
 
 
 
 
 
 

S p e c i a l  b l o c k  c i p h e r  
f a m i l y  D N  a n d  n e w  
g e n e r a t i o n  S N M A C -
t y p e  h a s h  f u n c t i o n  
f a m i l y  H D N  
This paper presents some parts of 
the project Special Block Cipher 
(ST20052006018) for Czech NSA 
 
 
 
 

Vlastimil KLÍMA*, January 2007 

 
 
 
 
 
 
 

                                                 
* Independent consultant, v.klima (at) volny.cz, http://cryptography.hyperlink.cz. The project 
ST20052006018 was finished on September 30, 2006. 

1 

http://cryptography.hyperlink.cz/


Abstract 
 
Special block cipher is a new cryptographic primitive designed to be a building block 
of the new generation hash functions SNMAC [Kl06]. Contrary to classical block 
ciphers it is knowingly designed focusing to those properties which are expected to be 
just a “side effect” on usual cipher constructions. Its design anticipates that an attacker 
could exploit or know its key, or even he/she could discretionarily tamper with the key. 
The design criteria of SNMAC hash functions are publicly known. Limitly, these 
functions approach a random oracle, they are computationally resistant against pre-
image and collision attacks, and different special block cipher instances can be used in 
their design.  

 
In this paper, we present special block cipher family Double Net DN(n, k)-ρ with n-bit 
block, k-bit key and ρ rounds, their building blocks construction principles and design 
criteria. Based on DN, we define hash functions family HDN(n, k)-ρ with n-bit hash 
code working on blocks of k - n bits.  

 
We introduce and propose to use DN(512, 8192)-10 and HDN(512, 8192)-10 as 
example instances. It turns out these are not just theoretical concepts, but practically 
employable functions with speeds only 2-3 times lower than SHA-512 and Whirlpool. 

 
Basic idea behind the special block cipher DN is simple – contrary to classical block 
cipher approach, the same attention is paid to key and plaintext processing. One SP 
network ensures key mixing, while the second one mixes the plaintext with the key. 

 
Once the special block cipher concept is examined and accepted in hash functions, it 
can be used in advance in its original purpose – data encryption. We suggest the 
transition from the classical block ciphers to more secure special block ciphers in the 
future. Its advantage is its readiness for various attacks on the secret key; the attacks 
which have recently started to emerge in classical block cipher cryptanalysis. Among 
others, these include side-channel attacks, related keys attacks and rectangular attacks 
(see e.g. [Bi93], [Bi03], [Ki04], [Ho05], [Ki05], [Bi05], and [Bi06]). With the 
expansion of the cryptographic instruments and cryptanalytic methods, these attacks 
will appear more and more frequently. Their common traits are the various attempts to 
exploit the original assumption on the attacker’s limited power over the secret key or its 
knowledge. The defence against these attacks is illustrated by the evolution of the 
functions processing the secret key, starting with simple copy-type functions used in 
DES and TripleDES to weak non-linear functions in AES. We believe that this trend 
will continue to strong non-linear functions (similar to the ones used in DN). The 
employment of these stronger functions in the encryption might not seem as a must in 
the present, but it probably will be in the future. In the hash functions, it is a necessity 
today already. 
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1. Introduction 
An attacker of a hash function that employs a block cipher has the possibility to 
manipulate with the plaintext and with the key, as well. The primary goal of classical 
block ciphers design is not the resistance to this kind of attack – some resistance is 
present, it can be seen as “side effect” only, however. As the result, new generation 
hash functions SNMAC [Kl06] employ the special block cipher in their compression 
function. Once the special block cipher concept is examined and accepted in hash 
functions, it can be used in advance in its original purpose – data encryption. We 
suggest the transition from the classical block ciphers to more secure special block 
ciphers in the future. 
 
Classical block cipher is the cryptographic primitive designed to protect the plaintext 
and its structure in the ciphertext using the secret encryption key. The fact the attacker 
does not know the secret key is essential for high-speed encryption in the classical 
block cipher construction. In most cases, very few (if any) simple modifications of the 
key are present. The key expansion procedure is extremely simple in the most of 
classical block cipher designs. For instance, DES uses a simple copy function, while 
AES a weak non-linear transformation. The majority of block ciphers use weak non-
linear or simple functions. These weaknesses were crucially exploited in the attacks on 
MD and SHA hash function families. They allowed controlling many places of the 
inner state of the hash function while following pre-made strategy (differential path). 
Strong non-linearity would not have allowed this exploit. 
 
So far, this vulnerability was not used to attack classical block ciphers, as the 
manipulation with the key to such extent is not possible in real life scenarios.  
 
In the case of classical block ciphers, in the beginning it was assumed the attacker has 
no knowledge about the plaintext, later it was admitted he could know or even choose 
some of its parts. Currently, full control over the plaintext and ciphertext is taken into 
account. As an answer to these possibilities of the attacker, strong non-linear functions 
processing the plaintext were introduced. 

 
Unfortunately, it was and still is assumed the attacker does not know the encryption key 
and has no means to manipulate with it. The technology development and the birth of 
various encryption devices (smart-cards, SSL servers, cryptographic modules, libraries, 
etc.) provide attacker with new possibilities weakening both of these original 
assumptions – not knowing the key and the impossibility to manipulate with it, as well. 
The most common origins of these new possibilities are various side-channels (power, 
electromagnetic, timing …) that allow manipulating with the key and provide its partial 
knowledge, as well. 
 
Today’s linear or weak non-linear processing of the key does not protect it against such 
attacks. The progress in the decades to come will undoubtedly show similar 
advancements in the key exploiting attacks. In order to have strong block ciphers in the 
future, it is advisable to strengthen their key processing functions. 
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To prevent the future attacks on classical block ciphers, functions used during the key 
expansion procedure should have the same security properties as the plaintext 
processing functions. Key and plaintext processing functions should have the same 
resistance against the differential and linear cryptanalysis and against other attacks, as 
well. Over time, the techniques used to attack the key will be similar to the ones used to 
attack plaintext today. However, it might take decades for these attacks to appear. Thus, 
the question is when to start applying the relevant countermeasures. 
 
Key manipulation possibilities fully arose when classical block cipher was used in the 
hash function construction. As there is no secret element in the hash function 
computation, the attacker can manipulate with all of its inputs, thus with the key, as 
well. The countermeasures in hash function constructions need to be applied 
immediately, since these possibilities are at attacker’s disposal already today. 
 
For this reason the special block cipher and new generation hash function SNMAC 
concept were designed. We describe the first class of special block ciphers DN in this 
paper and class of hash functions HDN based on them.  
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2. Double Net functions family description 
The description of Double Net DN(n, k)-ρ block ciphers family, constructions 
principles and design criteria are presented in this chapter. 
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Fig. 1: DN functions family 

2.1. DN(n, k)-ρ basic scheme 
DN(n, k)-ρ is n-bit block cipher with k-bit encryption key K and ρ (big) rounds, where 
ρ** is a security parameter.  
 
DN consists of two functions, the key expansion Φ and the product cipher Π, see Fig. 
1. The basic idea behind the DN double net is that the keys a, b, …, z for the sub-
ciphers of the product cipher Π = Bz • ... • Bb • Ba are generated by strong block cipher 
Φ. With increasing number of rounds, the keys (a, b,… ) and ( …, y, z) become 
computationally indistinguishable from independent random variables, since they are in 
plaintext-ciphertext relation for the block cipher Φ. Thus, the block ciphers (Ba, Bb , ...) 
and ( ... By, Bz) themselves become computationally indistinguishable from 
(independent) random block ciphers. As the function Φ is a strong block cipher only on 
columns of key array RK (see Fig. 1), reasonable efficiency is achieved. The function 
Π mixes the columns of array RK with each other and with the plaintext. More columns 
there are in round keys, more effective the whole process becomes. It is usual for the 
                                                 
** The variable ρ is denoted as rho in the source code 
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DN key to be several thousand bits long. This is an advantage when used in the hash 
function HDN, as the message enters into the function through the key. 
 
Notations. The block length and the key length are rounded to bytes, the key length is a 
multiple of the block length and block length is a multiple of 32 bits. The scheme is 
described on byte level. The number of the bytes in the plaintext is denoted as c = n/8. 
It is the number of the columns in the array of the keys, as well. The number of the 
bytes in the key K is k/8. Key bytes are written into r (rows) by c (columns) array from 
left to right and from up to down, where r = k/n (rc = k/n x n/8 = k/8). The function Φ 
expands the encryption key into an array of round keys. It works with three-
dimensional ρ x r x c array of bytes RK[i][j][t], i = 0, ..., ρ - 1, j = 0, ..., r - 1, t = 0, ..., c 
- 1 which is called round keys array. The first index (i) determines the big round key 
RK[i] as two-dimensional r x c array. The big round key RK[i] consists of r small 
round keys RK[i][j], j = 0, ..., r - 1. Small round key RK[i][j] is one row of the big 
round key and has c bytes RK[i][j][t], t = 0, ..., c - 1. The key K is the input to the 
function Φ. It is written into the first big round key RK[0] (left to right and up to 
down). From the first big round key, the function Φ progressively generates remaining 
ρ - 1 big round keys RK[i], i = 1, ..., ρ - 1. 
 
The function Π mixes the plaintext with the array of round keys, see Fig. 1. Primarily, 
Π is the product of ρ x r elementary transformations T1, Π = Πi = ρ - 1, ..., 0 Πj = r - 1, ..., 0 
T1i,j, where each transformation T1i,j uses one small round key RK[i][j], i = 0, ..., ρ - 1, 
j = 0, ..., r - 1. By grouping several (e.g. r/2 or 2r) transformations T1 into one block 
cipher B, the function Π can be seen as the product of block ciphers B, where each one 
uses several small round keys, i.e. Π = Bz • ... • Bb • Ba, where z || ... || b || a = RK = 
RK[ρ - 1][r - 1] || RK[ρ - 1][r - 2] || ... || RK[0][1] || RK[0][0].  
 
Transformation T1 consists of a substitution and a permutation on byte level, a linear 
transformation on bit level (not convertible to byte level) and small round key and 
round constant additions. 
 
From the point of view of security proofs, we see the function Π as the product of the 
block ciphers B, from the point of view of the implementation in HW and SW we see it 
as ρ x r transformations T1.  

2.2. Function Φ 
The input to the function Φ is the encryption key K, its output is the round keys array 
RK. The function Φ consists of the column transformation and the final key 
permutation. The column transformation fills the array RK and the final key 
permutation permutes the bytes within this array. The column transformation is a set of 
independent column transformations Ft, t = 0, ..., c - 1, which work within the columns 
of array RK. Each column transformation is the product block cipher Ft = fρ-1,t • ... • f2,t 
• f1,t with r-byte block whose rounds are called partial column transformations (fi,t). The 
column t of the array RK is progressively filled with the results of the partial rounds of 
the block cipher Ft. Each one of (ρ - 1) x c partial column transformations fi,t, i = 1,..., ρ 
- 1, t = 0, ..., c – 1 is an elementary transformation (T2) that consists of byte level 
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substitution (r substitution boxes SubsF), bit level linear transformation (using MDS 
type r x r matrix) and r-byte round constant (RConstF) addition. Each column 
transformation Ft is thus a block cipher with constant key (round keys are constants), 
see Fig. 2. 
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Fig.2: Column transformation   
 
Mapping encryption key K to array RK 
Key K is written into byte array RK[0] with dimensions r x c: RK[0][j][t] = K[j*c + t], j 
= 0, ..., r - 1, t = 0, ..., c - 1. 
 
Array RK generation 
We denote byte RK[i][j][t] as RKi,j,t. Round keys RK[0], ..., RK[ρ - 1] are generated 
iteratively and independently column-wise (t = 0, ..., c - 1) using the function Ft = fρ-1,t • 
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... • f2,t • f1,t in this way: RK[0] → RK[1] → ... → RK[ρ - 1]. Each function fi,t uses r 
(different in general) substitution boxes SubsFi,j,t, j = 0, ..., r - 1, the matrix MDSi,t with 
dimensions r x r and r-byte round constant RConstFi,t = (RConstFi,0,t, RConstFi,1,t, ..., 
RConstFi,r-1,t). For i = 1, ..., ρ - 1 and t = 0, ..., c - 1 we have (RKi,0,t, RKi,1,t,..., RKi,r - 1,t) 
= fi,t(RKi - 1,0,t, RKi - 1,1,t, ..., RKi - 1,r - 1,t) = (MDSi,t • (SubsFi,0,t(RKi - 1,0,t), SubsFi,1,t(RKi - 

1,1,t), ..., SubsFi,r-1,t(RKi - 1,r - 1,t) )T )T ⊕ (RConstFi,0,t, RConstFi,1,t, ..., RConstFi,r-1,t), 
where the operator T denotes transposition of a row into a column and vice versa. The 
matrix MDSi,t is MDS (maximum distance separable) type matrix and multiplications 
are computed in finite field GF(28). 
 
Final key permutation KeyPerm 
The final key permutation is a permutation on set INDX = {0, 1, ..., ρ - 1} x {0, 1, ..., r 
- 1} x {0, 1, ..., c - 1}, KeyPerm: INDX → INDX: (i, j, t) → KeyPerm(i, j, t). It 
permutes the bytes of the array RK, i.e. RKi,j,t = RKKeyPerm (i,j,t), i = 0, ..., ρ - 1, j = 0, ..., r  
- 1, t = 0, ..., c - 1. It is applied after the creation of the array RK by the column 
transformation. From the security point of view, this permutation is not necessary. Its 
purpose is to make the diffusion of the round keys columns within the function Π more 
efficient. The permutation can be very simple, for example the cyclic shift of bytes 
within small round key. More details are to follow. 

2.3. Function Π 
The function Π is a block cipher. The plaintext consists of c bytes indata(0), ..., indata(c 
- 1), the ciphertext consists of c bytes outdata(0), ..., outdata(c - 1). The encryption key 
is array RK, comprising ρ x r  small round keys RK[i][j], i = 0, 1, ..., ρ - 1, j = 0, 1, ..., r  
- 1. Primarily, Π is a product of ρ x r  elementary transformations T1, Π = Πi = ρ - 1, ..., 0 
Πj = r - 1, ..., 0 T1i,j, where T1i,j uses small round key RK[i][j], i = 0, ..., ρ - 1, j = 0, ..., r  - 
1. The output from one transformation T1 is the input to another transformation T1. 
Input to the function Π is the input to the first transformation T1, the output from the 
last transformation T1 is the output from the function Π. 

2.3.1. Transformations T1i,j 
Each transformation T1i,j, i = 0, ..., ρ - 1, j = 0, ..., r  - 1, consists of a substitution and a 
permutation on byte level, a linear transformation on bit level (not convertible to byte 
level) and small round key and round constant additions. All these variables can be 
different for different transformations T1i,j. For each pair (i, j), i = 0, ..., ρ - 1, j = 0, ..., r  
- 1, we have: 

• c substitution boxes SubsBi,j,t, t = 0, ..., c - 1, mapping a byte on a byte 
• permutation on the set {0, 1, ..., c - 1}, called type “Small-Middle-Large” 

permutation and denoted as SMLPermi,j: {0, 1, ..., c - 1}→{0, 1, ..., c - 1}: t → 
SMLPermi,j(t), 

• linear transformation consisting of n/32 = c/4 matrices MDSi,j,v with dimensions 
4 by 4 bytes, v = 0, ..., c/4 - 1, 

• round constant RConstBi,j with c bytes (RConstBi,j,0, ..., RConstBi,j,c-1), 
• small round key RK[i][j] with c bytes (RKi,j,0, ..., RK i,j,c-1). 
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Remark. Linear transformation in T1. The linear transformation used in T1 can be 
more general, in the DN construction the linear layer representation by (small) 4 x 4 
matrices is employed. The matrix multiplication is computed in the field GF(28). Using 
these matrices in this way requests the plaintext length to be a multiple of 32 bits. If 
different dimension matrices are used as the building block, the plaintext length does 
not necessarily need to be such a multiple. This completes the description of DN. 

2.4. Block cipher DN class parameters 
DN scheme is a general scheme based on two SP networks Φ and Π. One SP network 
expands the encryption key to the array of round keys, while the second one mixes the 
round keys with the plaintext. Contrary to the classical block ciphers, the key is 
processed with the same attention as the plaintext. 
DN’s parameters are its building blocks, their types, dimensions and contents. These 
parameters are available for DN(n, k)-ρ : 
Main dimensions: 

• n, plaintext length in bits (c = n/8), 
• k, key K length in bits (r = k/n), 
• ρ, number of big rounds, 

Function Φ: 
• S-boxes SubsFi,j,t mapping a byte on a byte, i = 1, ..., ρ - 1, j = 0, ..., r  - 1, t = 0, 

..., c - 1,  
• matrices MDSi,t with dimension r  x r , i = 1, ..., ρ - 1, t = 0, ..., c - 1, 
• constants RConstFi,t with r  bytes, i = 1, ..., ρ - 1, t = 0, ..., c - 1, 
• final key permutation KeyPerm on the set {0, ..., ρ - 1} x {0, ..., r  - 1} x {0, ..., 

c - 1}, 
Function Π: 

• permutations SMLPermi,j on the set {0, ..., c - 1}, 
• S-boxes SubsBi,j,t mapping a byte on a byte, i = 1, ..., ρ - 1, j = 0, ..., r  - 1, t = 0, 

..., c - 1, 
• matrices MDSi,j,v with dimension w x w, i = 0, ..., ρ - 1, j = 0, ..., r  - 1, v = 0, ..., 

c/w - 1, where w divides c (individual dimensions of matrices can vary, the case 
w = 4 will mostly be used, see next chapter for details),  

• constants RConstBi,j of c bytes, i = 0, ..., ρ - 1, j = 0, ..., r  - 1. 
 
Remark. The construction leaves a lot of freedom for choices for these parameters. 
However, there are some rules that the building blocks have to respect, briefly: 

• function Π is a strong block cipher, 
• all column transformations of Φ are strong block ciphers (with a fixed key), 

they are pair wise different if possible, 
• functions Φ and Π do not share any S-box, 
• all of the S-boxes have good linear and differential characteristics and they are 

generated non-algebraically, (pseudo)randomly if possible,  
• matrices used by the functions Φ and Π are all MDS type matrices (maximum 

distance separable). 
Next chapter explains these rules in detail. 
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3. Network Π construction 

3.1. Π as product of block ciphers B 
The function Π is the product of the block ciphers B, each employing several T1 rounds 
(several small round keys), i.e. Π = Bz • By • ... • Bb • Ba. The goal for the function Π 
is to be a strong block cipher, resistant to linear and differential cryptanalysis. It is 
possible to construct identical block ciphers Bz, ..., Ba, or eventually By = ... = Ba (= B) 
while Bz would consist of “remaining number of small rounds”. B is designed to be as 
resistant against linear and differential cryptanalysis, as possible. To do so, we use the 
proofs from Appendix A about SP resistance against linear and differential 
cryptanalysis. We construct the function B as a nested SP network. Several papers 
([Ho00], [Ka01], [Chu03], and [Sa03]) focused on nested networks, however, here it is 
sufficient to use the results from [Ho00]. Theorems 1 and 2 provide us with the 
probability bounds on the maximal differential (DPB) and linear hull (LPB) of the block 
cipher B. Block cipher B is one round of the product cipher Π, thus the estimates (DPB) 
and (LPB) somehow correspond to the quality of the function Π = Bz • By • ... • Bb • Ba. 
The estimates DPΠ and LPΠ cannot be directly deduced from DPB x DPB x ... x DPB x 
DPB neither LPB x LPB x ... x LPB x LPB, even if they were in the past. However, it 
suffices for DPB and LPB to be small. Let us remark, according to [NK92] the value 
DPB x DPB can be used to estimate DPΠ for Π = B • B • B • B. The value DPΠ is 
probably lower than this (currently best known) estimate, however, there are no 
methods known so far to prove this. On the other hand, it is expectable the estimates 
will get better. 

3.2. Network Π S-boxes  
Firstly, note S-boxes can be pair wise different in network Π. Denote pB (qB) as the 
maximum value of the maximal differential probability (maximal linear probability, 
respectively) taken over all S-boxes used in the function B. Smaller the values of pB 
and qB are, more resistant against linear and differential cryptanalysis the function B 
becomes. 

3.3. Network Π example for n = 512 
Block size n = 512 bits, i.e. c = 64 bytes. We use the decomposition c = 64 = c1 x c2 x 
c3 = 4 x 4 x 4 to construct network Π. Block cipher B is constructed as a 3-level nested 
SPN network. 
 

XS-box is constructed as SDS network of S-boxes with the width c1 = 4, 
XXS-box is constructed as SDS network of XS-boxes with the width c2 = 4, 

XXXS-box is constructed as SDS network of XXS-boxes with the width c3 = 4. 
 
XXXS-box is the block cipher B, as well. It consists of 8 elementary transformations 
T1. 
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Fig.3: Block cipher B as an XXXS-box 
 
Remark. All S-boxes, XS-boxes and XXS-boxes can be pair wise different. 
 
Let’s assume the diffusion levels within all XS, XXS and XXXS boxes are maximal. 
Then the following holds by Theorem 1 (see Appendix A) applied on SDS networks 
XS, XXS and XXXS: 
 
DPXS ≤ (pB)4,  
DPXXS ≤ (DPXS)4 ≤ (pB)4x4, 
DPXXXS ≤ (DPXXS)4 ≤ (pB)4x4x4, 
thus 
DPB = DPXXXS ≤ (pB)64 and analogically using Theorem 2 (see Appendix A) it holds 
LPB = LPXXXS ≤ (qB)64.  
 
Block cipher B resistance against DC and LC is now ensured for small and suitable pB 
and qB. 
 

3.4. B as an N-level nested SPN 
The general network Π construction is based on the size c of the plaintext block in 
bytes. Most of the times, c is a power of 2, with 8, 16, 32 and 64 being the most 
important values. During the construction of B as an N-level nested SPN, we use the 
decomposition c = c1 x c2 x c3 x ... x cN, where c1 is the first XS network width, c2 the 
second XXS (X2S) network width, ..., cN the last XX...XS (XNS) network width. 
 

X1S-box is constructed as SDS network of S-boxes with the width c1, 
X2S-box is constructed as SDS network of XS-boxes with the width c2, 

... 
XNS-box is constructed as SDS network of XN-1S-boxes with the width cN. 
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If the number of small rounds in Π is not a multiple of the number of rounds in B, we 
denote the remaining part of block cipher B as Bz, i.e. Π = Bz • B •... • B • B. 
The diffusion levels within all XS, …, XNS boxes are assumed to be maximal. 

