hα+β . Eve could calculate CTj = C
rnd.tj

3 . She could then
calculate c, η, sα, sβ , sx, sδ1 , and sδ2 as done in section 2. Eve sends Adam the
signature of ib as σb = 〈C1,C2,C3,c,CT1,...,CTµ,sα, sβ , sx, sδ1 , sδ2 ,η〉. Notice
that Eve herself does not know b. If Adam could break the ABGS anonymity,
he will send Eve the right value of b. Eve will use it to know whether Ai0 or
Ai1 has been encrypted. Therefore, Eve breaks the IND-CPA security of linear
encryption. In Appendix C we describe more details about the proof.

Theorem 5. If SDH is hard on group (G1, G2) then the selective model of the
Attribute Based Group Signature Scheme is fully-traceable under the Random
Oracle assumption.

In other words, if there is an adversary Adam that attacks the UTA security of
the scheme then the SDH problem is solved. The proof of Theorem 5 is detailed
in Appendix B. A simplified version will be explained in this section.
In our proof we use the game described in section 2, the Forking Lemma(Theorem
2), and Boneh-Boyen Lemma (Theorem 1). A signature will be represented as
〈M,σ0, c, σ1, σ2〉. M is the signed message. σ0 = 〈C1, C2, C3, R1, R2, R3, R4, R5〉.
c is the value derived from hashing σ0. σ1 = 〈sα, sβ , sx, sδ1 , sδ2〉 which are val-
ues used to calculate the missing inputs for the hash function. Finally σ2 =
〈CT1, ..., CTτ , η〉 the values that depend on the set of attributes in each signa-
ture oracle.
We will run the game in section 2 twice. In both simulated runs, the Challenger
is given an (n)SDH instance, (g̀1, g̀2, g̀

γ
2 , g̀

γ2

2 , ..., g̀γq

2 ). By applying the Boneh and
Boyen’s Lemma found in [6], Challenger could obtain g1 ∈ G1, g2 ∈ G2, w = gγ

2

11



and (n−1) SDH pairs (Ai, xi) which he will use as the private key bases gsk[i]base.
The next step is showing how the Forking Lemma (Section 2) could be applied
here to prove that we could generate new SDH pairs, if a forgery of any type
exists. The difference between the two simulated runs is the response to the hash
oracle (See Appendix B). According to the Forking Lemma, if Adam could find
with non-negligible probability a valid signature 〈M,σ0, c, σ1, σ2〉, then with a re-
play another valid signature 〈M,σ0, c̀, σ̀1, σ2〉 is outputted with a non-negligible
probability.
We show how we could extract from 〈σ0, c, σ1, σ2〉 and 〈σ0, c̀, σ̀1, σ2〉 a new SDH
tuple. Let ∆c = c − c̀, ∆sα = sα − s̀α, and similarly for ∆sβ ,∆sx,∆sδ1 , and
∆sδ2 .
Divide two instances of the equations used previously(See Theorem 3 proof)
where one instance is with c̀ and the other is with c to get the following:

– Dividing R1/R̀1 we get
uα̃ = C1; where α̃ = ∆sα/∆c

– Dividing R2/R̀2 we get
vβ̃ = C2; where β̃ = ∆sβ/∆c

– Dividing Csx
1 /C s̀x

1 = usδ1 /us̀δ1 will lead to
∆sδ1 = α̃∆sx

– Dividing Csx
2 /C s̀x

2 = vsδ2 /us̀δ2 will lead to
∆sδ2 = β̃∆sx

– Calculating the following equality:
(ê(g1, g2)/ê(C3, w))∆c

= ê(C3, g2)
∆sx .ê(h, w)−∆sα−∆sβ .ê(h, g2)

−∆sδ1−∆sδ2

= ê(C3, g2)
∆sx .ê(h, w)−∆sα−∆sβ .ê(h, g2)

−α̃∆sx−β̃∆sx

From the equations above if we let x̃ = ∆sx/∆c and Ã = C3h
−(α̃+β̃) we get the

following equation:
ê(g1, g2)/ê(C3, w)=ê(C3, g2)

x̃.ê(h, w)−α̃−β̃ ê(h, g2)
−x̃(α̃+β̃)

ê(g1, g2)=ê(Ã, wgx̃
2 )

Hence we obtain a new SDH pair (Ã, x̃) breaking Boneh and Boyens Lemma(See
Section 1).

