We present a general reduction from any semantically-secure encryption protocol and any computational Private Information Retrieval (PIR) protocol to a PKLDC. In particular, since it was shown that homomorphic encryption implies PIR, we give a general reduction from any semantically-secure homomorphic encryption protocol to a PKLDC. Applying our construction to the best known PIR protocol (that of Gentry and Ramzan), we obtain a PKLDC, which for messages of size $n$ and security parameter $k$ achieves ciphertexts of size $\O(n)$, public key of size $\O(n+k)$, and locality of size $\O(k^2)$. This means that for messages of length $n = \omega(k^{2+\epsilon})$, we can decode bit of the plaintext from a corrupted ciphertext while doing computation sublinear in $n$. We emphasize that this protocol achieves codewords that are only a \emph{constant} times larger than the underlying plaintext, while the best known locally-decodable codes (due to Yekhanin) have codewords that are only slightly subexponential in the length of the plaintext. In addition, we believe that the tools and techniques developed in this paper will be of independent interest in other settings as well.
Category / Keywords: Public Key Cryptography, Locally Decodable Codes, Error Correcting Codes, Bounded Channel Model, Chinese Remainder Theorem, Private Information Retrieval Publication Info: A preliminary version of this work appeared in CRYPTO 2008 Date: received 5 Mar 2007, last revised 22 Mar 2012 Contact author: bhemen at umich edu Available format(s): PDF | BibTeX Citation Note: Applied construction in a more general setting. Version: 20120322:142330 (All versions of this report) Short URL: ia.cr/2007/083 Discussion forum: Show discussion | Start new discussion