3.5. Network Π resistance against DC and LC 
As we mentioned in the beginning of this chapter already, there is no other option 
(because of the lack of proving methods) than to measure network Π resistance against 
DC and LC with the values DPB and LPB. As B can be seen as big box B: {0, 1}n → {0, 
1}n, n = 8c, its maximum differential and maximum linear probabilities (see Appendix 
A) are defined as DPB = max DPB(∆x → ∆y), where the maximum is taken over all ∆x 
≠ 0, ∆x ∈ {0, 1}n, ∆y ∈ {0, 1}n, and LPB = max LPB(Γx → Γy), where the maximum is 
taken over all Γx, Γy ≠ 0, Γx ∈ {0, 1}n, Γy ∈ {0, 1}n. 
 
Theorem 3. Block cipher B resistance against DC and LC.  
If B is constructed as nested SP network (as in Appendix A), the following holds  
DPB ≤ (pB)c,  
LPB ≤ (qB)c. 
Proof. Follows from Theorem 1, if it is applied inductively on the X1S, ..., XNS boxes 
construction. We have DPB = DPXNS ≤ (DPXN-1S)

cN ≤ (DPXN-2S)
cN-1 x cN≤ ... ≤ (DPS)

c1 

x ... x cN-1 x cN = (DPS)
c
 = (pB)

c
. Analogically, LPB ≤ (qB)c holds using Theorem 2.  

 
Corollary. Best currently known network Π resistance estimate against DC. As 
already mentioned, the best currently known estimate for DPΠ is DPB x DPB ≤ (pB)c x 
(pB)c = (pB)2c, if Π consists of at least four blocks B. However, in reality the estimate is 
definitely smaller.  
 
Corollary. Best currently known network Π resistance estimate against LC. 
Estimating the network Π resistance against LC, we can only use the estimate LPB ≤ 
(qB)c for one round of the product cipher Π = Bz • B •... • B • B. 
 
Remark. Variable construction for the same c. Even for the same value of c, the 
network construction has several possibilities. This depends on the factorization of c 
and on the possibility to have different diffusion layers for different boxes.  
 
Remark. Number of rounds in B. The number of rounds in block cipher B depends 
on the fact that every higher-level SDS network consists of two lower level SDS 
networks. Thus, the number of rounds (i.e. number of substitution layers) is the double 
of the amount of the factors of c, which is 2N. 
 
Finally, S-boxes SubsBi,j,t mapping a byte on a byte (i = 0, ..., ρ - 1, j = 0, ..., r - 1, t = 
0, ..., c - 1) can be chosen different or all identical. Random or pseudo-random S-boxes 
make the ideal choice, if sufficient resistance against linear and differential 
cryptanalysis is ensured. Both, the network Π resistance against DC and LC and the 
number of the block ciphers in the product Π = Bz • B •... • B • B, depend on the 
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values pB (qB). The S-boxes used in networks Π and Φ should not be the same ones. 
They should not have an algebraic structure (as AES S-boxes does), even if there is no 
direct proof for this property. 

3.6. Network Π diffusion layer maximality 
Big MDS matrices with dimension C x C, where C = c1 x ... x ci-1 x ci can be used to 
ensure diffusion layer maximality in XiS-boxes. For instance, value c for network Π 
from the previous example would equal c = 64 = c1 x c2 x c3 = 4 x 4 x 4 and the matrix 
X3MDS dimension would be 64 x 64 bytes. However, the implementation of such 
matrices is time and memory consuming. Different approaches can be used to ensure 
the maximality. DN function class does not prescribe these; however, we now show one 
such possible approach.  
 
Instead of using one C x C MDS matrix, where C = c1 x ... x ci-1 x ci, we construct c1 x 
... x ci-1 MDS matrices with dimension ci x ci. In case c is a power of 2, the 
decomposition is done in the way that all factors are equal to 4, except possibly the first 
one whose value can be 2, 4 or 8. Thus, the dimensions of the matrices used can be 2 x 
2, 4 x 4 and 8 x 8. Each one of the two layers in XiS-box contains ci Xi-1S-boxes. The 
matrix Xi-1MDS joins the first layer of ci Xi-1S-boxes with the second layer of ci Xi-1S-
boxes. The width of each Xi-1S-box is c1 x ... x ci-1 bytes. 
 
We could construct the matrix Xi-1MDS as the (c1 x ... x ci-1 x ci) x (c1 x ... x ci-1 x ci) 
type matrix. We construct it as a set of c1 x ... x ci-1 MDS matrices with dimensions ci x 
ci, instead. Each one of these small ci x ci matrices chooses (randomly) one single byte 
from each of ci input Xi-1S-boxes. Thus, the input of this matrix is ci bytes long. The 
output bytes are transferred (one by one) to all ci output Xi-1S-boxes. The system of 
these matrices creates maximal diffusion layer. (As we shall see later on, the choice of 
the byte positions in the input Xi-1S-boxes that forms the MDS matrices defines 
accordingly permutations SMLPerm.) 
 
Theorem 4. Diffusion layer maximality. The matrix Xi-1MDS constructed as a system 
of c1 x ... x ci-1 MDS matrices with dimensions ci x ci is the maximal diffusion layer in 
XiS-box. 
Proof. Let’s assume an input difference in k Xi-1S-boxes, 1 ≤ k ≤ ci. Let us note the 
input difference in Xi-1S-box means there is a change of at least one of the input bytes. 
Let’s focus on the first changed input byte in the first changed Xi-1S-box. This byte is 
the input to the one of the c1 x ... x ci-1 MDS matrices with dimensions ci x ci of the 
relevant diffusion layer. Denote this matrix as M and the total number of changed bytes 
on its input as s. It holds 1 ≤ s ≤ k ≤ ci. Since M is an MDS matrix with dimensions ci x 
ci, there are at least v ci + 1 - s bytes changed on its output. We have ci + 1 - s ≥ ci + 1 - 
k. As all the output bytes of matrix M serve as input bytes to different Xi-1S-boxes, there 
is at least ci + 1 - k changed Xi-1S-boxes on the output. The maximality of Xi-1MDS 
diffusion layer is now verified. 
 
Final remark. Matrices MDSi,j,v. Matrices MDSi,j,v can be of different dimensions (w  
x w, where w  is a divisor of c) and have different contents. Various matrices with 
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various dimensions can be used in various places of network Π, even within one 
diffusion layer. Two requirements have to be fulfilled: 
– the diffusion maximality for all the layers, 
– a bit level (not a byte level as a whole) diffusion should be ensured for all MDS 

matrices employed.  
Particularly, this is not satisfied for the matrices consisting only of elements 0x00 and 
0x01 (in hexadecimal notation). The matrices should contain as few of these elements 
as possible. Expressing MDS matrix in binary with dimensions 8r x 8r, it should not be 
sparse and should not contain any obvious pattern. As a binary matrix, it should be as 
random as possible. Thus, ideally all the matrices MDSi,j,v are pair wise different and 
generated randomly. This is a countermeasure against the algebraic attacks. It is not 
strictly forbidden for all the matrices to be identical, however. 

3.7. Small-Middle-Large type permutation 
This section describes the construction of SML-type (Small-Middle-Large) 
permutations and introduces the term conjugate bytes. 

3.7.1. SMLPerm and T1 
If the biggest possible matrix with dimensions (c1 x ... x ci-1 x ci) x (c1 x ... x ci-1 x ci) is 
employed to ensure the diffusion layer Xi-1MDS maximality (Small - among S-boxes, 
Middle - among XS boxes, Large - among Xi-1S-boxes), the corresponding permutation 
SMLPerm sets the input bytes selection order for this matrix. Different permutations 
can be defined for different diffusion layers. A permutation can be incorporated directly 
into a matrix. We can thus define one matrix and different permutations for different 
diffusion layers, or different matrices (original matrix with permuted columns) and 
identical permutations.  
 
If c1 x ... x ci-1 (identical) MDS matrices with dimensions ci x ci are employed to ensure 
the diffusion layer Xi-1MDS maximality, the outputs from ci Xi-1S-boxes can be used as 
inputs to these MDS matrices in variously permutated order. 
 
The diffusion layer maximality can be achieved using matrices with other dimensions, 
as well, see Fig. 4. 
 
For a given full width diffusion layer in network Π, the bytes selection to its matrices 
corresponds to a permutation of c1 x ... x cN-1 x cN bytes. We call this permutation 
SMLPerm associated to the given diffusion layer. Simultaneously, this permutation is 
used in the corresponding transformation T1. (Later on, we shall see the output boxes 
bytes selection is in fact the inverse of the input positions selection in the permutation 
SMLPerm during the next transformation T1.) 
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Fig.4: Permutation SMLPerm 

3.7.2. SMLPerm and diversity 
If the diffusion layer Xi-1MDS is constructed as a system of c1 x ... x ci-1 MDS matrices 
with dimensions ci x ci, corresponding permutations SMLPermi,j allow us to enhance 
the diffusion and the diversity (non-symmetry) inside the block cipher B. Each one of 
the small MDS matrices with dimensions ci x ci can freely choose exactly one byte 
coming from each of ci input Xi-1S-boxes and it can output it to any position to each of 
the output Xi-1S-boxes. This ensures each input Xi-1S-box influences all output Xi-1S-
boxes. As we will see later on, such property doesn’t need to be satisfied one layer 
lower – the case of Xi-2S-boxes.  
 
Each big input Xi-1S-box consists of ci-1 small Xi-2S-boxes. Let’s look at the first of 
these small input Xi-2S-boxes for instance and see how many small output Xi-2S-boxes 
are influenced by it (see Fig. 5 and 6). The box has c1 x ... x ci-2 bytes which influence 
c1 x ... x ci-2 x ci output bytes employing ci MDS matrices. The maximality property 
ensures each one of ci output Xi-1S-box receives exactly c1 x ... x ci-2 output bytes. The 
position of these bytes within Xi-1S-box is random; they can reach all of the small Xi-2S-
boxes; however, in the worst case they can all be placed into a single one small Xi-2S-
box (it is exactly c1 x ... x ci-2 bytes long). These small output Xi-2S-boxes that are 
influenced are called conjugate output boxes (with the given small input Xi-2S-box). 
The other bytes of MDS matrices that process the given small input box, acquire their 
input from several other small input boxes. We reference to these small input boxes as 
to conjugate input boxes (with the given small input box). In the worst case, there can 
be just a single small Xi-2S-box within each big input Xi-1S-box that is conjugate to a 
given small box (the same is true for output boxes). To reach such situation, all of j-th 
bytes from the big input boxes are directed to j-th MDS matrix, where j = 0, ..., c1 x ... x 
ci-2 x ci-1 - 1 while the matrix output bytes are directed j-th positions of the big output 
boxes (see Fig. 5). Such a constructions ensures the only small conjugate boxes are k-th 
boxes within big input and output box (k = [j/(c1 x ... x ci-2)], k = 0, ..., ci-1 - 1). This 
simple example shows the systematic selection of permutations SMLPerm might not be 
the best one from the diffusion point of view. We show a suitable permutation selection 
provides faster diffusion and allows avoiding intentional structural regularities. Two 
different permutation selections are pictured on two following figures. The figures 
illustrate small input and small output boxes conjugate to the first small input box in the 
first big input box. 
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Fig.5: Systematic permutation selection 
 
Permutations SMLPermi,j are selected systematically on Fig. 5. The first bytes of the 
first small boxes are transferred via MDS matrices to the first bytes of the first small 
output boxes within the big boxes. The second, third and fourth bytes within small 
boxes are handled similarly. The set of the first small input boxes (within all big input 
boxes) influences only the set of the first small output boxes (within all big output 
boxes) in this diffusion layer. The sizes of conjugate input boxes set and conjugate 
output boxes set are minimal – only 4 bytes. However, if the permutation is selected 
carefully, the size of conjugate input boxes set is 13 (maximal possible) and 16 for the 
conjugate output boxes set (maximal possible), see the example on Fig. 6.  
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Fig.6: Random permutation selection, conjugate boxes 
 
To conclude, Small-Middle-Large type permutations SMLPermi,j on the set {0, ..., c - 
1} can be selected randomly; however, the maximality of the corresponding diffusion 
layer has to be ensured. The random selection or sufficiently de-regularized 
permutations seems to be the right choice, if enough conjugates boxes are ensured. 

3.8. Constants RConstBi,j 
The purpose of c-byte constants RConstBi,j, i = 0, ..., ρ - 1, j = 0, ..., r  - 1 is to 
differentiate the individual transformations T1. The constants can be incorporated in the 
S-boxes definition, as they only translate these by another constant (see the proof later 
on). In case only one single S-box is used in the function Π (useful in certain HW 
implementations), the round constants define up to 256 of its translations. In such case, 
the ideal choice are random c-byte constants RConstBi,j, i = 0, ..., ρ - 1, j = 0, ..., r  - 1. 
However, if all S-boxes are selected randomly, the constants can be selected as all 
zeroes. 
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4. Network Φ construction 
4.1. S-boxes SubsFi,j,t 

DN functions family requests the S-boxes used in the function Φ to be different from 
the ones used in the function Π. Ideally, their difference is random. This is a 
countermeasure against the algebraic attacks aiming to have different S-boxes in the 
equations characterizing the functions Φ and Π. Algebraic properties (as the ones of 
AES’s S-box) should not be present in any of S-boxes employed. Possible 
oversimplified expressions for the relations in the functions Φ and Π are prevented by 
this countermeasure. It is not strictly forbidden to use a single S-box in the function Φ, 
however, one ideally chooses randomly generated S-boxes with satisfying resistance 
against linear and differential cryptanalysis. Let’s denote pΦ (qΦ) as the maximum value 
DPS (LPS) over all S-boxes SubsFi,j,t (i = 1, ..., ρ - 1, t = 0, ..., c - 1, j = 0, ..., r  - 1) used 
in the function Φ. Network Φ resistance against DC and LC and the number of the big 
round depend on the values pΦ and qΦ. Smaller these values are, less big rounds ρ DN 
may have (more details later on). Random or pseudo-random S-boxes with sufficient 
resistance against linear and differential cryptanalysis are the ideal choice.  

4.2. Φ as system of block ciphers Ft 
Variable elements in the function Φ are S-boxes SubsFi,j,t (i = 1, ..., ρ - 1, j = 0, ..., r  - 
1, t = 0, ..., c - 1), matrices MDSi,t (i = 1, ..., ρ - 1, t = 0, ..., c - 1) and the constants 
RConstFi,t (i = 1, ..., ρ - 1, t = 0, ..., c - 1). The rationale of these elements is to 
differentiate the column transformations Ft (t = 0, ..., c - 1) as much as possible (ideally 
randomly) and to make these as resistant to linear and differential cryptanalysis as 
possible. A random selection of these elements would mean huge memory 
requirements, however. Thus, the minimal requirement is for all transformations Ft (t = 
0, ..., c - 1) to be pair wise different and resistant against linear and differential 
cryptanalysis. 

4.3. Transformation Ft resistance against DC and 
LC  

Each one of the column transformation Ft, t = 0, ..., c - 1, is a product block cipher with 
r-byte block length. Alternatively, it can be described as the product of ρ/2 SDS 
networks joined by the diffusion layers, see Fig. 7. 
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Fig. 7: Column transformation pictured as a product cipher and its SDS network round 
  
As an SDS network can be seen as one (big) round of the block cipher Ft, its maximum 
differential probability DPSDS and maximum linear probability LPSDS can be estimated 
using the Theorem 1 and Theorem 2 (see Appendix A). 
 
Theorem 5. Block cipher Ft, t = 0, ..., c - 1, resistance against DC and LC.  
Joining of two consecutive rounds of block cipher Ft = fρ-1,t • ... • f2,t • f1,t creates an 
SDS network with 
DPSDS ≤ (pΦ)r,  
LPSDS ≤ (qΦ)r. 
Proof. Follows directly from Theorem 1 and Theorem 2 (Appendix A).  
 
The lack of proving methods leaves us with no other option than to use values DPSDS 
and LPSDS to measure Ft resistance against DC and LC. 
 
Corollary 1. The best currently known estimate for Ft resistance against DC. Let 
us note the estimate DPFt ≤ (DPSDS)2 ≤ (pΦ)2r can be used for Ft = SDS • ... • SDS • 
SDS, if at least 4 SDS networks, i.e. 8 substitution layers (8 big rounds) are 
employed (see [NK92]). The value DPFt is probably lower than this (currently best 
known) estimate DPSDS x DPSDS ≤ (pΦ)2r. 
 
Corollary 2. The best currently known estimate for Ft resistance against LC. The 
only usable fact the estimate Ft resistance against LC is its “one round” estimate LPSDS 
≤ (qΦ)r from the product cipher Ft = SDS • ... • SDS • SDS. 
 
Remark to transformations Ft resistance against DC a LC. For all the 
transformations Ft (t = 0, ..., c - 1) it is requested to be as resistant against linear and 
differential cryptanalysis as possible. As the block cipher Ft has constant round key, the 
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classical linear and differential cryptanalysis are not applicable. In fact, the 
countermeasures against the linear and differential cryptanalysis are present in order to 
avoid possible exploitable linear or differential relations between the inputs and outputs 
of the function Ft (or its rounds). The values pΦ and qΦ and the S-boxes selection have 
the greatest influence on these properties. 

4.4. Matrices MDSi,t and diffusion layer Ft 
maximality 

During the construction of DN functions family, it has to be ensured the matrices 
MDSi,t (i = 1, ..., ρ - 1, t = 0, ..., c - 1) in the transformations Ft (t = 0, ..., c - 1) are MDS 
matrices. Moreover, they should ensure not only byte level, but also bit level diffusion. 
The matrices consisting only of elements 0x00 and 0x01 (hexadecimal) do not satisfy 
this requirement. The use of these elements should be very rare. The binary expression 
of the matrix should not be sparse, neither with an obvious pattern. Ideally, matrices 
MDSi,t are pair wise different and generated randomly. This is a countermeasure against 
the algebraic attacks. It is not strictly forbidden for all the matrices to be identical, 
however. 

4.5. Constants RConstFi,t 
The purpose of the constants RConstFi,t (i = 1, ..., ρ - 1, t = 0, ..., c - 1) in the DN 
definition is only formal. As they translate the S-boxes by a constant, they can be 
incorporated in these boxes (see remark below). In case only one single S-box is used 
in the function Π (useful in certain HW implementations), the round constants define 
up to 256 of its translations. In such case, the ideal choice are random constants 
RConstBi,j, i = 0, ..., ρ - 1, j = 0, ..., r  - 1. However, if all S-boxes are selected 
randomly, the constants can be selected as all zeroes, i.e. removed. 
 
Remark. Incorporating the round constants into S-boxes. The round constant 
addition can be trivially transformed to a constant S-box translation. Let’s denote the 
translated S-box as SubsFi,j,t

*(x) = SubsFi,j,t(x) ⊕ ai,j,t. We compute the translation as 
(ai,0,t, ai,1,t, ..., ai,r-1,t)T = MDSi,t

-1 • (RConstFi,0,t, RConstFi,1,t, ..., RConstFi,r-1,t) )T, thus 
MDSi,t • (SubsFi,0,t

*(RKi - 1,0,t), SubsFi,1,t
*(RKi - 1,1,t), ..., SubsFi,r-1,t

*(RKi - 1,r - 1,t) )T ⊕ (0, 
0, ..., 0) T = MDSi,t • (SubsFi,0,t(RKi - 1,0,t) ⊕ ai,0,t, SubsFi,1,t(RKi - 1,1,t) ⊕ ai,1,t, ..., SubsFi,r-

1,t(RKi - 1,r - 1,t) ⊕ ai,r-1,t)T = MDSi,t • (SubsFi,0,t(RKi - 1,0,t), SubsFi,1,t(RKi - 1,1,t), ..., SubsFi,r-

1,t(RKi - 1,r - 1,t) )T ⊕ MDSi,t • (ai,0,t, ai,1,t, ..., ai,r-1,t)T = MDSi,t • (SubsFi,0,t(RKi - 1,0,t), 
SubsFi,1,t(RKi - 1,1,t), ..., SubsFi,r-1,t(RKi - 1,r - 1,t) )T ⊕ (RConstFi,0,t, RConstFi,1,t, ..., 
RConstFi,r-1,t) T = (RKi,0,t, RKi,1,t,..., RKi,r - 1,t)T, q.e.d. 

4.6. Final key permutation KeyPerm 
The final key permutation can be freely selected in the function Φ. From the security 
point of view it is not indispensable, its objective is to make the round key diffusion 
more efficient in the function Π. As the differences in the array RK are propagated 
mainly within the columns, the goal of KeyPerm is to spread the differences in one 
column of round key array into as many boxes in the function Π as possible. KeyPerm 
can be a very simple permutation, for example a permutation that cyclically shifts 
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selected rows in array RK: RK[i][j][k] = RK[i][j][(k + shift_row_j) mod c], see Fig. 8. 
As shown on Fig. 9, a specific definition of KeyPerm depends on the specific structure 
of the function Π. As can be seen on the Fig. 9, the use of KeyPerm has little sense with 
the round keys processing biggest matrices XXXMDS. The matrix itself ensures the 
mixing among the biggest boxes in this case.  
 

r x c

RK[i] RK[i]

 
Fig. 8: An example of KeyPerm (r = 8) 
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Fig.9: A diffusion example using the final key permutation (r = 8, c = 64) 
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5. Double Net as a strengthened encryption 
algorithm 

DN was constructed to be used with a constant input plaintext in mind and to become a 
random oracle in a hash function [Kl06]. We call it special block cipher in such case. 
 
However, if DN is used with variable plaintext, it can be used as an encryption 
algorithm. In this case, its strong key processing makes it favourable over the classical 
block ciphers, since it is protected against future attacks.  
 
The key in DN algorithm used for the encryption will not usually be as long as the key 
in DN algorithm used for hashing. The array r x c can be relatively small and the 
dimension c (plaintext width in bytes) can be relatively small, as well. A typical 128-bit 
block cipher with 256-bit key, i.e. c = 16 and r  = 2 can be used as an example. The 
column transformation principles can be preserved even when several neighbouring 
columns are joined and understood as one “thicker column” (e.g. two columns as on 
Fig. 10). The column transformation is then applied on this “thicker column”.  
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Fig. 10: Column transformation principle applied on several columns. 
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6. Number of rounds in DN, its variations and 
hashing speed 
6.1. Number of rounds: 6 (10) 

The quality of substitution boxes and the dimensions of the round keys used in the 
function Φ determine the relationship between the number of rounds and the estimate 
for the resistance of Φ against DC and LC. Similar estimates for the function ∏ can be 
found easily. To determine the number of rounds in the function Φ, it is important 
whether DN is used for the encryption or hashing. The security margin influences the 
number of rounds, as well. Using current S-boxes we set the number of rounds to 10 for 
the function DN(512, 8182). If higher quality S-boxes are used, the number of rounds 
can be lowered to as few as 6. 