5 Conclusion

We proposed a new group signature scheme that enables a verifier to decide
the character of the signer within the group, which we refer to as the Attribute
Based Group Signature(ABGS). We have defined security models for the notions
Anonymity and Traceability. We construct the first ABGS and prove it to be
secure against SSA and UTA attacks. The next step would be to have signatures
and keys within our scheme, independent on the attributes. It is an open problem
to construct a scheme that could be proven secure in a standard model.
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A Extra Preliminaries

A.1 Heavy Row Lemma

In this section we define a Boolean Matrix. We define a Heavy Row in that matrix [22].
Both definitions are used in the Heavy Row Lemma [22] which will be used in proving
traceability of our scheme together with the Forking lemma(See Section B).
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Definition 8. (Boolean Matrix of Random Tapes) Consider a hypothetical matrix M
whose rows consists of all possible random choices of an adversary and the columns
consist of all possible random choices of a challenger. Let each entry be either ⊥ when
the adversary fails or > if the adversary manages to win the game.

Definition 9. (Heavy Row) A row in M is called heavy if the fraction of > along the
row is less than ε/2 where ε is the advantage of the adversary succeeding in attack.

Lemma 1. (Heavy Row Lemma) Let M be a boolean matrix, given any entry that
equals >, the probability that it lies in a heavy row is at least 1/2.

B ABGS scheme Traceablity

Theorem 6. If SDH is hard on group (G1, G2) then the selective model of the Attribute
Based Group Signature Scheme is fully-traceable under the Random Oracle assumption.
In other words, if there exists an adversary that attacks the UTA security of the scheme
then there exist an adversary that could solve the SDH problem.

Proof. In order to prove that we need three steps. Defining a security model for proving
full-traceability, introducing two types of signature forger, and then we show that the
existence of such forgers implies that SDH is easy. Suppose we are given an adversary
Adam that breaks the full traceability of the signature scheme. The security model will
be defined as an interacting framework between the Challenger and Adam as follows:

– Init: The Challenger runs Adam. Adam chooses the attribute tree Γ it would
like to be challenged upon.

– Setup: The Challenger runs the setup algorithm as in section 2 with a bilinear
pair (G1, G2). It selects the generators g1, g2, a hash function H, ξ1, ξ2, u,v,h, and
γ such that they all satisfy properties mentioned in section 2. It also chooses a tj

for all attributes j in the tree Adam gave. The Challenger has to come up with
the pairs 〈Ai, xi〉 for an i = 1, ..., n. Some of those pairs have xi = ? which implies
that xi corresponding to Ai is not known; Other pairs are a valid SDH pair. In
the Setup Challenger creates a public key for the same attribute tree. So Adam
is given gpk = 〈g1, g2, h, u, v, w, Dleaf1 , ..., Dleafκ , h1, ..., hκ〉 and (ξ1, ξ2).

– Hash Queries: When the Challenger asks Adam for the hash of
(M, C1, C2, C3, R1, R2, R3, R4, R5), Adam responds with a random element in G1

and saves the answer just incase the same query is requested again.
– Signature Queries: Adam asks for a signature on a message M by a key index

i and a set of attributes ζ; where ζ satisfies the attribute tree chosen in Setup.
If xi 6= ? Challenger calculates Ti,j = A

tj

i for all attributes in ζ and signs the
message normally to obtain σ and give it to Adam. If xi = ? then Challenger
picks randomly α, β, rnd ∈ Zp sets C1 = uα, C2 = vβ , C3 = Aig

α+β
1 , and CTj =

(Aig
α+β
1 )rnd.tj for every attribute in ζ. Now Challenger could get σ as shown in

the signature algorithm and give it to Adam
– Private Key Queries: Adam asks for the private key in a certain index i for

an attribute set Υ . If xi 6= ?, Challenger returns back 〈Ai, xi, Ti,1, ..., Ti,τ 〉 where

Ti,j = A
tj

i otherwise Challenger declares failure.
– Output: If Adam is successful, it outputs a forged signature on a message M .

The signature should verify correctly yet not trace to a member that has been
queried. Challenger runs the verify then the open algorithm. He then tests the
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A∗ he calculated through the open algorithm. If A∗ 6= Ai for all i output σ. If
A∗ = Ai∗ for some i∗and if si∗ = ? output σ. The only possibility left is having
A∗ = Ai∗ but si 6= ? Challenger declares failure.

From this model of security there are two types of forgery. Type-I outputs a signature
that could be traced to some identity which is not part of {A1, ..., An}. Type-II has
A∗ = Ai∗ where 1 ≤ i∗ ≤ n but Adam did not do a private key query on i∗. We should
prove that both forgeries are hard.