6.2. DN variations 
The basic idea of DN is that the keys a, b,…, z to the sub-ciphers of product cipher Π = 
Bz • ... • Bb • Ba are generated by a strong block cipher Φ. With increasing number of 
rounds, the keys (a, b,…) and (…, y, z) become computationally indistinguishable from 
independent random variables, since they are in plaintext-ciphertext relation for the 
block cipher Φ. Thus, the block ciphers (Ba, Bb, ...) and (...By, Bz) themselves become 
computationally indistinguishable from (independent) random block ciphers. The 
columns of array RK are mixed by the function Π. Usually, a product of only a few big 
rounds B will ensure the resistance of the function Π = Bz • ... • Bb • Ba against DC and 
LC. For this reason, we can skip the middle part in the product Π = Bz • ... • Bb • Ba 
and use only several block cipher B in the beginning and at the end, e.g. three and three 
(Π = Bz • By • Bx • Bc • Bb • Ba). 

6.3. Hashing speed 
The speeds of the hash functions HDN(512, 8192), SHA-256, SHA-512 and Whirlpool 
are compared in this paragraph. These algorithms are all included in the publicly 
available library Crypto++. Its author is Wei Dei, the source code can be found at 
http://www.eskimo.com/~weidai/benchmarks.html. All the algorithms were written in 
C++, compiled (for speed) in Microsoft Visual C++.NET 2003 under Windows XP 
SP1. Their hashing speeds are displayed in the first part of the following table, while 
the second part displays our own implementations of SHA-256, SHA-512 and 
HDN(512, 8192). The tests of our implementations were run on a Pentium 1.6GHz 
notebook under Windows XP SP2 and were compiled with MS Visual C++ 6.0. 
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 library Crypto++ Pentium 4 (2.1 GHz)  
Algorithm MB tested speed in MByte/s   
MD5  1002  216  
SHA-1  256  68   
SHA-256  256  44   
SHA-512  64  11   
Whirlpool  64  12   
    
 Our implementation Pentium, 1.6 GHz  

Algorithm  MB tested speed in MByte/s  

“three + three” 
variation of 
algorithm HDN  
Π = Bz • By • Bx

• Bc • Bb • Ba

SHA-256  64 32  
SHA-512  64 17  
HDN(512, 8192)-1 64 136  
HDN(512, 8192)-2 64 35  
HDN(512, 8192)-3 64 20 20.48 
HDN(512, 8192)-4 64 14 15.70 
HDN(512, 8192)-5 64 11 12.78 
HDN(512, 8192)-6 64 9.09 10.75 
HDN(512, 8192)-7 64 7.67 9.28 
HDN(512, 8192)-8 64 6.65 8.15 
HDN(512, 8192)-9 64 5.84 7.30 
HDN(512, 8192)-10 64 5.22 6.57 
Tab.: Hashing algorithms speed comparison 
 
The values in Table 1 are only illustrative, as the speed heavily depends on the 
compiling optimizations. However, we can say HDN(612,8192)-10 is roughly 3 times 
slower than SHA-512 (and Whirlpool) and HDN(512, 8192)-6 roughly 2 times slower 
than SHA-512. The only reason to choose 10 big rounds in HDN(512, 8192) was to 
ensure the function Φ resistance against LC and DC. However, only 6 big rounds are 
sufficient to ensure the function Π resistance, thus “three + three” variation can be 
employed, i.e. Π = Bz • By • Bx • Bc • Bb • Ba. The speed measurement show 
HDN(512, 8192) is not just a theoretical concept, but a practically employable function 
with speed only 2-3 times lower than SHA-512 and Whirlpool. 
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7. Conclusion 
The special block cipher DN family and SNMAC-type [Kl06] hash function HDN 
family were presented in this paper. It turns out there are not just theoretical concepts, 
but practically employable functions only 2-3 times slower than SHA-512 and 
Whirlpool. 
 An attacker of a hash function has the possibility to manipulate freely with all of 
its inputs. However, the construction of the classical block cipher assumes there is a 
secret element unknown the attacker (the encryption key). As a result the special block 
cipher construction expects the attacker to know the key or even to freely manipulate 
with it. 

The basic idea behind the special block cipher is simple – contrary to classical 
block cipher, the same attention is paid to plaintext and key processing. One SP 
network ensures key mixing, while the second one mixes the plaintext with the key.  

Simultaneously, we present new vision of classical block cipher construction – 
it should be done similarly to the hash function construction. For a long time, it was 
expected the attacker has no knowledge about the encryption key, nor can manipulate 
with it. With extensively growing attacker’s possibilities thanks to modern 
technologies, this assumption turns out to be little corresponding with the real-life 
scenarios. Some attacks are known already – side-channel attacks, related key attacks, 
rectangular attack, etc. (e.g. see [Bi93], [Bi03], [Ki04], [Ho05], [Ki05], [Bi05], and 
[Bi06]), other attacks will emerge in the decades to come. Their common traits are the 
various attempts to exploit the original assumption on the attacker’s limited power over 
the secret key or its knowledge. This is the reason why the hash functions of new 
generation should be resistant against key originating attacks. The question is if the 
special block ciphers are the correct solution to this problem. One way or another, the 
strengthening of the keys processing functions in modern block cipher should be 
carefully considered. 
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9. Appendix A: SP networks theory 
In the beginning of this chapter, we present the results in SP networks theory that is 
used in functions Φ and Π construction. We introduce the design rules of building 
blocks (parameters) in functions Φ and Π, afterwards. The most of this chapter employs 
definitions and theorems from [Ho00]. 

9.1. DC, LC and SPN 
Differential cryptanalysis DC ([BS91a], [BS91b], [Bi94]) and linear cryptanalysis LC 
([Ma93], [Ma94]) are the most known attacks on block ciphers. 
 
Differential cryptanalysis of a block cipher with several rounds investigates differential 
characteristics of individual rounds, i.e. the probabilities specific differences on the 
input of a round are transferred to specific differences on the round output. It turns out 
it is not practical to examine fixed input/output differences in a block cipher round. So-
called differential [LM91] is a better resistance indicator. The differential is the 
probability a specific difference on the input of the (full) block cipher corresponds to a 
specific difference on the output of the (full) cipher, ignoring the inner-differences in 
the individual rounds. 
 
Similarly, the linear characteristic was replaced by the lineal hull [Ny94] in case of LC. 
Clearly, the computation of the differential and the linear hull for several rounds of a 
block cipher becomes a very hard problem. 
 

 
Fig. A.1: One round of SPN network 

 

Round key addition 

S1 S2 S3 .. Sn 

Diffusion layer 

Substitution layer 

 
K. Nyberg and L.R. Knudsen showed in [NK92] the r-round scheme differential 
probability is bounded by the value 2p2, if the maximal probability of the round 
function differential is p and r  ≥ 4. It is only p2, if the round function is a 1-to-1 
mapping. As the diffusion layer in substitution-permutation networks causes the 
avalanche effect (with respect to differences and linear approximations), branch number 
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was put to use [Da95]. This number is very important, as fatally weak block ciphers 
with S-boxes resistant against LC and DC might exists, if the value of their branch 
number is low. SPN resistance against DC and LC is proved in [Ho00], under the 
condition the value of branch number is maximal. We only use maximal diffusion 
layer, i.e. maximal branch number, in functions Φ and Π. Our theorems proving the 
resistance of Φ and Π against DC and LC are based on two main theorems in [Ho00]. 
Let us introduce the notation needed, first.  

9.2. Notation 
SPN with mn-bit round function is considered in this paper, with 2n S-boxes (S1, ..., 
S2n). Each S-box is a 1-to-1 mapping on the set {0, 1}m, Si: {0, 1}m → {0, 1}m , i = 1, 
..., 2n. 
 
Definition 1. Linear and differential probability of an S-box 
Differential and linear probabilities of a (bijective) S-box S: {0, 1}m → {0, 1}m are 
defined for ∆x, ∆y, Γx, Γy ∈ {0, 1}m as 
DPS(∆x → ∆y) = #{x ∈ {0, 1}m | S(x) ⊕ S(x ⊕ ∆x) = ∆y } / 2m,  
LPS(Γx → Γy) = [ #{x ∈ {0, 1}m | Γx • x = Γy • S(x) }/2m-1 - 1 ]2, where 
Γx • x is parity of Γx ⊕ x. 
 
Definition 2. Maximal linear and differential probability of an S-box 
Maximal linear and differential probability of an (bijective) S-box S: {0, 1}m → {0, 1}m 
is defined as  
DPS = max DPS(∆x → ∆y), where the maximum is taken over all ∆x ≠ 0, ∆x ∈ {0, 1}m, 
∆y ∈ {0, 1}m, 
LPS = max LPS(Γx → Γy), where the maximum is taken over all Γx, Γy ≠ 0, Γx ∈ {0, 
1}m, Γy ∈ {0, 1}m. 
 
S-box is called strong, if these numbers are small. If they are small for all S-boxes in 
SPN, the network is called strong. For SPN let’s define 
p = max DPS,  
q = max LPS,  
where the maximum is taken over all S-boxes, used in SPN. 
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Fig. A.2: Function SDS 

 

Substitution layer 

S 1 S 2 .. Sn

Diffusion layer 

S n+1 S n+2 .. S 2n

Substitution layer 

 
Function SDS. SDS is a three layers function: substitution (S), diffusion layer (D) and 
substitution (S), see Fig. A.2. Let’s denote the input and the output difference in SDS as 
∆x ∈ {0, 1}nm, ∆x ≠ 0, ∆y ∈ {0, 1}nm, ∆y = y ⊕ y* = D(x) ⊕ D(x*), and the input and 
the output mask in SDS are Γx ∈ {0, 1}nm, Γy ∈ {0, 1}nm, Γy ≠ 0 (a linear relationship 
between Γx and Γy exists, see [RD97] for details). 
 
Minimal number of differentially and linearly active S-boxes. Minimal number of 
differentially and linearly active S-boxes of function SDS is defined as: 
nd(D) = min (Hw(∆x) + Hw(∆y)), where the minimum is taken over all ∆x ≠ 0, 
nl(D) = min (Hw(Γx) + Hw(Γy)), where the minimum is taken over all Γy ≠ 0. 
 
Maximal diffusion layer. A diffusion layer is called maximal if the minimal number of 
differentially (or equivalently linearly) active boxes is equal to n + 1. It is known 
[Ho00] an RS (2n, n, n+1) code can be used to construct a maximal diffusion layer. If 
the generator of this code is a matrix in the form [Inxn Bnxn], then D: GF(2m)n → GF(2m)n 
: x → Bx is maximal diffusion layer [RD97]. 

9.3. Main theorems 
In this paper, we assume the round key exored to the data in each round are distributed 
uniformly and independently. Under this assumption, the round key addition has no 
effect on the number of active S-boxes in the round function. If the diffusion layer is 
maximal, the Theorem 1 provides an upper bound on the differential of function SDS 
(seen as a whole). 
 
Theorem 1. Upper bound on differential of function SDS [Ho00]. Let the round 
keys exored to input data in each round be distributed uniformly and independently. If 
the diffusion layer D is maximal (i.e. nd = n + 1), then the probability of each 
differential of function SDS is bounded by pn. 
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Corollary. By Theorem 1 DPSDS(∆x → ∆y) ≤ pn for ∆x ∈ {0, 1}nm, ∆x ≠ 0, ∆y ∈ {0, 
1}nm. It follows 
DPSDS = max DPSDS(∆x → ∆y) ≤ pn, 
where the maximum is taken over all ∆x ≠ 0, ∆x ∈ {0, 1}nm, ∆y ∈ {0, 1}nm. 
 
A similar bound is valid for the linear hull of function SDS. 
 
Theorem 2. Upper bound of linear hull of function SDS [Ho00]. Let the diffusion 
layer D be maximal (i.e.. nl(D) = n + 1 or equivalently nd(D) = n + 1), then the 
probability of each linear hull of function SDS is bounded by qn. 
 
Corollary 1. By Theorem 2 LPSDS(Γx → Γy) ≤ qn for each Γx ∈ {0, 1}nm, Γy ≠ 0, Γy ∈ 
{0, 1}nm. It follows 
LPSDS = max LPSDS(Γx → Γy) ≤ qn, 
where the maximum is taken over all Γx ∈ {0, 1}nm, Γy ≠ 0, Γy ∈ {0, 1}nm.  
 
We will keep investigating the differentials only; similar propositions hold for the 
linear hulls, however, due to the similarities between Theorems 1 and 2. Theorems 1 
and 2 are fundamental, as they provide the bounds of the differential and the linear hull. 
Until now, such bounds were hard to achieve with a classical block cipher. The product 
of round characteristics was used as their substitute, in this case.  
 
Corollary 2. Compared to S-box, an SDS network can be seen as a bigger S-box, a so-
called “XS”-box. As box XS is constructed as an SDS network consisting of small 
boxes S, by Theorem 1 (2), its maximal differential (linear hull) can be estimated by the 
maximal differentials (linear hulls) of these small boxes. Bigger XXS-boxes can be 
constructed from XS-boxes, etc. We will use this principle when constructing and 
proving the properties of networks Φ and Π. 

10. Appendix B: Definitions of variable 
elements in DN(512,8192) 

We present the specific selection of the parameters of function DN(512, 8192) with ρ 
big rounds ρ = 1, ..., 10, in this chapter. We set r  = 16, c = 64. 
 
As columns process key, its size can be relatively large (8192 bits). When DN is used 
in hash function construction, function HDN(512,8192) is obtained that has 512-bit 
hash code and processes messages by 7680 bit blocks (7680 = 8192 - 512). The 
definition of variable elements in function HDN(512, 8192) are presented in the next 
chapter. 
 
Function DN employs the substitution boxes coming from the Whirlpool algorithm. 
The original version of block cipher W in Whirlpool sent to NESSIE project used a 
(pseudo)randomly generated S-box 8 x 8 with no special algebraic properties. For the 
reasons of a more efficient HW implementation, this box was changed to two smaller 
S-boxes 4 x 4 later. 
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Sources: 
(a) The most recent version of specification – corresponds to selected algorithm 
NESSIE and ISO norm ISO/IEC 10118-3 (changed S-box and changed matrix MDS): 
Paulo S.L.M. Barreto and Vincent Rijmen: The WHIRLPOOL Hashing Function, 
(Revised on May 24, 2003) 
http://planeta.terra.com.br/informatica/paulobarreto/whirlpool.zip
(b) The second most recent specification (changed S-box) from 7.3.2003 
https://www.cosic.esat.kuleuven.be/nessie/updatedPhase2Specs/WHIRLPOOL/Whirlp
ool-tweak2.zip
(c) Original specification from September 2000 (original S-box) 
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/whirlpool.zip

10.1. Function F: original S-box in Whirlpool 
algorithm 

The original S-box kept being generated (pseudo)randomly until it satisfied these 
conditions ( 
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/whirlpool.zip, 
September 3, 2000): 
(a) δ ≤ 8*2-8, 
(b) λ ≤ 16 * 2-6, 
(c) ν = 7, 
(d) no fixed points, 
(e) there is no value appearing more than twice in the set (x ⊕ S(x)). 
The chosen S-box had these properties 
(a) δ = 8*2-8 = 2-5, 
(b) λ = 16 * 2-6 = 2-2, 
(c) ν = 7, 
(d) no fixed points, 
(e) there is no value appearing more than twice in the set (x ⊕ S(x)).  
 
We call it the original S-box in Whirlpool algorithm. We use it in function F, as it has 
less inner structure than the second S-box in Whirlpool. 
 
unsigned char SubsF[256] = { 
0x68, 0xd0, 0xeb, 0x2b, 0x48, 0x9d, 0x6a, 0xe4, 
0xe3, 0xa3, 0x56, 0x81, 0x7d, 0xf1, 0x85, 0x9e, 
0x2c, 0x8e, 0x78, 0xca, 0x17, 0xa9, 0x61, 0xd5, 
0x5d, 0x0b, 0x8c, 0x3c, 0x77, 0x51, 0x22, 0x42, 
0x3f, 0x54, 0x41, 0x80, 0xcc, 0x86, 0xb3, 0x18, 
0x2e, 0x57, 0x06, 0x62, 0xf4, 0x36, 0xd1, 0x6b, 
0x1b, 0x65, 0x75, 0x10, 0xda, 0x49, 0x26, 0xf9, 
0xcb, 0x66, 0xe7, 0xba, 0xae, 0x50, 0x52, 0xab, 
0x05, 0xf0, 0x0d, 0x73, 0x3b, 0x04, 0x20, 0xfe, 
0xdd, 0xf5, 0xb4, 0x5f, 0x0a, 0xb5, 0xc0, 0xa0, 
0x71, 0xa5, 0x2d, 0x60, 0x72, 0x93, 0x39, 0x08, 
0x83, 0x21, 0x5c, 0x87, 0xb1, 0xe0, 0x00, 0xc3, 
0x12, 0x91, 0x8a, 0x02, 0x1c, 0xe6, 0x45, 0xc2, 
0xc4, 0xfd, 0xbf, 0x44, 0xa1, 0x4c, 0x33, 0xc5, 
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0x84, 0x23, 0x7c, 0xb0, 0x25, 0x15, 0x35, 0x69, 
0xff, 0x94, 0x4d, 0x70, 0xa2, 0xaf, 0xcd, 0xd6, 
0x6c, 0xb7, 0xf8, 0x09, 0xf3, 0x67, 0xa4, 0xea, 
0xec, 0xb6, 0xd4, 0xd2, 0x14, 0x1e, 0xe1, 0x24, 
0x38, 0xc6, 0xdb, 0x4b, 0x7a, 0x3a, 0xde, 0x5e, 
0xdf, 0x95, 0xfc, 0xaa, 0xd7, 0xce, 0x07, 0x0f, 
0x3d, 0x58, 0x9a, 0x98, 0x9c, 0xf2, 0xa7, 0x11, 
0x7e, 0x8b, 0x43, 0x03, 0xe2, 0xdc, 0xe5, 0xb2, 
0x4e, 0xc7, 0x6d, 0xe9, 0x27, 0x40, 0xd8, 0x37, 
0x92, 0x8f, 0x01, 0x1d, 0x53, 0x3e, 0x59, 0xc1, 
0x4f, 0x32, 0x16, 0xfa, 0x74, 0xfb, 0x63, 0x9f, 
0x34, 0x1a, 0x2a, 0x5a, 0x8d, 0xc9, 0xcf, 0xf6, 
0x90, 0x28, 0x88, 0x9b, 0x31, 0x0e, 0xbd, 0x4a, 
0xe8, 0x96, 0xa6, 0x0c, 0xc8, 0x79, 0xbc, 0xbe, 
0xef, 0x6e, 0x46, 0x97, 0x5b, 0xed, 0x19, 0xd9, 
0xac, 0x99, 0xa8, 0x29, 0x64, 0x1f, 0xad, 0x55, 
0x13, 0xbb, 0xf7, 0x6f, 0xb9, 0x47, 0x2f, 0xee, 
0xb8, 0x7b, 0x89, 0x30, 0xd3, 0x7f, 0x76, 0x82 
}; 
Fig. B.1: Original S-box in Whirlpool algorithm  
 

10.2. Number of rounds ρ 
For implementation reasons, we choose all S-boxes identical with parameters p = DPS = 
2-5 and q = LPS = 2-2, in the definition of function F. We use the original pseudorandom 
S-box in Whirlpool algorithm that is not generated algebraically. However, it has lower 
resistance against linear cryptanalysis (q) for this reason. To ensure sufficient resistance 
including security margin, we have to set the number of round ρ unreasonably big. 
Instead of sufficient 6 rounds, we set ρ = 10. As soon as there is a publicly generated 
S-box with better properties available, we can use it in function DN with lower number 
of rounds (we recommend ρ = 6). 
 
Five iterated SDS networks connected with MDS type matrices with dimension 16 x 16 
form 10 rounds of F. The diffusion layer inside the SDS network is ensured by MDS 
matrix with dimensions 16 x 16, as well. To see this, it suffices to apply Theorems 1 
and 2 to obtain the bounds for DPSDS and LPSDS, i.e. pSDS ≤ 2-80 and qSDS ≤ 2-32. 
Relatively low bound LPSDS ≤ 2-32 is caused by the linear characteristic of the box 
employed (q = 2-2). There are better choices for S-box in F, e.g. q = 2-6 as in AES or 
with the expected coefficient q = 2-4 for (pseudo) randomly generated S-boxes. 
Completely sufficient bound LPSDS ≤ 2-96 is attainable with AES S-box q = 2-6 and 
relatively good bound LPSDS ≤ 2-64 with coefficient q = 2-4. From the point of view of 
the resistance of F against LC, three SDS consecutive networks are sufficient (i.e. 6 big 
rounds), for both of these cases. As the resistance of F against differential cryptanalysis 
is achieved in similar way, three consecutive SDS networks (i.e.6 big rounds) are 
sufficient, as well.  

10.3. Round constants RConstF 
We showed the round constants cause an affine transformation of each S-box. For the 
reasons of efficient SW and HW implementations, we choose the constants that can be 
generated on-the-fly: RConstF[i][j] = ((CONSTA * (i + 1)) mod 232 ⊕ ((CONSTB * (j + 
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1)) mod 232), where CONSTA = 0xfedc1357, CONSTB = 0x84736251. These constants 
are only four bytes long (first 12 bytes are all zeroes) and pair wise different. 

10.4. Field GF(28)  
The irreducible polynomial used for finite field GF(28) representation is q(x) = x8 + x4 + 
x3 + x1 + x0. The same lookup tables Logtable and Alogtable as in AES are used to 
perform the field multiplication in the source code. 

10.5. 16 x 16 matrix MDS  
A single MDS matrix with dimensions 16 x 16 is used in function F for the reasons of 
efficiency in SW and HW. Its selection was based on [PD05] and [Ro06] and is 
elaborated over the field GF(28) with irreducible polynomial q(x) = x8 + x4 + x3 + x1 + 
x0. The foundation is the matrix G of Vandermond type 16 x 32, G = (gi,j)i = 0...15, j = 0..31, 
where 32 pair wise different elements a0, a1, a2, ..., a31, are selected with a0 = 1.We set 
a1 = 12, a2 = 13, ..., a31 = 42, i.e. aj = (j + 11) for j = 1, ..., 31. We define gi,j = aj

i, where 
i = 0, ...,15, j = 0, ..., 31.  
 

G =  

15151515

2222

4241...13121
......1
...)(...1

424113121
424113121
11......111

i
ja

 
Let us denote the left half of the matrix G as G1 and the right half as G2. By elementary 
transformations, we transform the matrix G = (G1, G2) to the form G = (I , F), where I 
is identity type 16 x 16 matrix and F is a type 16 x 16 matrix. The resulting matrix F is 
a type 16 x 16 MDS matrix. 
 
The elementary transformations done on the rows of the matrix G are these 

• swapping two rows, 
• multiplying or dividing a row with a non-zero element of the field, 
• adding a non-zero multiple of a row to another row. 

 
We use the transposed matrix F as the resulting MDS matrix (hexadecimal). 
 
4A 7B BA CF 84 8D B7 C6 72 9F 24 B2 7A 40 B1 CD, 
70 70 A8 4F 79 8B BB 60 A1 38 99 99 F5 AA FA F3, 
91 09 E8 D7 B2 DC 10 C0 69 CF D2 6F 6F 56 5B 61, 
17 99 94 CF B4 4D 92 62 6E 9A 62 EA 0D 6B 29 EE, 
54 1B A9 49 F4 28 21 65 E4 D3 54 50 C9 CF B1 B2, 
80 4A 39 F2 62 16 72 B6 8C 06 57 5A D0 22 AE 6B, 
2B 34 BF B4 3C 3C 9E E8 0E 9D CB 66 48 B1 91 35, 
11 DF E7 64 B2 64 AE 66 33 9F 47 85 80 7C 61 A1, 
5A 3A CD 6F 58 A3 D3 2C 73 AC 22 A9 EE EC EC 7D, 
0C 2C 83 77 1B 4C AC 79 A9 83 C8 E8 A7 87 D0 AD, 
8D A2 42 DD 5D 4D B7 B7 71 93 93 E6 CE 72 EF 65, 
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E6 A7 61 CA 05 70 B8 D4 11 86 E2 6D 61 93 11 09, 
FA D3 BD D0 E8 11 5B 61 F8 EC 6A 86 D0 36 4A D2, 
08 F5 C5 15 D8 E2 55 EC 30 63 74 7E 2A C2 6C 72, 
F4 6B C4 AB 68 40 09 C0 96 62 C6 86 6E 9F 7E 2B, 
34 F0 19 66 6A 6D 73 08 22 16 11 9B 33 F4 5D E2. 
 

10.6. Final key permutation 
In DN(512, 8192), the final key permutation is a simple cyclical shift within the rows 
of array RK. 
 
row  0 is cyclically shifted to right by  0 positions 
row  1 is cyclically shifted to right by  0 positions 
row  2 is cyclically shifted to right by 16 positions 
row  3 is cyclically shifted to right by 32 positions 
row  4 is cyclically shifted to right by 32 positions 
row  5 is cyclically shifted to right by 32 positions 
row  6 is cyclically shifted to right by 16 positions 
row  7 is cyclically shifted to right by  0 positions 
 
row  8 is cyclically shifted to right by  0 positions 
row  9 is cyclically shifted to right by  0 positions 
row 10 is cyclically shifted to right by 16 positions 
row 11 is cyclically shifted to right by 32 positions 
row 12 is cyclically shifted to right by 32 positions 
row 13 is cyclically shifted to right by 32 positions 
row 14 is cyclically shifted to right by 16 positions 
row 15 is cyclically shifted to right by  0 positions 
 
This pattern is periodically repeated until the row number 159. 

10.7. Function B: S-box generated for 
Whirlpool algorithm 

S-box generated in the updated Whirlpool algorithm consists of two small 4 x 4 S-
boxes due to better implementation in HW. Its description is included in NESSIE report 
from March 7, 2003 (and later ones from May 24, 2003 as well, with the adjusted 
matrix MDS), it makes part of the final Whirlpool algorithm in NESSIE project and is 
employed in ISO norm. This S-box with characteristics p = 2-5 a q = 14*2-6 is employed 
in function B. 
 
unsigned char SubsB[256] = { 
0x18,0x23,0xc6,0xE8,0x87,0xB8,0x01,0x4F, 
0x36,0xA6,0xd2,0xF5,0x79,0x6F,0x91,0x52, 
0x60,0xBc,0x9B,0x8E,0xA3,0x0c,0x7B,0x35, 
0x1d,0xE0,0xd7,0xc2,0x2E,0x4B,0xFE,0x57, 
0x15,0x77,0x37,0xE5,0x9F,0xF0,0x4A,0xdA, 
0x58,0xc9,0x29,0x0A,0xB1,0xA0,0x6B,0x85, 
0xBd,0x5d,0x10,0xF4,0xcB,0x3E,0x05,0x67, 
0xE4,0x27,0x41,0x8B,0xA7,0x7d,0x95,0xd8, 
0xFB,0xEE,0x7c,0x66,0xdd,0x17,0x47,0x9E, 
0xcA,0x2d,0xBF,0x07,0xAd,0x5A,0x83,0x33, 
0x63,0x02,0xAA,0x71,0xc8,0x19,0x49,0xd9, 
0xF2,0xE3,0x5B,0x88,0x9A,0x26,0x32,0xB0, 
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0xE9,0x0F,0xd5,0x80,0xBE,0xcd,0x34,0x48, 
0xFF,0x7A,0x90,0x5F,0x20,0x68,0x1A,0xAE, 
0xB4,0x54,0x93,0x22,0x64,0xF1,0x73,0x12, 
0x40,0x08,0xc3,0xEc,0xdB,0xA1,0x8d,0x3d, 
0x97,0x00,0xcF,0x2B,0x76,0x82,0xd6,0x1B, 
0xB5,0xAF,0x6A,0x50,0x45,0xF3,0x30,0xEF, 
0x3F,0x55,0xA2,0xEA,0x65,0xBA,0x2F,0xc0, 
0xdE,0x1c,0xFd,0x4d,0x92,0x75,0x06,0x8A, 
0xB2,0xE6,0x0E,0x1F,0x62,0xd4,0xA8,0x96, 
0xF9,0xc5,0x25,0x59,0x84,0x72,0x39,0x4c, 
0x5E,0x78,0x38,0x8c,0xd1,0xA5,0xE2,0x61, 
0xB3,0x21,0x9c,0x1E,0x43,0xc7,0xFc,0x04, 
0x51,0x99,0x6d,0x0d,0xFA,0xdF,0x7E,0x24, 
0x3B,0xAB,0xcE,0x11,0x8F,0x4E,0xB7,0xEB, 
0x3c,0x81,0x94,0xF7,0xB9,0x13,0x2c,0xd3, 
0xE7,0x6E,0xc4,0x03,0x56,0x44,0x7F,0xA9, 
0x2A,0xBB,0xc1,0x53,0xdc,0x0B,0x9d,0x6c, 
0x31,0x74,0xF6,0x46,0xAc,0x89,0x14,0xE1, 
0x16,0x3A,0x69,0x09,0x70,0xB6,0xd0,0xEd, 
0xcc,0x42,0x98,0xA4,0x28,0x5c,0xF8,0x86 
}; 
Fig. B.2: S-box generated in the updated Whirlpool algorithm 

10.8. Permutation SMLPerm 
Function DN family uses different partial permutations SMLPerm on the set 0, ..., c - 1, 
for different transformations T1. Only four different permutations on the set 0, ..., 63 
(decimally) are used in DN(512, 8192):  
  
23,14,49,32,41, 8,50,18,46,16,15,57,55,27,43, 2, 
60, 7,22,42,38,26,53,12, 9,62,37,28, 0,36,51,20, 
17,39, 4,56,59, 3,47,31, 6,25,45,48,24,58,11,33, 
29,13,40,61, 1,19,63,34,52,35, 5,30,44,54,10,21, 
 
17,42,57, 6,62, 8,24,12, 3,21,55,51,44,34,39,31, 
36, 2,25,58, 7,47,53,14,49, 9,16,30,33,60,22,40, 
41,37,50,15, 1,45,19,63,35,10,59,52,27,20, 4,28, 
13,56,23,46,48,32,26,18,61,43,29,54, 5,11, 0,38, 
 
10,15, 4, 1, 5, 0,14,11, 2, 8, 7,13, 6, 9, 3,12, 
26,31,20,17,21,16,30,27,18,24,23,29,22,25,19,28, 
42,47,36,33,37,32,46,43,34,40,39,45,38,41,35,44, 
58,63,52,49,53,48,62,59,50,56,55,61,54,57,51,60, 
 
10, 5,12, 2, 7, 9, 0,15, 1,11, 4,14, 8, 3,13, 6,  
26,21,28,18,23,25,16,31,17,27,20,30,24,19,29,22, 
42,37,44,34,39,41,32,47,33,43,36,46,40,35,45,38, 
58,53,60,50,55,57,48,63,49,59,52,62,56,51,61,54. 
 
This block of four permutations is repeated three more time within each big round. The 
big rounds use the same set of SMLPerm. The values of these permutations are selected 
so that the matrices MDS (XMDS, XXMDS, XXXMDS) would provide maximal 
diffusion layer. 
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10.9. 4 x 4 MDS matrices 
For the reasons of simple implementation, a single 4 x 4 MDS matrix was chosen for 
DN, the one from AES algorithm. 
 

 

  
 

M 

 

10.10. Round constant RConstB 
The reasons of efficient SW and HW implementations, we choose the round constants 
that can be generated on the fly in function B and set their first 60 bytes as zeros. The 
last four bytes, seen as 32-bit numbers are generated by the formula RConstB[i][j] = 
(CONSTC*(16*i + j + 1)) mod 232, where CONSTC = 0x24687531. The least 
significant byte of the 32-bit number is 61st byte of the constant, the most significant 
byte is 64th. 
The values of all of the parameters are to be seen in the source code later on. 
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11. Appendix C: Description of variable 
elements in HDN(512, 8192) 

If DN(512, 8192) is used in a hash function following the construction SNMAC [Kl06], 
hash function HDN(512, 8192) is obtained with 512-bit code, processing the blocks of 
7680 bits.  
 
 

HDN(m)
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n 

bits

K-n 
bits K

E
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Fig. C.1: HDN(512, 8192) defined as SNMAC based on special block cipher DN(512, 
8192) 
 
Definition. Hash function HDN(512, 8192) is a SNMAC type hash function based on 
special block cipher DN(512, 8192). It has n-bit hash code (n = 512), K bit key (K = 
8192) and processes K - n bit data blocks (K - n = 7680). It employs compression 
function f and final modification function g, where 
f: {0, 1}K → {0, 1}n : X → EX(Const0), 
g: {0, 1}n → {0, 1}n : X → EX || NULL(Const1), 
and E is DN(512, 8192). 
Const0 and Const1 are different constants and NULL is an array of K - n zero bits. 
 
Message hashing is completed in three steps. 
Step 1. Padding 
Message m being hashed is padded by this (bit) string: a single bit 1, the least possible 
amount of bits 0 and 128 bit long number D (expression the binary length of m), so that 
the final message length could be expressed as L(K – n) bits, for L an integer. The bit 
and byte orientation is the same as in SHA-512 standard, i.e. the last bit of block mL 
contains the least signification bit of number D. The padded message is divided into L 
blocks of K - n bits, m = m1 || ... || mL-1 || mL. The same padding is used in function SHA-
512.  
Step 2. Iteration 
hi = f(hi-1 || mi), i = 1, ..., L,  
where h0 is constant initialization value (IV). 
Step 3. Final modification  
SNMAC(m) = g(hL). 
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Const0, Const1 and h0 (IV) 
The constants Const0, Const1 and h0 (IV) could be selected randomly (but different). 
For the reasons of easy implementation, we select them to be easily generated on the 
fly. Their values (decimally) are: 
 
Const : 0

128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, 
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, 
160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, 
176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, 
 
Const : 1

 0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,  
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62,  
64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94,  
96, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126. 
 
IV: 
 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,  
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,  
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63. 
  
The values of all of the parameters are to be seen in the source code attached. 

12. Appendix D: Original source codes of 
DN(512, 8192) and HDN(512, 8192) 

Note that updates are available on http://cryptography.hyperlink.cz/ . 

12.1. Module dn.h 
 
/*  dn.h */ 
#ifndef __TRANS_H__ 
#define __TRANS_H__ 
 
#include <stdio.h> 
#include <memory.h> 
 
#define MAXRHO 10 //number of big rounds 
#define c 64 // number of columns 
#define r 16 // number of rows 
 
unsigned char mul(unsigned char a, unsigned char b); 
unsigned char Inv(unsigned char a); 
 
void Copy64(unsigned char* in,unsigned char* out); 
 
void Init_MDS4x4_tables(void); 
void Init_MDS16x16_tables(void); 
 
int Check_Matrix(void); 
int Check_Const(void); 
 
void ExpandRK(unsigned char RK[MAXRHO][r][c],int rho,int print); 
void DN(unsigned char RK[MAXRHO][r][c], 
   int rho, 
   unsigned char indata[c], 
   unsigned char outdata[c], 
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   int print); 
#endif 
 

12.2. Module dn_constants.h 
 
/* dn_constants.h */ 
/* Tables for multiplication in GF(2^8), the same as in AES. Irreducible 
polynomial q(x) = x^8 + x^4 + x^3 + x^1 + x^0  
*/ 
 
unsigned char Logtable[256] = { 
  0,   0,  25,   1,  50,   2,  26, 198,  75, 199,  27, 104,  51, 238, 223,   3,  
100,   4, 224,  14,  52, 141, 129, 239,  76, 113,   8, 200, 248, 105,  28, 193,  
125, 194,  29, 181, 249, 185,  39, 106,  77, 228, 166, 114, 154, 201,   9, 120,  
101,  47, 138,   5,  33,  15, 225,  36,  18, 240, 130,  69,  53, 147, 218, 142,  
150, 143, 219, 189,  54, 208, 206, 148,  19,  92, 210, 241,  64,  70, 131,  56,  
102, 221, 253,  48, 191,   6, 139,  98, 179,  37, 226, 152,  34, 136, 145,  16,  
126, 110,  72, 195, 163, 182,  30,  66,  58, 107,  40,  84, 250, 133,  61, 186,  
 43, 121,  10,  21, 155, 159,  94, 202,  78, 212, 172, 229, 243, 115, 167,  87,  
175,  88, 168,  80, 244, 234, 214, 116,  79, 174, 233, 213, 231, 230, 173, 232,  
 44, 215, 117, 122, 235,  22,  11, 245,  89, 203,  95, 176, 156, 169,  81, 160,  
127,  12, 246, 111,  23, 196,  73, 236, 216,  67,  31,  45, 164, 118, 123, 183,  
204, 187,  62,  90, 251,  96, 177, 134,  59,  82, 161, 108, 170,  85,  41, 157,  
151, 178, 135, 144,  97, 190, 220, 252, 188, 149, 207, 205,  55,  63,  91, 209,  
 83,  57, 132,  60,  65, 162, 109,  71,  20,  42, 158,  93,  86, 242, 211, 171,  
 68,  17, 146, 217,  35,  32,  46, 137, 180, 124, 184,  38, 119, 153, 227, 165,  
103,  74, 237, 222, 197,  49, 254,  24,  13,  99, 140, 128, 192, 247, 112,   7  
}; 
 
unsigned char Alogtable[256] = { 
  1,   3,   5,  15,  17,  51,  85, 255,  26,  46, 114, 150, 161, 248,  19,  53,  
 95, 225,  56,  72, 216, 115, 149, 164, 247,   2,   6,  10,  30,  34, 102, 170,  
229,  52,  92, 228,  55,  89, 235,  38, 106, 190, 217, 112, 144, 171, 230,  49,  
 83, 245,   4,  12,  20,  60,  68, 204,  79, 209, 104, 184, 211, 110, 178, 205,  
 76, 212, 103, 169, 224,  59,  77, 215,  98, 166, 241,   8,  24,  40, 120, 136,  
131, 158, 185, 208, 107, 189, 220, 127, 129, 152, 179, 206,  73, 219, 118, 154,  
181, 196,  87, 249,  16,  48,  80, 240,  11,  29,  39, 105, 187, 214,  97, 163,  
254,  25,  43, 125, 135, 146, 173, 236,  47, 113, 147, 174, 233,  32,  96, 160,  
251,  22,  58,  78, 210, 109, 183, 194,  93, 231,  50,  86, 250,  21,  63,  65,  
195,  94, 226,  61,  71, 201,  64, 192,  91, 237,  44, 116, 156, 191, 218, 117,  
159, 186, 213, 100, 172, 239,  42, 126, 130, 157, 188, 223, 122, 142, 137, 128,  
155, 182, 193,  88, 232,  35, 101, 175, 234,  37, 111, 177, 200,  67, 197,  84,  
252,  31,  33,  99, 165, 244,   7,   9,  27,  45, 119, 153, 176, 203,  70, 202,  
 69, 207,  74, 222, 121, 139, 134, 145, 168, 227,  62,  66, 198,  81, 243,  14,  
 18,  54,  90, 238,  41, 123, 141, 140, 143, 138, 133, 148, 167, 242,  13,  23,  
 57,  75, 221, 124, 132, 151, 162, 253,  28,  36, 108, 180, 199,  82, 246,   1  
}; 
 
/* "Generated" S-box, the same as in Whirlpool report, May 23, 2003. It is 
used in the function B 
*/ 
unsigned char SubsB[256] = { 
0x18,0x23,0xc6,0xE8,0x87,0xB8,0x01,0x4F, 
0x36,0xA6,0xd2,0xF5,0x79,0x6F,0x91,0x52, 
0x60,0xBc,0x9B,0x8E,0xA3,0x0c,0x7B,0x35, 
0x1d,0xE0,0xd7,0xc2,0x2E,0x4B,0xFE,0x57, 
0x15,0x77,0x37,0xE5,0x9F,0xF0,0x4A,0xdA, 
0x58,0xc9,0x29,0x0A,0xB1,0xA0,0x6B,0x85, 
0xBd,0x5d,0x10,0xF4,0xcB,0x3E,0x05,0x67, 
0xE4,0x27,0x41,0x8B,0xA7,0x7d,0x95,0xd8, 
0xFB,0xEE,0x7c,0x66,0xdd,0x17,0x47,0x9E, 
0xcA,0x2d,0xBF,0x07,0xAd,0x5A,0x83,0x33, 
0x63,0x02,0xAA,0x71,0xc8,0x19,0x49,0xd9, 
0xF2,0xE3,0x5B,0x88,0x9A,0x26,0x32,0xB0, 
0xE9,0x0F,0xd5,0x80,0xBE,0xcd,0x34,0x48, 
0xFF,0x7A,0x90,0x5F,0x20,0x68,0x1A,0xAE, 
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0xB4,0x54,0x93,0x22,0x64,0xF1,0x73,0x12, 
0x40,0x08,0xc3,0xEc,0xdB,0xA1,0x8d,0x3d, 
0x97,0x00,0xcF,0x2B,0x76,0x82,0xd6,0x1B, 
0xB5,0xAF,0x6A,0x50,0x45,0xF3,0x30,0xEF, 
0x3F,0x55,0xA2,0xEA,0x65,0xBA,0x2F,0xc0, 
0xdE,0x1c,0xFd,0x4d,0x92,0x75,0x06,0x8A, 
0xB2,0xE6,0x0E,0x1F,0x62,0xd4,0xA8,0x96, 
0xF9,0xc5,0x25,0x59,0x84,0x72,0x39,0x4c, 
0x5E,0x78,0x38,0x8c,0xd1,0xA5,0xE2,0x61, 
0xB3,0x21,0x9c,0x1E,0x43,0xc7,0xFc,0x04, 
0x51,0x99,0x6d,0x0d,0xFA,0xdF,0x7E,0x24, 
0x3B,0xAB,0xcE,0x11,0x8F,0x4E,0xB7,0xEB, 
0x3c,0x81,0x94,0xF7,0xB9,0x13,0x2c,0xd3, 
0xE7,0x6E,0xc4,0x03,0x56,0x44,0x7F,0xA9, 
0x2A,0xBB,0xc1,0x53,0xdc,0x0B,0x9d,0x6c, 
0x31,0x74,0xF6,0x46,0xAc,0x89,0x14,0xE1, 
0x16,0x3A,0x69,0x09,0x70,0xB6,0xd0,0xEd, 
0xcc,0x42,0x98,0xA4,0x28,0x5c,0xF8,0x86 
}; 
 