Type-I: If we consider Lemma 1 for a (n + 1)SDH, we could obtain g1,g2 and w. We

could also use the n pairs (Ai, xi) to calculate the private keys 〈Ai, xi, A
t1
i , ..., A

tµ

i 〉. We
use these values in interacting with Adam. Adam’s success leads to forgery of Type-I
and the probability is ε.
Type-II: Using the same Lemma 1 but for an nSDH this time, we could obtain g1,
g2 and w. Then we could also use the n− 1 pairs (Ai, xi) to calculate the private keys

〈Ai, xi, A
t1
i , ..., A

tµ

i 〉. In a random index i∗, we could choose the missing pair randomly

where Ai∗ ∈ G1 and set xi∗ = ?. The random private key will be 〈Ai∗ , xi∗ , At1
i∗ , ..., A

tµ

i∗ 〉.
Adam in the security model will fail if he queries the private key oracle in index i∗.
Other private key queries will succeed. In the signature oracle and because the hash-
ing oracle is used it will be hard to distinguish between signatures with a SDH pair
and ones without. As for the output algorithm the probability of tracing to a forged
signature that leads to index i∗ is equal to ε/n.
The next step is showing how the Forking Lemma (Section 2) could be applied here
to prove that we could generate new SDH pairs if a forgery of any type exists. Let
Adam be a forger of any type in which the security model succeeds with proba-
bility ὲ. A signature will be represented as 〈M, σ0, c, σ1, σ2〉. M is the signed mes-
sage. σ0 = 〈C1, C2, C3, R1, R2, R3, R4, R5〉. c is the value derived from hashing σ0.
σ1 = 〈sα, sβ , sx, sδ1 , sδ2〉 which are values used to calculate the missing inputs for the
hash function. Finally σ2 = 〈CT1, ..., CTτ , η〉 the values that depend on the set of at-
tributes in each signature oracle.
One simulated run of the adversary is described by a random string ω used by the ad-
versary Adam and a vector ` of the responses made by the hash oracle. Let S be a set
of the pairs 〈ω, `〉 where Adam successfully forges the signature (M, σ0, c, σ1, σ2). Let
Ind(ω, `) be the index of ` on which Adam queried (M, σ0). Let ν = Pr[S] = ὲ − 1/p
which represents the probability of the security model ending with a success subtract-
ing the possibility that Adam guessed the hash of (M, σ0) without the help of the hash
oracle. For each χ, 1 ≤ χ ≤ qH , let Sχ be a set of pairs 〈ω, `〉 where Ind(ω, `) = χ. Let
Φ be the set of indices χ where Pr[Sχ|S] ≥ 1/2qH causing Pr[Ind(ω, `) ∈ Φ|S] ≥ 1/2.
Let `|ba be the restriction of ` to its elements at indices a, a + 1, ..., b. For each χ ∈ Φ
consider the heavy row lemma (See Section A.1) with a matrix with rows indexed
with(ω, `|χ−1

1 ) and columns (`|qH
χ ). If (x, y) is a cell, then Pr[(x, y) ∈ Sχ] ≥ ν/2qH . Let

the heavy rows Ωχ be the ones such that ∀(x, y) ∈ Ωχ : Prỳ[(x, ỳ) ∈ Sχ] ≥ ν/(4qH). By
the heavy row lemma Pr[Ωχ|Sχ] ≥ 1/2 which leads to Pr[∃χ ∈ Φ : Ωχ ∩ Sχ|S] ≥ 1/4.
Therefore Adam’s probability in forging a signature is about ν/4. That signature de-
rives from the heavy row (x, y) ∈ Ωχ for some χ ∈ Φ, hence execution (ω, `) such
that the Pr`̀[(ω, `̀) ∈ Sj |`̀|j−1

1 = `|j−1
1 ] ≥ ν/(4qH). In other words if we have another

simulated run of the adversary with `̀ that differs from ` starting the jth query Adam
will forge another signature 〈M, σ0, c̀, σ̀1, σ2〉 with the probability ν/(4qH). Now we
show how we could extract from 〈σ0, c, σ1, σ2〉 and 〈σ0, c̀, σ̀1, σ2〉 a new SDH tuple. Let
∆c = c− c̀, ∆sα = sα − s̀α, and similarly for ∆sβ ,∆sx,∆sδ1 , and ∆sδ2 .
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Divide two instances of the equations used previously (See Theorem 3 proof) where
one instance is with c̀ and the other is with c to get the following:

– Dividing R1/R̀1 we get
uα̃ = C1; where α̃ = ∆sα/∆c

– Dividing R2/R̀2 we get

vβ̃ = C2; where β̃ = ∆sβ/∆c
– Dividing Csx

1 /C s̀x
1 = usδ1 /us̀δ1 will lead to

∆sδ1 = α̃∆sx

– Similarly dividing Csx
2 /C s̀x

2 = vsδ2 /us̀δ2 will lead to
∆sδ2 = β̃∆sx

– Calculating the following equality:
(ê(g1, g2)/ê(C3, w))∆c

= ê(C3, g2)
∆sx .ê(h, w)−∆sα−∆sβ .ê(h, g2)

−∆sδ1−∆sδ2

= ê(C3, g2)
∆sx .ê(h, w)−∆sα−∆sβ .ê(h, g2)

−α̃∆sx−β̃∆sx

From the equations above if we let x̃ = ∆sx/∆c and Ã = C3h
−(α̃+β̃) we get the

following equation:

ê(g1, g2)/ê(C3, w) = ê(C3, g2)
x̃.ê(h, w)−α̃−β̃ ê(h, g2)

−x̃(α̃+β̃)

ê(g1, g2) = ê(Ã, wgx̃
2 )

Hence we obtain a new SDH pair (Ã, x̃) breaking Boneh and Boyens Lemma (See
Section 1). Now putting things together we get the following claims:

Theorem 7. We could solve an instance of (n + 1) SDH with a probability (ε −
1/p)2/16qH using a Type-I forger Adam

Theorem 8. We could solve an instance of n SDH with a probability (ε/n−1/p)2/16qH

using a Type-II forger Adam

C ABGS Scheme Anonymity

Theorem 9. If the linear encryption is IND-CPA secure then the ABGS scheme is
fully anonymous under the same attribute tree under the Random Oracle Assumption.
In other words, if there exists an adversary that breaks the scheme’s SSA security then
there exists an adversary that breaks into the linear encryption IND-CPA security.

Assuming Adam is an adversary that breaks the anonymity of the ABGS scheme. We
will prove that there is an adversary Eve that breaks the IND-CPA security of the
linear encryption using Adam’s talent. Note that Eve in this game plays a challenger
role when it comes to interacting with Adam and an adversary role when she interacts
with Challenger. So the game is demonstrated below:

– Init: Adam decides the attribute tree Γ he would like to be challenged upon and
gives it to Eve.

– Setup: Eve is given the public key LEPK = 〈u, v, h〉 from the Challenger. Eve
chooses a random γ from Zp and t1, ..., tm. Using the LEPK key and the random
values, Eve could calculate an ABGS public key for the attribute tree gpk =
〈u, v, h, w, Dleaf1 , ..., Dleafκ , h1, ..., hκ〉 for the ABGS scheme. Eve also calculates
n private key bases gsk[i]base = 〈Ai, xi〉 where 1 ≤ i ≤ n.
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– Phase 1: Eve runs three oracles: a signature oracle, private key oracle and a hash
oracle. The hash oracle has a list that saves a unique random value for each 9-
element tuple. That random value is the response of the oracle. The hash oracle
should guarantee that no 9-element tuple have the same random value and that
each time it responds with the same random value for the same 9-element tuple.
In the signature oracle Adam sends an index i, a random message M and a set of
attributes ζ to Eve where ζ satisfies the tree. Eve responds back with a signature
σ = 〈C1, C2, C3, c, CT1, ...CTτ , sα, sβ , sx, sδ1 , sδ2 , η〉 on that message from user i. c
is the response of the hash oracle for the tuple 〈M, C1, C2, C3, R1, R2, R3, R4, R5〉.
Finally, the private key oracle Adam sends an index i and a set of attributes Υ
and Eve responds back with 〈Ai, xi, A

t1
i , ..., A

tµ

i 〉.
– Challenge: Now Adam could request from Eve his anonymity challenge by choos-

ing two indices (i0 and i1), set of attributes ζ and a message M asking for a signa-
ture of one of them. Eve sends Challenger both 〈Ai0 , Ai1〉 as messages requesting
a challenge. Challenger responds back with the ciphertext C̄ = 〈C1, C2, C3〉 of Aib

where b ∈ {0, 1}. Eve generates a signature from
C̄=〈C1,C2,C3,C

rnd.t1
3 ,...,Crnd.tτ

3 ,wrnd〉 and sends it to Adam.
– Phase 2: Adam goes back to issuing further queries as done in Phase one.
– Guess:Adam returns a b̀ to Eve.

Eve outputs b̀ as her answer to the Challenger. Eve has a high advantage on guessing
the right b̀ = b if and only if Adam could break into the anonymity of the ABGS
scheme.
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