/* "Pseudorandom" S-box, the same as in Whirlpool report, September 3, 2000. 
It is used in the function F.  
*/ 
unsigned char SubsF[256] = { 
0x68, 0xd0, 0xeb, 0x2b, 0x48, 0x9d, 0x6a, 0xe4, 
0xe3, 0xa3, 0x56, 0x81, 0x7d, 0xf1, 0x85, 0x9e, 
0x2c, 0x8e, 0x78, 0xca, 0x17, 0xa9, 0x61, 0xd5, 
0x5d, 0x0b, 0x8c, 0x3c, 0x77, 0x51, 0x22, 0x42, 
0x3f, 0x54, 0x41, 0x80, 0xcc, 0x86, 0xb3, 0x18, 
0x2e, 0x57, 0x06, 0x62, 0xf4, 0x36, 0xd1, 0x6b, 
0x1b, 0x65, 0x75, 0x10, 0xda, 0x49, 0x26, 0xf9, 
0xcb, 0x66, 0xe7, 0xba, 0xae, 0x50, 0x52, 0xab, 
0x05, 0xf0, 0x0d, 0x73, 0x3b, 0x04, 0x20, 0xfe, 
0xdd, 0xf5, 0xb4, 0x5f, 0x0a, 0xb5, 0xc0, 0xa0, 
0x71, 0xa5, 0x2d, 0x60, 0x72, 0x93, 0x39, 0x08, 
0x83, 0x21, 0x5c, 0x87, 0xb1, 0xe0, 0x00, 0xc3, 
0x12, 0x91, 0x8a, 0x02, 0x1c, 0xe6, 0x45, 0xc2, 
0xc4, 0xfd, 0xbf, 0x44, 0xa1, 0x4c, 0x33, 0xc5, 
0x84, 0x23, 0x7c, 0xb0, 0x25, 0x15, 0x35, 0x69, 
0xff, 0x94, 0x4d, 0x70, 0xa2, 0xaf, 0xcd, 0xd6, 
0x6c, 0xb7, 0xf8, 0x09, 0xf3, 0x67, 0xa4, 0xea, 
0xec, 0xb6, 0xd4, 0xd2, 0x14, 0x1e, 0xe1, 0x24, 
0x38, 0xc6, 0xdb, 0x4b, 0x7a, 0x3a, 0xde, 0x5e, 
0xdf, 0x95, 0xfc, 0xaa, 0xd7, 0xce, 0x07, 0x0f, 
0x3d, 0x58, 0x9a, 0x98, 0x9c, 0xf2, 0xa7, 0x11, 
0x7e, 0x8b, 0x43, 0x03, 0xe2, 0xdc, 0xe5, 0xb2, 
0x4e, 0xc7, 0x6d, 0xe9, 0x27, 0x40, 0xd8, 0x37, 
0x92, 0x8f, 0x01, 0x1d, 0x53, 0x3e, 0x59, 0xc1, 
0x4f, 0x32, 0x16, 0xfa, 0x74, 0xfb, 0x63, 0x9f, 
0x34, 0x1a, 0x2a, 0x5a, 0x8d, 0xc9, 0xcf, 0xf6, 
0x90, 0x28, 0x88, 0x9b, 0x31, 0x0e, 0xbd, 0x4a, 
0xe8, 0x96, 0xa6, 0x0c, 0xc8, 0x79, 0xbc, 0xbe, 
0xef, 0x6e, 0x46, 0x97, 0x5b, 0xed, 0x19, 0xd9, 
0xac, 0x99, 0xa8, 0x29, 0x64, 0x1f, 0xad, 0x55, 
0x13, 0xbb, 0xf7, 0x6f, 0xb9, 0x47, 0x2f, 0xee, 
0xb8, 0x7b, 0x89, 0x30, 0xd3, 0x7f, 0x76, 0x82 
}; 
 
// MDS matrix of the type 4x4, used in the function B 
unsigned char MDS4x4[4][4] =  
{ 
0x02, 0x03, 0x01, 0x01,  
0x01, 0x02, 0x03, 0x01,  
0x01, 0x01, 0x02, 0x03,  
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0x03, 0x01, 0x01, 0x02 
}; 
 
// MDS matrix of the type 16x16, used in key expansion 
unsigned char MDS16x16[r][r] =  
{ 
0x4A,0x7B,0xBA,0xCF,0x84,0x8D,0xB7,0xC6,0x72,0x9F,0x24,0xB2,0x7A,0x40,0xB1,0xCD, 
0x70,0x70,0xA8,0x4F,0x79,0x8B,0xBB,0x60,0xA1,0x38,0x99,0x99,0xF5,0xAA,0xFA,0xF3, 
0x91,0x09,0xE8,0xD7,0xB2,0xDC,0x10,0xC0,0x69,0xCF,0xD2,0x6F,0x6F,0x56,0x5B,0x61, 
0x17,0x99,0x94,0xCF,0xB4,0x4D,0x92,0x62,0x6E,0x9A,0x62,0xEA,0x0D,0x6B,0x29,0xEE, 
0x54,0x1B,0xA9,0x49,0xF4,0x28,0x21,0x65,0xE4,0xD3,0x54,0x50,0xC9,0xCF,0xB1,0xB2, 
0x80,0x4A,0x39,0xF2,0x62,0x16,0x72,0xB6,0x8C,0x06,0x57,0x5A,0xD0,0x22,0xAE,0x6B, 
0x2B,0x34,0xBF,0xB4,0x3C,0x3C,0x9E,0xE8,0x0E,0x9D,0xCB,0x66,0x48,0xB1,0x91,0x35, 
0x11,0xDF,0xE7,0x64,0xB2,0x64,0xAE,0x66,0x33,0x9F,0x47,0x85,0x80,0x7C,0x61,0xA1, 
0x5A,0x3A,0xCD,0x6F,0x58,0xA3,0xD3,0x2C,0x73,0xAC,0x22,0xA9,0xEE,0xEC,0xEC,0x7D, 
0x0C,0x2C,0x83,0x77,0x1B,0x4C,0xAC,0x79,0xA9,0x83,0xC8,0xE8,0xA7,0x87,0xD0,0xAD, 
0x8D,0xA2,0x42,0xDD,0x5D,0x4D,0xB7,0xB7,0x71,0x93,0x93,0xE6,0xCE,0x72,0xEF,0x65, 
0xE6,0xA7,0x61,0xCA,0x05,0x70,0xB8,0xD4,0x11,0x86,0xE2,0x6D,0x61,0x93,0x11,0x09, 
0xFA,0xD3,0xBD,0xD0,0xE8,0x11,0x5B,0x61,0xF8,0xEC,0x6A,0x86,0xD0,0x36,0x4A,0xD2, 
0x08,0xF5,0xC5,0x15,0xD8,0xE2,0x55,0xEC,0x30,0x63,0x74,0x7E,0x2A,0xC2,0x6C,0x72, 
0xF4,0x6B,0xC4,0xAB,0x68,0x40,0x09,0xC0,0x96,0x62,0xC6,0x86,0x6E,0x9F,0x7E,0x2B, 
0x34,0xF0,0x19,0x66,0x6A,0x6D,0x73,0x08,0x22,0x16,0x11,0x9B,0x33,0xF4,0x5D,0xE2 
}; 
 
// Permutations 
unsigned char SMLPerm[r][c] =  
{ 
23,14,49,32,41, 8,50,18,46,16,15,57,55,27,43, 2, 
60, 7,22,42,38,26,53,12, 9,62,37,28, 0,36,51,20, 
17,39, 4,56,59, 3,47,31, 6,25,45,48,24,58,11,33, 
29,13,40,61, 1,19,63,34,52,35, 5,30,44,54,10,21, 
 
17,42,57, 6,62, 8,24,12, 3,21,55,51,44,34,39,31, 
36, 2,25,58, 7,47,53,14,49, 9,16,30,33,60,22,40, 
41,37,50,15, 1,45,19,63,35,10,59,52,27,20, 4,28, 
13,56,23,46,48,32,26,18,61,43,29,54, 5,11, 0,38, 
 
10,15, 4, 1, 5, 0,14,11, 2, 8, 7,13, 6, 9, 3,12, 
26,31,20,17,21,16,30,27,18,24,23,29,22,25,19,28, 
42,47,36,33,37,32,46,43,34,40,39,45,38,41,35,44, 
58,63,52,49,53,48,62,59,50,56,55,61,54,57,51,60, 
 
10, 5,12, 2, 7, 9, 0,15, 1,11, 4,14, 8, 3,13, 6,  
26,21,28,18,23,25,16,31,17,27,20,30,24,19,29,22, 
42,37,44,34,39,41,32,47,33,43,36,46,40,35,45,38, 
58,53,60,50,55,57,48,63,49,59,52,62,56,51,61,54, 
 
 
 
23,14,49,32,41, 8,50,18,46,16,15,57,55,27,43, 2, 
60, 7,22,42,38,26,53,12, 9,62,37,28, 0,36,51,20, 
17,39, 4,56,59, 3,47,31, 6,25,45,48,24,58,11,33, 
29,13,40,61, 1,19,63,34,52,35, 5,30,44,54,10,21, 
 
17,42,57, 6,62, 8,24,12, 3,21,55,51,44,34,39,31, 
36, 2,25,58, 7,47,53,14,49, 9,16,30,33,60,22,40, 
41,37,50,15, 1,45,19,63,35,10,59,52,27,20, 4,28, 
13,56,23,46,48,32,26,18,61,43,29,54, 5,11, 0,38, 
 
10,15, 4, 1, 5, 0,14,11, 2, 8, 7,13, 6, 9, 3,12, 
26,31,20,17,21,16,30,27,18,24,23,29,22,25,19,28, 
42,47,36,33,37,32,46,43,34,40,39,45,38,41,35,44, 
58,63,52,49,53,48,62,59,50,56,55,61,54,57,51,60, 
 
10, 5,12, 2, 7, 9, 0,15, 1,11, 4,14, 8, 3,13, 6,  
26,21,28,18,23,25,16,31,17,27,20,30,24,19,29,22, 
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42,37,44,34,39,41,32,47,33,43,36,46,40,35,45,38, 
58,53,60,50,55,57,48,63,49,59,52,62,56,51,61,54, 
 
 
 
23,14,49,32,41, 8,50,18,46,16,15,57,55,27,43, 2, 
60, 7,22,42,38,26,53,12, 9,62,37,28, 0,36,51,20, 
17,39, 4,56,59, 3,47,31, 6,25,45,48,24,58,11,33, 
29,13,40,61, 1,19,63,34,52,35, 5,30,44,54,10,21, 
 
17,42,57, 6,62, 8,24,12, 3,21,55,51,44,34,39,31, 
36, 2,25,58, 7,47,53,14,49, 9,16,30,33,60,22,40, 
41,37,50,15, 1,45,19,63,35,10,59,52,27,20, 4,28, 
13,56,23,46,48,32,26,18,61,43,29,54, 5,11, 0,38, 
 
10,15, 4, 1, 5, 0,14,11, 2, 8, 7,13, 6, 9, 3,12, 
26,31,20,17,21,16,30,27,18,24,23,29,22,25,19,28, 
42,47,36,33,37,32,46,43,34,40,39,45,38,41,35,44, 
58,63,52,49,53,48,62,59,50,56,55,61,54,57,51,60, 
 
10, 5,12, 2, 7, 9, 0,15, 1,11, 4,14, 8, 3,13, 6,  
26,21,28,18,23,25,16,31,17,27,20,30,24,19,29,22, 
42,37,44,34,39,41,32,47,33,43,36,46,40,35,45,38, 
58,53,60,50,55,57,48,63,49,59,52,62,56,51,61,54, 
 
 
 
23,14,49,32,41, 8,50,18,46,16,15,57,55,27,43, 2, 
60, 7,22,42,38,26,53,12, 9,62,37,28, 0,36,51,20, 
17,39, 4,56,59, 3,47,31, 6,25,45,48,24,58,11,33, 
29,13,40,61, 1,19,63,34,52,35, 5,30,44,54,10,21, 
 
17,42,57, 6,62, 8,24,12, 3,21,55,51,44,34,39,31, 
36, 2,25,58, 7,47,53,14,49, 9,16,30,33,60,22,40, 
41,37,50,15, 1,45,19,63,35,10,59,52,27,20, 4,28, 
13,56,23,46,48,32,26,18,61,43,29,54, 5,11, 0,38, 
 
10,15, 4, 1, 5, 0,14,11, 2, 8, 7,13, 6, 9, 3,12, 
26,31,20,17,21,16,30,27,18,24,23,29,22,25,19,28, 
42,47,36,33,37,32,46,43,34,40,39,45,38,41,35,44, 
58,63,52,49,53,48,62,59,50,56,55,61,54,57,51,60, 
 
10, 5,12, 2, 7, 9, 0,15, 1,11, 4,14, 8, 3,13, 6,  
26,21,28,18,23,25,16,31,17,27,20,30,24,19,29,22, 
42,37,44,34,39,41,32,47,33,43,36,46,40,35,45,38, 
58,53,60,50,55,57,48,63,49,59,52,62,56,51,61,54 
}; 
 
//IV 
unsigned char IV_HDN[c] =  
{ 
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31, 
32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, 
48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63 
}; 
 
//CONST0 
unsigned char CONST0[c] =  
{ 
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, 
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, 
160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, 
176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 
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}; 
 
//CONST1 
unsigned char CONST1[c] =  
{ 
 0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,  
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62,  
64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94,  
96, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126 
}; 
 
// Constants in F 
unsigned long RConstF[9][64] = 
{ 
0x7AAF7106, 0xF63AD7F5, 0x738635A4, 0xEF119A13,  
0x689CF8C2, 0xE4685EB1, 0x61FBA360, 0xDD4701DF,  
0x56D2678E, 0xD25DC47D, 0x4E292A2C, 0xCBB4889B,  
0x4707ED4A, 0xC0937339, 0x3C1ED1E8, 0xB9EA3647,  
0x35759436, 0xAEC0FAE5, 0x2A4C5F54, 0xA7DFBD03,  
0x23AB03F2, 0x9F3661A1, 0x1881C610, 0x940D24CF,  
0x11988ABE, 0x8D6BEF6D, 0x06F74DDC, 0x8242D38B,  
0xFFCE307A, 0x7B599629, 0xF724F498, 0x70B05977,  
0xEC03BF26, 0x698F1D95, 0xE51A6244, 0x5EE5C033,  
0xDA7126E2, 0x57FC8B51, 0xD34FE900, 0x4CDB4FFF,  
0xC8A6ADAE, 0x4432321D, 0xC1BD90CC, 0x3D08F6BB,  
0xB6945B6A, 0x3267B9D9, 0xAFF31F88, 0x2B7E7C67,  
0xA4C9C2D6, 0x20552085, 0x9C208574, 0x19B3EB23,  
0x953F4992, 0x0E8AAE41, 0x8A160C30, 0x07E192EF,  
0x836CF75E, 0xFCF8550D, 0x784BBBFC, 0xF5D719AB,  
0x71A27E1A, 0xED2DDCC9, 0x66B922B8, 0xE2048717,  
 
0x79CB44FF, 0xF55EE20C, 0x70E2005D, 0xEC75AFEA,  
0x6BF8CD3B, 0xE70C6B48, 0x629F9699, 0xDE233426,  
0x55B65277, 0xD139F184, 0x4D4D1FD5, 0xC8D0BD62,  
0x4463D8B3, 0xC3F746C0, 0x3F7AE411, 0xBA8E03BE,  
0x3611A1CF, 0xADA4CF1C, 0x29286AAD, 0xA4BB88FA,  
0x20CF360B, 0x9C525458, 0x1BE5F3E9, 0x97691136,  
0x12FCBF47, 0x8E0FDA94, 0x05937825, 0x8126E672,  
0xFCAA0583, 0x783DA3D0, 0xF440C161, 0x73D46C8E,  
0xEF678ADF, 0x6AEB286C, 0xE67E57BD, 0x5D81F5CA,  
0xD915131B, 0x5498BEA8, 0xD02BDCF9, 0x4FBF7A06,  
0xCBC29857, 0x475607E4, 0xC2D9A535, 0x3E6CC342,  
0xB5F06E93, 0x31038C20, 0xAC972A71, 0x281A499E,  
0xA7ADF72F, 0x2331157C, 0x9F44B08D, 0x1AD7DEDA,  
0x965B7C6B, 0x0DEE9BB8, 0x897239C9, 0x0485A716,  
0x8008C2A7, 0xFF9C60F4, 0x7B2F8E05, 0xF6B32C52,  
0x72C64BE3, 0xEE49E930, 0x65DD1741, 0xE160B2EE,  
 
0x78E75854, 0xF472FEA7, 0x71CE1CF6, 0xED59B341,  
0x6AD4D190, 0xE62077E3, 0x63B38A32, 0xDF0F288D,  
0x549A4EDC, 0xD015ED2F, 0x4C61037E, 0xC9FCA1C9,  
0x454FC418, 0xC2DB5A6B, 0x3E56F8BA, 0xBBA21F15,  
0x373DBD64, 0xAC88D3B7, 0x28047606, 0xA5979451,  
0x21E32AA0, 0x9D7E48F3, 0x1AC9EF42, 0x96450D9D,  
0x13D0A3EC, 0x8F23C63F, 0x04BF648E, 0x800AFAD9,  
0xFD861928, 0x7911BF7B, 0xF56CDDCA, 0x72F87025,  
0xEE4B9674, 0x6BC734C7, 0xE7524B16, 0x5CADE961,  
0xD8390FB0, 0x55B4A203, 0xD107C052, 0x4E9366AD,  
0xCAEE84FC, 0x467A1B4F, 0xC3F5B99E, 0x3F40DFE9,  
0xB4DC7238, 0x302F908B, 0xADBB36DA, 0x29365535,  
0xA681EB84, 0x221D09D7, 0x9E68AC26, 0x1BFBC271,  
0x977760C0, 0x0CC28713, 0x885E2562, 0x05A9BBBD,  
0x8124DE0C, 0xFEB07C5F, 0x7A0392AE, 0xF79F30F9,  
0x73EA5748, 0xEF65F59B, 0x64F10BEA, 0xE04CAE45,  
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0x7F032F0D, 0xF39689FE, 0x762A6BAF, 0xEABDC418,  
0x6D30A6C9, 0xE1C400BA, 0x6457FD6B, 0xD8EB5FD4,  
0x537E3985, 0xD7F19A76, 0x4B857427, 0xCE18D690,  
0x42ABB341, 0xC53F2D32, 0x39B28FE3, 0xBC46684C,  
0x30D9CA3D, 0xAB6CA4EE, 0x2FE0015F, 0xA273E308,  
0x26075DF9, 0x9A9A3FAA, 0x1D2D981B, 0x91A17AC4,  
0x1434D4B5, 0x88C7B166, 0x035B13D7, 0x87EE8D80,  
0xFA626E71, 0x7EF5C822, 0xF288AA93, 0x751C077C,  
0xE9AFE12D, 0x6C23439E, 0xE0B63C4F, 0x5B499E38,  
0xDFDD78E9, 0x5250D55A, 0xD6E3B70B, 0x497711F4,  
0xCD0AF3A5, 0x419E6C16, 0xC411CEC7, 0x38A4A8B0,  
0xB3380561, 0x37CBE7D2, 0xAA5F4183, 0x2ED2226C,  
0xA1659CDD, 0x25F97E8E, 0x998CDB7F, 0x1C1FB528,  
0x90931799, 0x0B26F04A, 0x8FBA523B, 0x024DCCE4,  
0x86C0A955, 0xF9540B06, 0x7DE7E5F7, 0xF07B47A0,  
0x740E2011, 0xE88182C2, 0x63157CB3, 0xE7A8D91C,  
 
0x7E3F02E2, 0xF2AAA411, 0x77164640, 0xEB81E9F7,  
0x6C0C8B26, 0xE0F82D55, 0x656BD084, 0xD9D7723B,  
0x5242146A, 0xD6CDB799, 0x4AB959C8, 0xCF24FB7F,  
0x43979EAE, 0xC40300DD, 0x388EA20C, 0xBD7A45A3,  
0x31E5E7D2, 0xAA508901, 0x2EDC2CB0, 0xA34FCEE7,  
0x273B7016, 0x9BA61245, 0x1C11B5F4, 0x909D572B,  
0x1508F95A, 0x89FB9C89, 0x02673E38, 0x86D2A06F,  
0xFB5E439E, 0x7FC9E5CD, 0xF3B4877C, 0x74202A93,  
0xE893CCC2, 0x6D1F6E71, 0xE18A11A0, 0x5A75B3D7,  
0xDEE15506, 0x536CF8B5, 0xD7DF9AE4, 0x484B3C1B,  
0xCC36DE4A, 0x40A241F9, 0xC52DE328, 0x3998855F,  
0xB204288E, 0x36F7CA3D, 0xAB636C6C, 0x2FEE0F83,  
0xA059B132, 0x24C55361, 0x98B0F690, 0x1D2398C7,  
0x91AF3A76, 0x0A1ADDA5, 0x8E867FD4, 0x0371E10B,  
0x87FC84BA, 0xF86826E9, 0x7CDBC818, 0xF1476A4F,  
0x75320DFE, 0xE9BDAF2D, 0x6229515C, 0xE694F4F3,  
 
0x7D5B165B, 0xF1CEB0A8, 0x747252F9, 0xE8E5FD4E,  
0x6F689F9F, 0xE39C39EC, 0x660FC43D, 0xDAB36682,  
0x512600D3, 0xD5A9A320, 0x49DD4D71, 0xCC40EFC6,  
0x40F38A17, 0xC7671464, 0x3BEAB6B5, 0xBE1E511A,  
0x3281F36B, 0xA9349DB8, 0x2DB83809, 0xA02BDA5E,  
0x245F64AF, 0x98C206FC, 0x1F75A14D, 0x93F94392,  
0x166CEDE3, 0x8A9F8830, 0x01032A81, 0x85B6B4D6,  
0xF83A5727, 0x7CADF174, 0xF0D093C5, 0x77443E2A,  
0xEBF7D87B, 0x6E7B7AC8, 0xE2EE0519, 0x5911A76E,  
0xDD8541BF, 0x5008EC0C, 0xD4BB8E5D, 0x4B2F28A2,  
0xCF52CAF3, 0x43C65540, 0xC649F791, 0x3AFC91E6,  
0xB1603C37, 0x3593DE84, 0xA80778D5, 0x2C8A1B3A,  
0xA33DA58B, 0x27A147D8, 0x9BD4E229, 0x1E478C7E,  
0x92CB2ECF, 0x097EC91C, 0x8DE26B6D, 0x0015F5B2,  
0x84989003, 0xFB0C3250, 0x7FBFDCA1, 0xF2237EF6,  
0x76561947, 0xEAD9BB94, 0x614D45E5, 0xE5F0E04A,  
 
0x7C77E530, 0xF0E243C3, 0x755EA192, 0xE9C90E25,  
0x6E446CF4, 0xE2B0CA87, 0x67233756, 0xDB9F95E9,  
0x500AF3B8, 0xD485504B, 0x48F1BE1A, 0xCD6C1CAD,  
0x41DF797C, 0xC64BE70F, 0x3AC645DE, 0xBF32A271,  
0x33AD0000, 0xA8186ED3, 0x2C94CB62, 0xA1072935,  
0x257397C4, 0x99EEF597, 0x1E595226, 0x92D5B0F9,  
0x17401E88, 0x8BB37B5B, 0x002FD9EA, 0x849A47BD,  
0xF916A44C, 0x7D81021F, 0xF1FC60AE, 0x7668CD41,  
0xEADB2B10, 0x6F5789A3, 0xE3C2F672, 0x583D5405,  
0xDCA9B2D4, 0x51241F67, 0xD5977D36, 0x4A03DBC9,  
0xCE7E3998, 0x42EAA62B, 0xC76504FA, 0x3BD0628D,  
0xB04CCF5C, 0x34BF2DEF, 0xA92B8BBE, 0x2DA6E851,  
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0xA21156E0, 0x268DB4B3, 0x9AF81142, 0x1F6B7F15,  
0x93E7DDA4, 0x08523A77, 0x8CCE9806, 0x013906D9,  
0x85B46368, 0xFA20C13B, 0x7E932FCA, 0xF30F8D9D,  
0x777AEA2C, 0xEBF548FF, 0x6061B68E, 0xE4DC1321,  
 
0x7293F8E9, 0xFE065E1A, 0x7BBABC4B, 0xE72D13FC,  
0x60A0712D, 0xEC54D75E, 0x69C72A8F, 0xD57B8830,  
0x5EEEEE61, 0xDA614D92, 0x4615A3C3, 0xC3880174,  
0x4F3B64A5, 0xC8AFFAD6, 0x34225807, 0xB1D6BFA8,  
0x3D491DD9, 0xA6FC730A, 0x2270D6BB, 0xAFE334EC,  
0x2B978A1D, 0x970AE84E, 0x10BD4FFF, 0x9C31AD20,  
0x19A40351, 0x85576682, 0x0ECBC433, 0x8A7E5A64,  
0xF7F2B995, 0x73651FC6, 0xFF187D77, 0x788CD098,  
0xE43F36C9, 0x61B3947A, 0xED26EBAB, 0x56D949DC,  
0xD24DAF0D, 0x5FC002BE, 0xDB7360EF, 0x44E7C610,  
0xC09A2441, 0x4C0EBBF2, 0xC9811923, 0x35347F54,  
0xBEA8D285, 0x3A5B3036, 0xA7CF9667, 0x2342F588,  
0xACF54B39, 0x2869A96A, 0x941C0C9B, 0x118F62CC,  
0x9D03C07D, 0x06B627AE, 0x822A85DF, 0x0FDD1B00,  
0x8B507EB1, 0xF4C4DCE2, 0x70773213, 0xFDEB9044,  
0x799EF7F5, 0xE5115526, 0x6E85AB57, 0xEA380EF8,  
 
0x71CFCC5E, 0xFD5A6AAD, 0x78E688FC, 0xE471274B,  
0x63FC459A, 0xEF08E3E9, 0x6A9B1E38, 0xD627BC87,  
0x5DB2DAD6, 0xD93D7925, 0x45499774, 0xC0D435C3,  
0x4C675012, 0xCBF3CE61, 0x377E6CB0, 0xB28A8B1F,  
0x3E15296E, 0xA5A047BD, 0x212CE20C, 0xACBF005B,  
0x28CBBEAA, 0x9456DCF9, 0x13E17B48, 0x9F6D9997,  
0x1AF837E6, 0x860B5235, 0x0D97F084, 0x89226ED3,  
0xF4AE8D22, 0x70392B71, 0xFC4449C0, 0x7BD0E42F,  
0xE763027E, 0x62EFA0CD, 0xEE7ADF1C, 0x55857D6B,  
0xD1119BBA, 0x5C9C3609, 0xD82F5458, 0x47BBF2A7,  
0xC3C610F6, 0x4F528F45, 0xCADD2D94, 0x36684BE3,  
0xBDF4E632, 0x39070481, 0xA493A2D0, 0x201EC13F,  
0xAFA97F8E, 0x2B359DDD, 0x9740382C, 0x12D3567B,  
0x9E5FF4CA, 0x05EA1319, 0x8176B168, 0x0C812FB7,  
0x880C4A06, 0xF798E855, 0x732B06A4, 0xFEB7A4F3,  
0x7AC2C342, 0xE64D6191, 0x6DD99FE0, 0xE9643A4F 
};  
 
// Constants in B 
unsigned long RConstB[10][16] = 
{ 
0x24687531, 0x48D0EA62, 0x6D395F93, 0x91A1D4C4,  
0xB60A49F5, 0xDA72BF26, 0xFEDB3457, 0x2343A988,  
0x47AC1EB9, 0x6C1493EA, 0x907D091B, 0xB4E57E4C,  
0xD94DF37D, 0xFDB668AE, 0x221EDDDF, 0x46875310,  
 
0x6AEFC841, 0x8F583D72, 0xB3C0B2A3, 0xD82927D4,  
0xFC919D05, 0x20FA1236, 0x45628767, 0x69CAFC98,  
0x8E3371C9, 0xB29BE6FA, 0xD7045C2B, 0xFB6CD15C,  
0x1FD5468D, 0x443DBBBE, 0x68A630EF, 0x8D0EA620,  
 
0xB1771B51, 0xD5DF9082, 0xFA4805B3, 0x1EB07AE4,  
0x4318F015, 0x67816546, 0x8BE9DA77, 0xB0524FA8,  
0xD4BAC4D9, 0xF9233A0A, 0x1D8BAF3B, 0x41F4246C,  
0x665C999D, 0x8AC50ECE, 0xAF2D83FF, 0xD395F930,  
 
0xF7FE6E61, 0x1C66E392, 0x40CF58C3, 0x6537CDF4,  
0x89A04325, 0xAE08B856, 0xD2712D87, 0xF6D9A2B8,  
0x1B4217E9, 0x3FAA8D1A, 0x6413024B, 0x887B777C,  
0xACE3ECAD, 0xD14C61DE, 0xF5B4D70F, 0x1A1D4C40,  
 
0x3E85C171, 0x62EE36A2, 0x8756ABD3, 0xABBF2104,  
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0xD0279635, 0xF4900B66, 0x18F88097, 0x3D60F5C8,  
0x61C96AF9, 0x8631E02A, 0xAA9A555B, 0xCF02CA8C,  
0xF36B3FBD, 0x17D3B4EE, 0x3C3C2A1F, 0x60A49F50,  
 
0x850D1481, 0xA97589B2, 0xCDDDFEE3, 0xF2467414,  
0x16AEE945, 0x3B175E76, 0x5F7FD3A7, 0x83E848D8,  
0xA850BE09, 0xCCB9333A, 0xF121A86B, 0x158A1D9C,  
0x39F292CD, 0x5E5B07FE, 0x82C37D2F, 0xA72BF260,  
 
0xCB946791, 0xEFFCDCC2, 0x146551F3, 0x38CDC724,  
0x5D363C55, 0x819EB186, 0xA60726B7, 0xCA6F9BE8,  
0xEED81119, 0x1340864A, 0x37A8FB7B, 0x5C1170AC,  
0x8079E5DD, 0xA4E25B0E, 0xC94AD03F, 0xEDB34570,  
 
0x121BBAA1, 0x36842FD2, 0x5AECA503, 0x7F551A34,  
0xA3BD8F65, 0xC8260496, 0xEC8E79C7, 0x10F6EEF8,  
0x355F6429, 0x59C7D95A, 0x7E304E8B, 0xA298C3BC,  
0xC70138ED, 0xEB69AE1E, 0x0FD2234F, 0x343A9880,  
 
0x58A30DB1, 0x7D0B82E2, 0xA173F813, 0xC5DC6D44,  
0xEA44E275, 0x0EAD57A6, 0x3315CCD7, 0x577E4208,  
0x7BE6B739, 0xA04F2C6A, 0xC4B7A19B, 0xE92016CC,  
0x0D888BFD, 0x31F1012E, 0x5659765F, 0x7AC1EB90,  
 
0x9F2A60C1, 0xC392D5F2, 0xE7FB4B23, 0x0C63C054,  
0x30CC3585, 0x5534AAB6, 0x799D1FE7, 0x9E059518,  
0xC26E0A49, 0xE6D67F7A, 0x0B3EF4AB, 0x2FA769DC,  
0x540FDF0D, 0x7878543E, 0x9CE0C96F, 0xC1493EA0 
}; 
 
/* Tables N[4][256], T[4][16][256] for multiplications MDS4x4_multiply and 
MDS16x16_multiply are not listed here (due to the space). Instead, they are 
created dynamically by functions Init_MDS4x4_tables and Init_MDS16x16_tables. 
*/  
unsigned long N[4][256], T[4][16][256]; 
 

12.3. Module dn.c 
 
/* dn.c */ 
/* Unoptimized implementation of the transformation DN. */ 
 
#include "dn.h" 
#include "dn_constants.h" 
 
/*============================================================*/ 
void Copy64(unsigned char* in,unsigned char* out) 
{ 
 int i; 
 for(i=0;i<c;i++) out[i] = in[i]; 
} 
/*============================================================*/ 
/* Multiplication in GF(2^8)*/ 
unsigned char mul(unsigned char a, unsigned char b)  
{ 
 if (a && b)  
  return Alogtable[(Logtable[a] + Logtable[b])%255]; 
 else  
  return 0; 
} 
/*============================================================*/ 
/* Inversion in GF(2^8)*/ 
unsigned char Inv(unsigned char a)  
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{ 
 if (a)  
  return Alogtable[255 - Logtable[a]]; 
 else  
  return 0; 
} 
/*============================================================*/ 
/* Definition and print of constants in F and B*/ 
int Check_Const()  
{   
 unsigned char i, j; 
 unsigned long CONSTA = 0xfedc1357, CONSTB = 0x84736251, CONSTC = 
0x24687531; 
 int flag = 0; 
 
 // F 
 for(i = 0; i <  9; i++) for(j = 0; j < 64; j++) 
 if ( RConstF[i][j] != ( (CONSTA * (i+1)) ^ (CONSTB * (j+1)) )) flag = -
1; 
 //  B 
 for(i = 0; i < 10; i++) for(j = 0; j < 16; j++) 
   if (RConstB[i][j] != CONSTC*(16*i+j+1) ) flag = -1; 
 return(flag); 
} 
/*============================================================*/ 
/* Definition of the matrix G 16x32*/ 
int Check_Matrix()  
{   
 unsigned char i, j, k, i1,j1, inv, t, flag,nasobek, a[32]; 

unsigned char 
TF[16][16],F[16][16],G[16][32],G1[16][16],G2[16][16],Temp[16][16]; 

 
 a[0] = 1; // fixed 

// arbitrary different elements, different from a[0], 12..42 
 for(j = 1; j < 32; j++) a[j] = j + 11;  
 
 for(j = 0; j < 32; j++) G[0][j] = 1; //zero power 
 for(j = 0; j < 32; j++)  
  for(i = 1; i < 16; i++) // 1st, 2nd, ...,15th power 
   G[i][j] = mul(G[i-1][j],a[j]); 
 
 for(i = 0; i < 16; i++) for(j = 0; j < 16; j++) 
 { 
  G1[i][j]=G[i][j]; 
  G2[i][j]=G[i][j+16]; 
 } 
 
 //transformation of (G1,G2) to (I, F)  
 for(i = 0; i < 16; i++) 
 { 
  if(G[i][i] == 0) flag = 0;  
   else flag = 1; 
 
  if(flag != 1) 
  { 
   for(i1 = i+1; i1 < 16; i1++)  
   { 
     if( (flag == 0) && (G[i1][i] != 0) )//exch. rows (i,i1) 
    { 
      flag=1; 
      for(j1 = 0; j1 < 32; j1++)  
      {t = G[i1][j1];  

G[i1][j1] = G[i][j1]; G[i][j1] = t; 
                            } 
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    } 
   }  
  } 
  if(flag == 0) return(-1); 
  
  inv = Inv(G[i][i]);  
  for(j = 0; j < 32; j++) G[i][j] = mul(G[i][j],inv); 
  if(G[i][i] != 1) return(-1); 
  for(i1 = 0; i1 < 16; i1++)  
  { 
   nasobek = G[i1][i]; 
   if( (i1 != i) && (nasobek != 0)) 
   { 
    for(j1 = 0; j1 < 32; j1++)  
    G[i1][j1] = G[i1][j1] ^ mul(nasobek,G[i][j1]); 
   } 
  } 
 
 } 
 for(i = 0; i < 16; i++) for(j = 0; j < 16; j++) F[i][j]=G[i][j+16]; 
  
 // check of F 
 // G2 = G1 * F  
 for(i = 0; i < 16; i++) for(j = 0; j < 16; j++) 
 { 
  Temp[i][j]=G2[i][j]; 
  for(k = 0; k < 16; k++) Temp[i][j] ^= mul(G1[i][k],F[k][j]); 
 } 
  
 flag = 0; 
 for(i = 0; i < 16; i++)  
 { 
  for(j = 0; j < 16; j++)  
  { 
   if(Temp[i][j] != 0) flag = 1; 
  } 
 } 
 if (flag == 1) return(-1);  
 
 // We will use transposed matrix F 
 for(i = 0; i < 16; i++) for(j = 0; j < 16; j++) TF[i][j] = F[j][i]; 
 
 //check of MDS16x16 
 for(i = 0; i < 16; i++)  
 { 
  for(j = 0; j < 16; j++)  
  { 
   if(TF[i][j] != MDS16x16[i][j]) flag = 1; 
  } 
 } 
 if (flag == 1) return(-1);  
 return(0); 
 
} 
/*============================================================*/ 
/* Prepares tables for the function MDS4x4_multiply */ 
void Init_MDS4x4_tables(void) 
{ 
 unsigned long j,x; 
 for(j = 0; j < 4; j++) for(x = 0; x < 256; x++) 
  { 
     N[j][x] =    
                      mul(MDS4x4[0][j],SubsB[(unsigned char)(x)]) ^ 
   ( mul(MDS4x4[1][j],SubsB[(unsigned char)(x)]) <<  8) ^ 
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   ( mul(MDS4x4[2][j],SubsB[(unsigned char)(x)]) << 16) ^ 
         ( mul(MDS4x4[3][j],SubsB[(unsigned char)(x)]) << 24); 
  } 
 
} 
 
/*============================================================*/ 
/* Prepares tables for the function MDS16x16_multiply */ 
void Init_MDS16x16_tables(void) 
{ 
 unsigned long i,j,x; 
 //memset(T, 0,sizeof(T)); 
 for(i = 0; i < 4; i++) for(j = 0; j < r; j++)  
 { 
  for(x = 0; x < 256; x++) 
  { 
   T[i][j][x] = mul(MDS16x16[4*i+0][j],SubsF[(unsigned char)(x)]) ^ 
   ( mul(MDS16x16[4*i+1][j],SubsF[(unsigned char)(x)]) <<  8) ^ 
   ( mul(MDS16x16[4*i+2][j],SubsF[(unsigned char)(x)]) << 16) ^ 
   ( mul(MDS16x16[4*i+3][j],SubsF[(unsigned char)(x)]) << 24); 
  } 
 } 
} 
 
/*============================================================*/ 
/* ExpandRK creates the array of round keys RK[1..rho][0..r-1][0..c-1]  
 from input array RK[0][0..r-1][0..c-1].  
*/ 
void ExpandRK(unsigned char RK[MAXRHO][r][c],int rho,int print) 
{ 
 unsigned char i,j,x,m, temp[c]; 
 unsigned long templong; 
 int k; 
 
 //compute RK 
 for(i=1;i<rho;i++) 
 { 
  for(j=0;j<c;j++) 
  { 
 templong = 0; for(m = 0;m < r; m++) templong ^= T[0][m][RK[i-1][m][j]]; 
 RK[i][4*0+0][j] = (unsigned char)( templong       ) & 0xFF; 
 RK[i][4*0+1][j] = (unsigned char)( templong >>   8) & 0xFF; 
 RK[i][4*0+2][j] = (unsigned char)( templong >>  16) & 0xFF; 
 RK[i][4*0+3][j] = (unsigned char)( templong >>  24) & 0xFF; 
 
 templong = 0; for(m = 0;m < r; m++) templong ^= T[1][m][RK[i-1][m][j]]; 
 RK[i][4*1+0][j] = (unsigned char)( templong       ) & 0xFF; 
 RK[i][4*1+1][j] = (unsigned char)( templong >>   8) & 0xFF; 
 RK[i][4*1+2][j] = (unsigned char)( templong >>  16) & 0xFF; 
 RK[i][4*1+3][j] = (unsigned char)( templong >>  24) & 0xFF; 
 
 templong = 0; for(m = 0;m < r; m++) templong ^= T[2][m][RK[i-1][m][j]]; 
 RK[i][4*2+0][j] = (unsigned char)( templong       ) & 0xFF; 
 RK[i][4*2+1][j] = (unsigned char)( templong >>   8) & 0xFF; 
 RK[i][4*2+2][j] = (unsigned char)( templong >>  16) & 0xFF; 
 RK[i][4*2+3][j] = (unsigned char)( templong >>  24) & 0xFF; 
 
 templong = RConstF[i-1][j];  
 for(m = 0;m < r; m++) templong ^= T[3][m][RK[i-1][m][j]]; 
 RK[i][4*3+0][j] = (unsigned char)( templong       ) & 0xFF; 
 RK[i][4*3+1][j] = (unsigned char)( templong >>   8) & 0xFF; 
 RK[i][4*3+2][j] = (unsigned char)( templong >>  16) & 0xFF; 
 RK[i][4*3+3][j] = (unsigned char)( templong >>  24) & 0xFF; 
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  } 
 } 
 
  //Final permutation, unoptimized 
  for(i=0;i<rho;i++) 
  { 
 x=2;  
 for(k=48;  k<c; k++) temp[k-48]  = RK[i][x][k]; 
 for(k=c-1;k>=16;k--) RK[i][x][k] = RK[i][x][k-16]; 
 for(k=15;  k>= 0;k--) RK[i][x][k] = temp[k]; 
 x=3;  
 for(k=0;k<32;k++)  
 {temp[k] = RK[i][x][k];RK[i][x][k]= RK[i][x][k+32]; 

RK[i][x][k+32]= temp[k];} 
 x=4;  
 for(k=0;k<32;k++)  
 {temp[k] = RK[i][x][k];RK[i][x][k]= RK[i][x][k+32]; 

RK[i][x][k+32]= temp[k];} 
 x=5;  
 for(k=0;k<32;k++)  
 {temp[k] = RK[i][x][k];RK[i][x][k]= RK[i][x][k+32]; 

RK[i][x][k+32]= temp[k];} 
 x=6;  
 for(k=48;  k<c; k++) temp[k-48]  = RK[i][x][k]; 
 for(k=c-1;k>=16;k--) RK[i][x][k] = RK[i][x][k-16]; 
 for(k=15;  k>= 0;k--) RK[i][x][k] = temp[k]; 
 
 x=10;  
 for(k=48;  k<c; k++) temp[k-48]  = RK[i][x][k]; 
 for(k=c-1;k>=16;k--) RK[i][x][k] = RK[i][x][k-16]; 
 for(k=15;  k>= 0;k--) RK[i][x][k] = temp[k]; 
 x=11;  
 for(k=0;k<32;k++)  
 {temp[k] = RK[i][x][k];RK[i][x][k]= RK[i][x][k+32];RK[i][x][k+32]= 
temp[k];} 
 x=12;  
 for(k=0;k<32;k++)  
 {temp[k] = RK[i][x][k];RK[i][x][k]= RK[i][x][k+32]; 

RK[i][x][k+32]= temp[k];} 
 x=13;  
 for(k=0;k<32;k++)  
 {temp[k] = RK[i][x][k];RK[i][x][k]= RK[i][x][k+32]; 

RK[i][x][k+32]= temp[k];} 
 x=14;  
 for(k=48;  k<c; k++) temp[k-48]  = RK[i][x][k]; 
 for(k=c-1;k>=16;k--) RK[i][x][k] = RK[i][x][k-16]; 
 for(k=15;  k>= 0;k--) RK[i][x][k] = temp[k]; 
  } 
 
} 
/*============================================================*/ 
 
/* Function DN. 
The function DN consists of rho big rounds (0 .. rho-1). 
Every big round consists of r (=16) small rounds (transformations T1). 
The output from previous round is the input to the next round.  
I-th (i = 0 ... rho-1) big round uses r round keys RK[i][0..r-1][0..c-1]. 
The input : c bytes in the array indata. 
The output: c bytes in the array outdata. 
 */ 
void DN(unsigned char RK[MAXRHO][r][c], 
   int rho, 
   unsigned char indata[c], 
   unsigned char outdata[c], 
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   int print) 
{ 
unsigned char tempdata[64],tempdata2[64]; 
 
int i,j; 
unsigned char k; 
unsigned long temp; 
 
ExpandRK(RK,rho,print); 
 
Copy64(indata,tempdata); 
for(i=0;i<rho;i++) 
{ 
  for(j=0;j<r;j+=2) 
  { 
    for(k=0;k<c;k+=4)  
    { 
 temp  = N[0][tempdata[SMLPerm[j][k+0]]]; 
 temp ^= N[1][tempdata[SMLPerm[j][k+1]]]; 
 temp ^= N[2][tempdata[SMLPerm[j][k+2]]]; 
 temp ^= N[3][tempdata[SMLPerm[j][k+3]]]; 
 if (k==60) temp = temp ^ RConstB[i][j]; 
 tempdata2[k+0] = RK[i][j][k+0] ^ (unsigned char)( temp       ) & 0xFF; 
 tempdata2[k+1] = RK[i][j][k+1] ^ (unsigned char)( temp >>   8) & 0xFF; 
 tempdata2[k+2] = RK[i][j][k+2] ^ (unsigned char)( temp >>  16) & 0xFF; 
 tempdata2[k+3] = RK[i][j][k+3] ^ (unsigned char)( temp >>  24) & 0xFF; 
    } 
 
    for(k=0;k<c;k+=4)  
    { 
 temp  = N[0][tempdata2[SMLPerm[j+1][k+0]]]; 
 temp ^= N[1][tempdata2[SMLPerm[j+1][k+1]]]; 
 temp ^= N[2][tempdata2[SMLPerm[j+1][k+2]]]; 
 temp ^= N[3][tempdata2[SMLPerm[j+1][k+3]]]; 
 if (k==60) temp = temp ^ RConstB[i][j+1]; 
 tempdata[k+0] = RK[i][j+1][k+0] ^ (unsigned char)( temp       ) & 0xFF; 
 tempdata[k+1] = RK[i][j+1][k+1] ^ (unsigned char)( temp >>   8) & 0xFF; 
 tempdata[k+2] = RK[i][j+1][k+2] ^ (unsigned char)( temp >>  16) & 0xFF; 
 tempdata[k+3] = RK[i][j+1][k+3] ^ (unsigned char)( temp >>  24) & 0xFF; 
    } 
  }  
} 
Copy64(tempdata,outdata); 
} 
 

12.4. Module hdn.h 
 
/*  hdn.h */ 
#ifndef __HDN_H__ 
#define __HDN_H__ 1 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
#include "dn.h" 
 
extern unsigned char SMLPerm[r][c];  
extern unsigned char IV_HDN[c];  
extern unsigned char CONST0[c];  
extern unsigned char CONST1[c];  
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typedef struct  
{ 
 // rk is input/output array, the output is stored in rk[0][0][0..63] 
    unsigned char rk[MAXRHO][r][c]; 
    unsigned long hbits, lbits; 
    unsigned long mlen; 
 int rho; // expected values 1 ... MAXRHO 
} HDN_CTX; 
 
int Init_HDN(HDN_CTX *ctx,int rho); 
int Update_HDN( HDN_CTX* ctx, unsigned char* vdata, unsigned long data_len ); 
int Final_HDN( HDN_CTX* ctx ); 
int Final_HDN_2( HDN_CTX* ctx ); 
 
#ifdef __cplusplus 
} 
#endif //#ifdef __cplusplus 
#endif //#ifndef __HDN_H__ 
 

12.5. Module hdn.c 
 
/* hdn.c */ 
/*  Unoptimized implementation of HDN. 
In this implementation we suppose that the total length of hashed data is 
less then 2^64. If not, easily change the function Update_HDN and Final_HDN. 
*/ 
 
#include <stdio.h> 
#include <conio.h> 
#include <string.h> 
#include <stdlib.h> 
 
#include "hdn.h" 
#include "dn.h" 
/*============================================================*/ 
// Initializes hash context  
int Init_HDN( HDN_CTX* ctx, int rho ) 
{ 
 int i; 
  
 ctx->rho    = rho; 
 ctx->lbits = 0; 
 ctx->hbits = 0; 
 ctx->mlen  = 0; 
 //initializing value 
 for(i=0;i<c;i++) ctx->rk[0][0][i] = IV_HDN[i]; 
 return 0; 
} 
/*============================================================*/ 
// Processes one complete data block 
static void Process_One_Block_HDN( HDN_CTX* ctx ) 
{ 
 unsigned char outdata[c]; 
 DN(ctx->rk,ctx->rho,CONST0,outdata,0); 
 Copy64(outdata,ctx->rk[0][0]); 
} 
/*============================================================*/ 
/* This function reads data_len bytes from "vdata" and processes complete 
blocks of 960 bytes. If the block is incomplete, data is stored into context 
for later processing. The temporary hash value is stored in the context also. 
In this implementation we suppose that the total length of hashed data is less 
then 2^64.  
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*/ 
int Update_HDN( HDN_CTX* ctx, unsigned char* vdata, unsigned long data_len ) 
{ 
   unsigned char* data = vdata; 
   unsigned long use, low_bits; 
 
   ctx->hbits += data_len >> 29; 
   low_bits = data_len << 3; 
   ctx->lbits += low_bits; 
   if ( ctx->lbits < low_bits ) { ctx->hbits++; } 
 
   use = 960 - ctx->mlen; if (use > data_len) use = data_len; 
   memcpy( ctx->rk[0][1] + ctx->mlen, data, use ); 
   ctx->mlen += use; 
   data_len -= use; 
   data += use; 
 
   while ( ctx->mlen == 960 ) 
   { 
      Process_One_Block_HDN( ctx ); 
      use = 960; if (use > data_len) use = data_len; 
      memcpy( ctx->rk[0][1], data, use ); 
      ctx->mlen = use; 
      data_len -= use; 
      data += use; 
   } 
   return 0; 
} 
/*============================================================*/ 
/* This function processes the last data block. It pads 16 bytes of the data 
length. In some cases the padding creates a new data block. In this 
implementation we suppose that the total length of hashed data is less then 
2^64. If not, easily change the function Update_HDN and Final_HDN. 
*/ 
int Final_HDN( HDN_CTX* ctx ) 
{ 
   if ( ctx->mlen < 960-16 ) 
   { 
 ctx->rk[0][1][ ctx->mlen ] = 0x80; ctx->mlen++; 
      memset( ctx->rk[0][1] + ctx->mlen, 0x00, 960-8 - ctx->mlen ); 
   } 
   else 
   { 
      ctx->rk[0][1][ ctx->mlen ] = 0x80;  
      ctx->mlen++; 
      memset( ctx->rk[0][1] + ctx->mlen, 0x00, 960 - ctx->mlen ); 
      Process_One_Block_HDN( ctx ); 
      memset( ctx->rk[0][1], 0x00, 960-8 ); 
   } 
   ctx->rk[0][r-1][56] = (unsigned char)((ctx->hbits >> 24) & 0xFF); 
   ctx->rk[0][r-1][57] = (unsigned char)((ctx->hbits >> 16) & 0xFF); 
   ctx->rk[0][r-1][58] = (unsigned char)((ctx->hbits >> 8) & 0xFF); 
   ctx->rk[0][r-1][59] = (unsigned char)(ctx->hbits & 0xFF); 
 
   ctx->rk[0][r-1][60] = (unsigned char)((ctx->lbits >> 24) & 0xFF); 
   ctx->rk[0][r-1][61] = (unsigned char)((ctx->lbits >> 16) & 0xFF); 
   ctx->rk[0][r-1][62] = (unsigned char)((ctx->lbits >> 8) & 0xFF); 
   ctx->rk[0][r-1][63] = (unsigned char)(ctx->lbits & 0xFF); 
   Process_One_Block_HDN( ctx ); 
   return 0; 
} 
/*============================================================*/ 
/*  
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This function provides the final processing by the oracle g. The 64 bytes long 
input rk[0][0] is padded by 960 zero bytes. Then DN is called with the 
"plaintext" CONST1. The output is stored in ctx->rk[0][0]. 
*/ 
int Final_HDN_2( HDN_CTX* ctx ) 
{ 
 unsigned char outdata[c]; 
 // padding 
 memset( ctx->rk[0][1], 0x00, 960); 
 DN(ctx->rk,ctx->rho,CONST1,outdata,0); 
 Copy64(outdata,ctx->rk[0][0]); 
 return 0; 
} 
/*============================================================*/ 
 

12.6. Module 
main_test_definition_DN_and_HDN.c 

 
/* main_test_definition_DN_and_HDN.c */ 
 
/*Tests DN and HDN for the number of rounds rho = 1...MAXRHO (10).*/ 
 
#include <windows.h> 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <conio.h> 
#include <basetsd.h> 
#include  <time.h> 
 
#include "hdn.h" 
#include "dn.h" 
 
extern unsigned char SubsB[256]; 
extern unsigned char SubsF[256]; 
extern unsigned char SMLPerm[r][c]; 
extern unsigned char MDS4x4[4][4]; 
extern unsigned char MDS16x16[r][r]; 
extern unsigned char IV_HDN[c]; 
extern unsigned char CONST0[c]; 
extern unsigned char CONST1[c]; 
extern unsigned long RConstB[10][16]; 
extern unsigned long RConstF[9][64]; 
 
unsigned char rk[MAXRHO][r][c]; 
/*=========================================================*/ 
/* Functions StartTimer() and StopTimer() measure the time in between their 
callings */ 
FILETIME cre, ex, krn, usr, usr2; 
void StartTimer() 
{ 
 HANDLE hThread;  
 hThread = GetCurrentThread(); 
 GetThreadTimes( hThread, &cre, &ex, &krn, &usr ); 
} 
double StopTimer() 
{ 
 double delta; 
 __int64 i,i2,res; 
 HANDLE hThread;  
 hThread = GetCurrentThread(); 
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 GetThreadTimes( hThread, &cre, &ex, &krn, &usr2 ); 
 i = usr.dwHighDateTime; 
 i = i <<32; 
 i+= usr.dwLowDateTime; 
 
 i2 = usr2.dwHighDateTime; 
 i2 = i2 <<32; 
 i2+= usr2.dwLowDateTime; 
 
 res = i2 - i; 
 res/=1000; 
 delta = (double)res; 
 delta/=10000; 
 return delta; 
} 
/*============================================================*/ 
/* Test values of DN for the number of rounds 1 .. MAXRHO (10)  
   plaintext: CONST0  
   key (1024 bytes): "abc", 0x80, 1004 zero bytes, 16 bytes of the length 
*/ 
 
unsigned char DN_abc_CONST0[MAXRHO][c] =  
{ 
0x8F,0xB3,0xE2,0x25, 0xC5,0x62,0x3E,0xD9, 0xAC,0x62,0x0F,0x5E, 0x03,0x41,0x82,0x20,  
0xBB,0xC1,0x63,0xB1, 0x70,0x06,0x44,0xDA, 0x5A,0x87,0x38,0x64, 0x81,0x59,0xD9,0x8A,  
0x88,0xCC,0x73,0x0E, 0x6B,0x5C,0xCE,0x44, 0x63,0x53,0xED,0x1B, 0x35,0xC0,0x0C,0x6D,  
0xFE,0x51,0xE1,0x15, 0x75,0xD4,0xA7,0x3B, 0x05,0xF3,0x85,0xF0, 0x02,0x21,0x7C,0x95, 
  
0x8B,0x96,0x50,0x0D, 0xBF,0x8C,0xD9,0x5D, 0x21,0x58,0x7F,0x56, 0x2A,0xA2,0x8A,0x0C,  
0x6D,0xF7,0x69,0x71, 0x25,0x0A,0x40,0x1D, 0x1C,0xF8,0x97,0x3A, 0xDB,0x1F,0x93,0x3B,  
0x9F,0x1E,0x9F,0xAD, 0x06,0xC5,0xC8,0x34, 0x63,0xD2,0x9E,0xF3, 0xF1,0xDD,0x9E,0x91,  
0x75,0x7E,0xC3,0x09, 0x79,0x93,0x96,0xD4, 0x45,0x8E,0xB5,0x74, 0x46,0xAC,0x46,0x80, 
  
0x12,0x64,0xDE,0xED, 0xCC,0x85,0x8F,0xC4, 0x7C,0x7E,0xC5,0x4B, 0xCF,0xF9,0x49,0x3D,  
0x10,0x61,0x02,0x30, 0xDA,0xD0,0x76,0x8B, 0x55,0xE8,0x50,0xE7, 0x46,0x82,0xBB,0x15,  
0xA3,0x05,0xF2,0xAB, 0xFF,0x87,0xB3,0x82, 0x02,0x23,0x40,0x31, 0x23,0x07,0x83,0xAD,  
0x57,0xA4,0xB6,0x96, 0x8D,0x20,0x8B,0x63, 0x29,0xD5,0xC0,0x77, 0x56,0x47,0xB8,0x55, 
  
0x03,0xFA,0x91,0xBB, 0x43,0x1F,0xC2,0x48, 0xF6,0xBC,0x36,0x12, 0xCE,0x44,0xB5,0x44,  
0x31,0xC3,0xB5,0x1D, 0x5E,0x70,0x09,0xF8, 0x55,0x2C,0x93,0xF9, 0xC9,0x92,0x46,0xF8,  
0x49,0x5F,0xC2,0x3F, 0x72,0x60,0xB4,0xE5, 0x6B,0x02,0x8D,0x49, 0x9F,0x7E,0xDA,0x85,  
0xFC,0xBC,0x4F,0x15, 0x48,0xCD,0x67,0x60, 0x29,0x05,0xF3,0x14, 0x48,0xFA,0x51,0xC1, 
  
0x6E,0x82,0x49,0xBA, 0x28,0xC0,0x1A,0x7B, 0x73,0x3D,0x66,0xAC, 0x22,0x04,0x4F,0x84,  
0x5C,0xBB,0x12,0x5F, 0x91,0x2F,0xAF,0x6B, 0xCC,0x70,0xDE,0x30, 0xAE,0xD4,0x37,0x36,  
0xBB,0x55,0xBC,0x43, 0x8B,0x29,0xDC,0xAA, 0x45,0x11,0xCC,0xA1, 0xA1,0x00,0xC8,0xBD,  
0x79,0x74,0x52,0x5C, 0xE4,0xD8,0xFF,0x4F, 0x51,0xE2,0x7A,0x70, 0xFE,0x1B,0xC4,0x5C, 
  
0xD5,0x82,0xEF,0xC3, 0x90,0x1F,0x6F,0xAA, 0xC2,0x2D,0x84,0x06, 0x13,0x5A,0xC8,0x17,  
0xE1,0xFB,0xB4,0x46, 0x04,0x78,0xA0,0xEF, 0xA0,0xDD,0xBE,0xEF, 0x3B,0x95,0x51,0x14,  
0x9C,0x86,0x6E,0x85, 0x1C,0xCD,0x12,0xEA, 0xAB,0x24,0x93,0x67, 0x78,0x9A,0x34,0x6F,  
0xAE,0x5B,0x25,0xD9, 0xC7,0x56,0xA4,0xE4, 0x46,0x7A,0x0D,0x00, 0x85,0x7B,0x6F,0xC9, 
  
0xE9,0x31,0xCF,0xC2, 0xA2,0xF5,0x1F,0xE6, 0x36,0x63,0x11,0x6B, 0xBD,0xE5,0x57,0xAB,  
0x76,0x7C,0x97,0xBF, 0xEC,0x73,0x78,0xF3, 0x3A,0x92,0xA7,0x62, 0xA4,0xCE,0x2A,0x61,  
0x38,0x3F,0x28,0x1F, 0x17,0x1C,0x2B,0xD6, 0x9C,0x49,0x7F,0x20, 0x17,0x33,0xCE,0x4A,  
0x4B,0x54,0x17,0x26, 0x54,0x9D,0xB1,0xCA, 0x58,0x66,0x38,0x88, 0x82,0x0A,0xC2,0xEA, 
  
0xC7,0x82,0x98,0x97, 0xEC,0x28,0xC9,0x25, 0xE1,0xCB,0x62,0x42, 0x0E,0x36,0xAE,0x10,  
0xAC,0x2B,0xF3,0x88, 0x77,0xA7,0x73,0x1D, 0x7A,0x37,0x94,0xC8, 0x26,0x18,0x2D,0x9D,  
0xB4,0xBF,0x4A,0xE5, 0x02,0xC6,0x56,0x8E, 0x3A,0xE2,0x9A,0x44, 0xC6,0xA6,0x16,0x34,  
0x17,0x77,0x7D,0x7A, 0xDE,0xE0,0xA2,0xBA, 0xC5,0xF7,0xE2,0xB2, 0x31,0x81,0x20,0xFB, 
  
0x48,0x23,0x84,0xB2, 0x41,0xDC,0x1C,0x6B, 0xC5,0xAE,0x55,0x8D, 0x48,0xC1,0x29,0xFD,  
0x89,0x6F,0x47,0xE6, 0x8A,0x88,0x83,0x96, 0x63,0x33,0xF1,0x71, 0xD7,0xEF,0x85,0xA0,  
0xC4,0x25,0x81,0x3A, 0xEA,0xC8,0x80,0x23, 0x6E,0x17,0xA2,0x0C, 0x60,0xFE,0xF0,0xD6,  
0x90,0xCA,0x3A,0x42, 0x38,0x04,0xFF,0xFA, 0xDE,0x05,0x28,0xAD, 0x83,0x8C,0xBA,0x3F, 
  
0x69,0x9E,0xDA,0xC8, 0x3A,0x7D,0x6D,0x93, 0xBC,0x22,0xE3,0x42, 0xB9,0x57,0xC4,0x43,  
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0x3F,0x74,0x8E,0xD1, 0x67,0xC8,0x27,0x4B, 0x5F,0x38,0x60,0x13, 0x79,0x64,0x33,0xEB,  
0xF9,0x26,0x65,0x5A, 0x04,0x1E,0x3F,0x50, 0xEB,0xB2,0x3C,0x7F, 0x0E,0x51,0x1D,0x7C,  
0x74,0x5A,0x99,0x98, 0x92,0xED,0x75,0xB1, 0xC1,0x7E,0x87,0xB4, 0x66,0x58,0xD5,0x54 
}; 
/*============================================================*/ 
/* Test values of DN for the number of rounds 1 .. MAXRHO (10). 
   plaintext = CONST1  
   key (1024 bytes): defined in the documentation 
*/ 
unsigned char DN_abc_CONST1[MAXRHO][c] =  
{ 
0xD9,0x9F,0xFD,0xFD, 0x2A,0x6E,0x89,0x07, 0xA3,0x05,0x10,0xC9, 0x87,0x29,0x4A,0x86,  
0x99,0x40,0xEF,0x84, 0xF0,0x1B,0x1B,0x4D, 0xE7,0x73,0x63,0x1D, 0x24,0x12,0x78,0x84,  
0xEE,0xCB,0xCB,0xBE, 0x9D,0xC5,0x2D,0x98, 0x1A,0xC9,0xD4,0x36, 0x77,0x14,0x3C,0x85,  
0xD6,0x67,0xF3,0x8F, 0x9A,0xB8,0xD0,0x38, 0x21,0xDE,0x9D,0xB2, 0xEC,0x65,0x1A,0xBE, 
  
0xB1,0xB5,0x3A,0x8C, 0x25,0x07,0xF5,0xAC, 0x4B,0xA0,0x04,0xBC, 0x51,0x88,0xE5,0xA7,  
0x4B,0x03,0x71,0xE4, 0x6B,0xB7,0x77,0xB7, 0x99,0xC5,0x50,0xBC, 0x9B,0xF4,0xC5,0x27,  
0xDA,0xFC,0x33,0x15, 0x84,0xCC,0x80,0x69, 0x15,0x3A,0x52,0x05, 0x17,0xCA,0xAD,0x86,  
0xCB,0x43,0xEC,0xA2, 0x47,0x17,0x23,0x5A, 0x03,0x55,0xC4,0x96, 0xE7,0xD5,0x80,0x0C, 
  
0xD0,0xA0,0x17,0xE5, 0xF1,0x3D,0x84,0xCC, 0x59,0x9D,0xFA,0x39, 0xA0,0x98,0x90,0xD2,  
0x5D,0x3E,0x82,0xBE, 0xE5,0xD4,0xDF,0x24, 0x73,0x27,0xE3,0xE2, 0x37,0x43,0x92,0x85,  
0x45,0xC2,0x55,0xC4, 0x0D,0x92,0xBC,0x72, 0xC7,0xD6,0xC1,0x16, 0xFD,0x13,0xA6,0xE7,  
0x49,0x79,0xFD,0xFC, 0x72,0x74,0x3D,0xF7, 0x7B,0x91,0x16,0x19, 0xC7,0xC9,0x66,0x2D, 
  
0x50,0x4A,0x88,0x2A, 0x17,0xAD,0x8C,0xE1, 0xF2,0x63,0xA3,0xBA, 0x6C,0x36,0xC7,0x6A,  
0xDC,0x4E,0xA5,0x30, 0xAB,0x85,0xDC,0xDD, 0xE0,0x26,0xFB,0xC8, 0x37,0x17,0x1C,0xFD,  
0x6C,0x5A,0x99,0xA3, 0x78,0x95,0xAA,0xF1, 0x26,0xCE,0xB4,0x0F, 0x9C,0x95,0xB2,0xB9,  
0xBB,0x2D,0x6E,0x57, 0x58,0xD3,0x1C,0xD4, 0x7C,0x9E,0xEE,0x9A, 0x83,0xBE,0x07,0xB7, 
  
0xF9,0x3A,0x44,0xFA, 0xCC,0x23,0x6F,0xCA, 0xF3,0xA3,0x90,0xD6, 0x47,0xFC,0x14,0xDB,  
0x94,0xAA,0xC9,0xE5, 0xE3,0x0E,0x51,0xA0, 0xBB,0xF2,0xF1,0x54, 0xB7,0x11,0xD1,0xB8,  
0x32,0xE1,0x5F,0x78, 0x4A,0x62,0x68,0x6E, 0xDA,0xFF,0x3E,0x1B, 0x59,0xAA,0xF5,0x61,  
0x2D,0x64,0x0E,0xFB, 0x48,0x57,0x3A,0x95, 0xC9,0xA2,0xCF,0x69, 0xB9,0xA9,0x58,0x38, 
  
0x33,0xF7,0x01,0xF0, 0xF5,0x27,0x5F,0xEB, 0xF6,0x80,0xD9,0x68, 0x63,0x87,0x88,0xE2,  
0x6B,0x7B,0x29,0xB3, 0x76,0x6A,0x06,0x28, 0x9F,0x28,0x59,0x8A, 0x60,0xD2,0x91,0xAA,  
0xD4,0xE8,0x0B,0x52, 0x5B,0xB3,0xF8,0x3E, 0x57,0x10,0x95,0x51, 0x37,0x26,0x58,0x70,  
0xF8,0x11,0x90,0xD8, 0x7A,0x9B,0xD1,0x46, 0xAD,0x0A,0xEA,0x0A, 0xD2,0xE2,0x2D,0x20, 
  
0x06,0xF8,0x9B,0xD9, 0x78,0xF9,0x88,0x6E, 0x7F,0xDD,0xC5,0x15, 0xA7,0x03,0xC7,0x48,  
0x03,0xC8,0x0D,0x0C, 0x05,0xBA,0x49,0x13, 0x24,0x34,0xE3,0x16, 0xED,0x03,0xB2,0xDC,  
0x5F,0xAC,0x20,0x24, 0x2E,0xC9,0xF8,0x3E, 0x72,0xB3,0x6A,0xFE, 0xA1,0xDF,0xAB,0xC7,  
0xAE,0x90,0xE3,0x6B, 0xA3,0xEA,0x1B,0x14, 0x60,0xCE,0xEE,0xBB, 0xBF,0xF9,0xD1,0x60, 
  
0xE0,0xAD,0xD3,0x17, 0x03,0x8A,0x22,0x16, 0x30,0x77,0xFA,0x38, 0xDC,0x5E,0xAD,0x8C,  
0x8A,0xB1,0xD2,0x76, 0x2E,0x7C,0xAD,0xBA, 0xC8,0x21,0x14,0xC8, 0xF2,0x85,0x7E,0xCF,  
0x88,0xAD,0x58,0x14, 0xF4,0xA3,0x0C,0xA6, 0x83,0x4C,0x8B,0xFB, 0x27,0xB0,0x1A,0xCE,  
0x5E,0x17,0xC0,0xB6, 0xBC,0x57,0x7A,0x18, 0xB9,0xF7,0x50,0xFF, 0x1C,0x43,0x04,0xE4, 
  
0xD7,0x5C,0xA2,0xAA, 0xE3,0x4A,0xEA,0x2F, 0x2A,0xE2,0x35,0xC4, 0xE3,0x39,0x24,0x6B,  
0x84,0x45,0xA3,0xC1, 0xEE,0xD0,0xC2,0x42, 0xE7,0xE2,0xF3,0x7B, 0xBC,0xC9,0x19,0x52,  
0x84,0xCC,0x57,0x7D, 0x8B,0x20,0x73,0x17, 0x6C,0x1B,0x5A,0x89, 0x31,0xDC,0xBB,0xFC,  
0x2D,0xF4,0xF3,0x2D, 0xBF,0xF8,0x1A,0xFB, 0x47,0xE1,0xF0,0x20, 0xD4,0x30,0x0A,0x44, 
  
0xB4,0x04,0xF6,0xF0, 0x41,0x8B,0xC3,0x10, 0x4E,0x82,0x61,0x2F, 0x4C,0x82,0x08,0x02,  
0x38,0xA4,0xE7,0xAA, 0x55,0x14,0x9E,0xB4, 0x15,0x59,0x64,0x99, 0x85,0xFC,0x5F,0x56,  
0x20,0xD2,0xDE,0x41, 0x0F,0x95,0x10,0x19, 0x70,0x5B,0x4A,0x1B, 0x95,0x59,0xBA,0xE2,  
0x86,0x92,0xC4,0x4B, 0x4E,0xAB,0x11,0x61, 0x2E,0x0E,0xEE,0xAE, 0x70,0x70,0xC6,0xFA 
}; 
 
/*============================================================*/ 
/* (mega)test values of DN for the number of rounds 1 .. MAXRHO (10), 
plaintext and key defined in the documentation 
*/ 
unsigned char DN_mega[MAXRHO][c]= 
{ 
0x18,0xD3,0x64,0xE2, 0x0B,0xAB,0x2D,0x78, 0xE9,0x40,0x25,0x30, 0xB5,0xC5,0x39,0x7F,  
0xF6,0x5A,0x12,0xC8, 0x8B,0x1D,0x55,0x1F, 0xC5,0x38,0x21,0x0C, 0x88,0x71,0x49,0x15,  
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0x1F,0x9E,0x5A,0xB5, 0xD0,0xFD,0x85,0x36, 0x41,0x33,0xB9,0x68, 0x8A,0x8C,0x61,0xE8,  
0x9B,0x3B,0xE7,0xF8, 0xA8,0x3F,0xCD,0x8D, 0xB7,0xEA,0x71,0x74, 0x90,0x91,0x51,0xE2, 
  
0x3A,0x72,0x44,0x05, 0xFB,0xF0,0xD2,0x4D, 0x85,0x80,0x91,0xD3, 0x7F,0x99,0xC9,0xB7,  
0x59,0x36,0xA6,0x74, 0x1A,0x20,0x86,0x3D, 0x51,0x30,0x32,0xE4, 0x2D,0xB8,0xF4,0x13,  
0xF6,0x21,0x8F,0x93, 0x0A,0x37,0xC8,0x8F, 0x97,0x38,0x61,0xB9, 0xB6,0xBF,0x3F,0x1D,  
0xE7,0xA7,0xFF,0xAF, 0x97,0x95,0xE7,0x15, 0x59,0x59,0xE3,0xBF, 0xA1,0x7E,0x67,0xEB, 
  
0x85,0x13,0xB2,0x60, 0xD5,0xAE,0x42,0xFF, 0xE0,0x9B,0xE3,0x7E, 0x43,0x1C,0x5B,0xC1,  
0x01,0xC3,0xD8,0x6F, 0x4F,0x99,0x6C,0x2B, 0x23,0xD3,0x99,0xE2, 0x00,0xD6,0x10,0x25,  
0xFD,0x24,0x36,0x64, 0x42,0x00,0x0A,0x50, 0x83,0x5E,0xE4,0x47, 0xC7,0x84,0xF4,0x83,  
0xFF,0xAC,0x36,0x7A, 0x54,0x34,0x6C,0x35, 0x75,0x74,0x02,0x0B, 0x74,0x00,0x09,0x30, 
  
0x40,0xC2,0x9F,0x25, 0xE9,0x3A,0x1B,0x8A, 0xEE,0xE9,0x13,0x6F, 0x6B,0x6A,0x8B,0xF5,  
0x19,0xE5,0xB6,0xB7, 0x83,0x96,0xF1,0xBF, 0x43,0x91,0xA8,0xBE, 0xD1,0x15,0xB3,0xCB,  
0xCE,0x66,0xFA,0xE4, 0x64,0x84,0xD0,0x20, 0x32,0xFC,0xD4,0x51, 0xC6,0xAC,0xCE,0x69,  
0x2E,0x20,0xA4,0x75, 0x49,0x79,0x35,0xE9, 0x47,0xC5,0xEE,0x03, 0x5A,0xC8,0xD9,0xDA, 
  
0x47,0xA3,0xBD,0x8C, 0x8E,0xA2,0x13,0x03, 0x07,0xBA,0xBB,0x5C, 0xD8,0x91,0x8A,0x1F,  
0xD6,0xC6,0x4D,0x23, 0x31,0x19,0xBB,0x07, 0x40,0x95,0xEE,0x36, 0xC2,0xA7,0xD7,0x5F,  
0x20,0x04,0x09,0x20, 0xF5,0x20,0x9C,0x58, 0xC8,0x14,0xE7,0x49, 0xA1,0x23,0x2B,0x57,  
0x49,0xEE,0x0A,0xE6, 0xD8,0xC8,0x54,0xFF, 0xA3,0x26,0x08,0x70, 0x20,0x60,0xAB,0xB9, 
  
0xF0,0xD1,0x41,0xDE, 0xBA,0x3C,0xA3,0x3E, 0xBB,0x0F,0x44,0x5B, 0xA7,0x0B,0x32,0xFB,  
0xB2,0x97,0xB6,0x7B, 0xD4,0x64,0xDD,0xC9, 0x16,0x98,0x21,0x72, 0xB1,0xE4,0xFB,0xEE,  
0xD1,0x21,0xBF,0x18, 0x1B,0x5F,0xF5,0x36, 0xBF,0xFF,0xD6,0x94, 0x09,0x03,0x67,0xEE,  
0x0B,0x67,0x36,0x02, 0xBC,0x45,0x05,0xF3, 0x85,0xA5,0x4A,0x2B, 0x75,0xEB,0x07,0xE9, 
  
0x28,0xF3,0xF8,0xA2, 0xDA,0x05,0xE5,0x19, 0x9D,0x06,0xA6,0x35, 0xB3,0xA5,0xA4,0x50,  
0x16,0x12,0x2E,0xD4, 0x81,0x66,0x0E,0x91, 0x70,0xD4,0x08,0xA0, 0x13,0x30,0xBE,0xFA,  
0xA1,0x70,0xDA,0x7E, 0xE9,0x8D,0xD2,0xC4, 0x61,0x81,0x99,0xD1, 0x2A,0xE5,0x91,0xE6,  
0x24,0xD9,0x3D,0xC3, 0x70,0x61,0x3F,0xF7, 0xB3,0xBB,0x46,0xE4, 0x0B,0x90,0x71,0x53, 
  
0x06,0x19,0x4B,0xFB, 0x19,0x37,0xB9,0x24, 0xF6,0xBB,0x9F,0xD1, 0xFA,0xE9,0xE8,0x66,  
0x6E,0x38,0x4A,0x25, 0xC0,0x19,0xAC,0x78, 0x10,0x2F,0x7A,0x16, 0x5F,0x80,0x8C,0x71,  
0x51,0xBC,0x84,0xEC, 0xD5,0xAD,0x55,0x00, 0x7A,0x22,0x3B,0x09, 0xFD,0x7A,0xE3,0x9D,  
0x32,0x79,0xC4,0xC9, 0xD0,0xCB,0xB2,0xA5, 0xEA,0x53,0x5E,0x25, 0x7E,0x68,0x33,0xAE, 
  
0x00,0x34,0xC0,0x75, 0x17,0xF3,0x75,0xAA, 0x4E,0x66,0x31,0xA9, 0x25,0x29,0xAD,0x10,  
0x7C,0xE8,0x79,0xEB, 0xD9,0x7C,0x1E,0x97, 0xF7,0x72,0x6A,0x11, 0x06,0xC3,0xC2,0x05,  
0x5C,0xAA,0x19,0x64, 0x99,0x72,0x9C,0xD9, 0xD0,0xBE,0xB5,0x1C, 0xD5,0x0B,0xB7,0x11,  
0x18,0x81,0x3A,0xD8, 0xC3,0x52,0x79,0x90, 0x47,0x05,0x20,0x24, 0x13,0x15,0x58,0x99, 
  
0xB7,0x83,0x89,0xA5, 0xB9,0x58,0x68,0x46, 0xCD,0x4B,0x47,0xB2, 0x47,0xD0,0x0F,0xD3,  
0xD6,0x4D,0x04,0x5E, 0xEA,0x14,0x79,0x62, 0x79,0xCC,0xC6,0xFA, 0xE3,0x03,0xDA,0x20,  
0x38,0x47,0xF9,0x40, 0x16,0x6F,0x68,0x57, 0xF4,0xB6,0x3B,0x48, 0x63,0x94,0x64,0x10,  
0xB7,0xE2,0xF5,0xE6, 0xED,0x2B,0x03,0x9F, 0x3A,0x75,0x9C,0x9F, 0xAA,0xCF,0x87,0x15 
}; 
/*============================================================*/ 
/* Test values of HDN("abc") for the number of rounds 1 .. MAXRHO (10) */ 
unsigned char HDN_abc[MAXRHO][c] =  
{ 
0xD9,0x9F,0xFD,0xFD, 0x2A,0x6E,0x89,0x07, 0xA3,0x05,0x10,0xC9, 0x87,0x29,0x4A,0x86,  
0x99,0x40,0xEF,0x84, 0xF0,0x1B,0x1B,0x4D, 0xE7,0x73,0x63,0x1D, 0x24,0x12,0x78,0x84,  
0xEE,0xCB,0xCB,0xBE, 0x9D,0xC5,0x2D,0x98, 0x1A,0xC9,0xD4,0x36, 0x77,0x14,0x3C,0x85,  
0xD6,0x67,0xF3,0x8F, 0x9A,0xB8,0xD0,0x38, 0x21,0xDE,0x9D,0xB2, 0xEC,0x65,0x1A,0xBE, 
  
0xB1,0xB5,0x3A,0x8C, 0x25,0x07,0xF5,0xAC, 0x4B,0xA0,0x04,0xBC, 0x51,0x88,0xE5,0xA7,  
0x4B,0x03,0x71,0xE4, 0x6B,0xB7,0x77,0xB7, 0x99,0xC5,0x50,0xBC, 0x9B,0xF4,0xC5,0x27,  
0xDA,0xFC,0x33,0x15, 0x84,0xCC,0x80,0x69, 0x15,0x3A,0x52,0x05, 0x17,0xCA,0xAD,0x86,  
0xCB,0x43,0xEC,0xA2, 0x47,0x17,0x23,0x5A, 0x03,0x55,0xC4,0x96, 0xE7,0xD5,0x80,0x0C, 
  
0xD0,0xA0,0x17,0xE5, 0xF1,0x3D,0x84,0xCC, 0x59,0x9D,0xFA,0x39, 0xA0,0x98,0x90,0xD2,  
0x5D,0x3E,0x82,0xBE, 0xE5,0xD4,0xDF,0x24, 0x73,0x27,0xE3,0xE2, 0x37,0x43,0x92,0x85,  
0x45,0xC2,0x55,0xC4, 0x0D,0x92,0xBC,0x72, 0xC7,0xD6,0xC1,0x16, 0xFD,0x13,0xA6,0xE7,  
0x49,0x79,0xFD,0xFC, 0x72,0x74,0x3D,0xF7, 0x7B,0x91,0x16,0x19, 0xC7,0xC9,0x66,0x2D, 
  
0x50,0x4A,0x88,0x2A, 0x17,0xAD,0x8C,0xE1, 0xF2,0x63,0xA3,0xBA, 0x6C,0x36,0xC7,0x6A,  
0xDC,0x4E,0xA5,0x30, 0xAB,0x85,0xDC,0xDD, 0xE0,0x26,0xFB,0xC8, 0x37,0x17,0x1C,0xFD,  
0x6C,0x5A,0x99,0xA3, 0x78,0x95,0xAA,0xF1, 0x26,0xCE,0xB4,0x0F, 0x9C,0x95,0xB2,0xB9,  
0xBB,0x2D,0x6E,0x57, 0x58,0xD3,0x1C,0xD4, 0x7C,0x9E,0xEE,0x9A, 0x83,0xBE,0x07,0xB7, 
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0xF9,0x3A,0x44,0xFA, 0xCC,0x23,0x6F,0xCA, 0xF3,0xA3,0x90,0xD6, 0x47,0xFC,0x14,0xDB,  
0x94,0xAA,0xC9,0xE5, 0xE3,0x0E,0x51,0xA0, 0xBB,0xF2,0xF1,0x54, 0xB7,0x11,0xD1,0xB8,  
0x32,0xE1,0x5F,0x78, 0x4A,0x62,0x68,0x6E, 0xDA,0xFF,0x3E,0x1B, 0x59,0xAA,0xF5,0x61,  
0x2D,0x64,0x0E,0xFB, 0x48,0x57,0x3A,0x95, 0xC9,0xA2,0xCF,0x69, 0xB9,0xA9,0x58,0x38, 
  
0x33,0xF7,0x01,0xF0, 0xF5,0x27,0x5F,0xEB, 0xF6,0x80,0xD9,0x68, 0x63,0x87,0x88,0xE2,  
0x6B,0x7B,0x29,0xB3, 0x76,0x6A,0x06,0x28, 0x9F,0x28,0x59,0x8A, 0x60,0xD2,0x91,0xAA,  
0xD4,0xE8,0x0B,0x52, 0x5B,0xB3,0xF8,0x3E, 0x57,0x10,0x95,0x51, 0x37,0x26,0x58,0x70,  
0xF8,0x11,0x90,0xD8, 0x7A,0x9B,0xD1,0x46, 0xAD,0x0A,0xEA,0x0A, 0xD2,0xE2,0x2D,0x20, 
  
0x06,0xF8,0x9B,0xD9, 0x78,0xF9,0x88,0x6E, 0x7F,0xDD,0xC5,0x15, 0xA7,0x03,0xC7,0x48,  
0x03,0xC8,0x0D,0x0C, 0x05,0xBA,0x49,0x13, 0x24,0x34,0xE3,0x16, 0xED,0x03,0xB2,0xDC,  
0x5F,0xAC,0x20,0x24, 0x2E,0xC9,0xF8,0x3E, 0x72,0xB3,0x6A,0xFE, 0xA1,0xDF,0xAB,0xC7,  
0xAE,0x90,0xE3,0x6B, 0xA3,0xEA,0x1B,0x14, 0x60,0xCE,0xEE,0xBB, 0xBF,0xF9,0xD1,0x60, 
  
0xE0,0xAD,0xD3,0x17, 0x03,0x8A,0x22,0x16, 0x30,0x77,0xFA,0x38, 0xDC,0x5E,0xAD,0x8C,  
0x8A,0xB1,0xD2,0x76, 0x2E,0x7C,0xAD,0xBA, 0xC8,0x21,0x14,0xC8, 0xF2,0x85,0x7E,0xCF,  
0x88,0xAD,0x58,0x14, 0xF4,0xA3,0x0C,0xA6, 0x83,0x4C,0x8B,0xFB, 0x27,0xB0,0x1A,0xCE,  
0x5E,0x17,0xC0,0xB6, 0xBC,0x57,0x7A,0x18, 0xB9,0xF7,0x50,0xFF, 0x1C,0x43,0x04,0xE4, 
  
0xD7,0x5C,0xA2,0xAA, 0xE3,0x4A,0xEA,0x2F, 0x2A,0xE2,0x35,0xC4, 0xE3,0x39,0x24,0x6B,  
0x84,0x45,0xA3,0xC1, 0xEE,0xD0,0xC2,0x42, 0xE7,0xE2,0xF3,0x7B, 0xBC,0xC9,0x19,0x52,  
0x84,0xCC,0x57,0x7D, 0x8B,0x20,0x73,0x17, 0x6C,0x1B,0x5A,0x89, 0x31,0xDC,0xBB,0xFC,  
0x2D,0xF4,0xF3,0x2D, 0xBF,0xF8,0x1A,0xFB, 0x47,0xE1,0xF0,0x20, 0xD4,0x30,0x0A,0x44, 
  
0xB4,0x04,0xF6,0xF0, 0x41,0x8B,0xC3,0x10, 0x4E,0x82,0x61,0x2F, 0x4C,0x82,0x08,0x02,  
0x38,0xA4,0xE7,0xAA, 0x55,0x14,0x9E,0xB4, 0x15,0x59,0x64,0x99, 0x85,0xFC,0x5F,0x56,  
0x20,0xD2,0xDE,0x41, 0x0F,0x95,0x10,0x19, 0x70,0x5B,0x4A,0x1B, 0x95,0x59,0xBA,0xE2,  
0x86,0x92,0xC4,0x4B, 0x4E,0xAB,0x11,0x61, 0x2E,0x0E,0xEE,0xAE, 0x70,0x70,0xC6,0xFA 
}; 
/*============================================================*/ 
/* (mega)test values of HDN for the number of rounds 1 .. MAXRHO (10) defined 
in the documentation */  
unsigned char HDN_mega[MAXRHO][c]= 
{ 
0x24,0x3D,0xC5,0x89, 0xD6,0xA7,0x43,0x09, 0x25,0x1E,0x1D,0xF0, 0xBB,0xF3,0x93,0x89,  
0xCD,0xDE,0x0E,0x0A, 0x29,0x07,0xAF,0x35, 0x70,0x96,0x1D,0xAB, 0x5C,0x83,0x3C,0xB5,  
0x1F,0x5F,0x6A,0x66, 0x53,0x55,0xFE,0x15, 0xA4,0x92,0xBF,0x62, 0xC8,0xC3,0xCB,0x24,  
0x37,0x8D,0x5C,0x62, 0x10,0x50,0x91,0xC1, 0xE0,0x31,0xB5,0x85, 0x4D,0x33,0x62,0x0E, 
  
0xD2,0x18,0x4B,0x7A, 0x0E,0xC7,0xAD,0xB6, 0x72,0x51,0x81,0x50, 0xD7,0x96,0x16,0xA0,  
0x35,0x07,0x2B,0xE4, 0x95,0x1E,0x32,0x62, 0xEE,0x84,0x38,0x49, 0x4A,0x6A,0x57,0x87,  
0x05,0x94,0x1E,0x9E, 0xCB,0xAB,0x68,0x47, 0xE2,0x80,0x17,0xCC, 0xA5,0x10,0x53,0x69,  
0xB9,0x44,0x83,0xCB, 0x59,0x35,0x1B,0x50, 0x32,0x30,0x1E,0xC2, 0x3A,0xBB,0x6B,0x03, 
  
0x11,0x73,0x1A,0xB9, 0xFA,0x98,0xA6,0x58, 0x99,0xA2,0x9C,0x83, 0xE9,0xEA,0xF2,0x82,  
0xF1,0x90,0x39,0x99, 0xC5,0x19,0x26,0x5D, 0xE9,0x59,0x23,0x47, 0xCB,0xEF,0x34,0xFC,  
0x5A,0x4C,0xDD,0xDA, 0x10,0x61,0xDE,0x19, 0x96,0x9F,0x43,0x24, 0x5F,0x90,0x4E,0x0D,  
0xB3,0x11,0xB2,0xA8, 0xAA,0x49,0x36,0x17, 0xC9,0x0B,0xFB,0x57, 0x72,0xFE,0x2A,0x43, 
  
0xCF,0x7B,0x80,0x43, 0x5B,0xE0,0x49,0x25, 0x41,0xAA,0xB4,0xF0, 0x65,0x10,0x44,0x10,  
0xE8,0xF0,0x1A,0x56, 0x67,0xD7,0x53,0xB2, 0xB3,0x1A,0x36,0x12, 0xE7,0x0A,0xD7,0x7B,  
0x39,0xF7,0x7F,0x61, 0x28,0xCC,0xC6,0xA7, 0x3E,0xD1,0x17,0xEF, 0x09,0x6A,0xAC,0x92,  
0x58,0x45,0x0B,0xBA, 0xB3,0x1B,0x6F,0x04, 0xF3,0x7F,0x78,0x73, 0xDA,0x32,0x98,0x95, 
  
0xE9,0x04,0x84,0xD3, 0x93,0x8A,0x2D,0x15, 0x65,0xE6,0x20,0xE8, 0xDB,0x20,0x77,0xC8,  
0x27,0x7F,0x01,0xFC, 0x5E,0x7C,0xF8,0xD1, 0xFE,0x8A,0x3B,0x26, 0x55,0x02,0xB7,0xB9,  
0xBB,0x4F,0x2B,0xA1, 0xBC,0xE0,0xD1,0xAB, 0x57,0x7C,0x5D,0x8A, 0x9D,0xDF,0x74,0x7A,  
0x81,0x9A,0x43,0x45, 0x82,0x77,0xC3,0xDF, 0x13,0xDE,0xAA,0x40, 0xF3,0x1B,0x6F,0x64, 
  
0x6B,0x2E,0x4A,0x15, 0x41,0x96,0xC7,0x59, 0xF4,0x46,0x07,0x25, 0x0F,0xBF,0x4C,0x59,  
0x51,0x5C,0x8F,0x8F, 0x78,0x6F,0xBA,0x83, 0x86,0xBF,0x9F,0x61, 0x3D,0xEB,0xA3,0x98,  
0xFB,0x20,0x46,0x31, 0xAA,0x1B,0x4C,0x3A, 0x42,0x30,0x07,0x7C, 0x30,0xED,0xCD,0x01,  
0x1C,0x2A,0xA8,0x7E, 0x71,0xEA,0x10,0x10, 0xCF,0xEF,0x7E,0xE6, 0x31,0xCD,0x99,0x90, 
  
0x5B,0xE6,0x45,0xA4, 0x1B,0xCC,0xF6,0x75, 0xCD,0xFD,0xB8,0x4D, 0x53,0xC3,0x37,0x60,  
0x43,0x1A,0x4B,0xD8, 0xAA,0x03,0xD1,0xA1, 0x3B,0x9F,0x99,0x6C, 0x96,0xF6,0x41,0x67,  
0x8B,0x57,0xD1,0x27, 0x5A,0x1E,0xC2,0x77, 0x3F,0xC5,0x3F,0xA0, 0x59,0x15,0xEC,0xB2,  
0x83,0xE7,0xAA,0xBE, 0x3B,0x65,0xB0,0x69, 0xB5,0x4F,0xB3,0x51, 0x19,0xC1,0x5F,0xD0, 
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0xB8,0xAD,0x7C,0x8C, 0x01,0xAF,0xFB,0xAE, 0xD8,0xB9,0xA4,0x1E, 0x5E,0xFC,0x23,0x10,  
0x57,0xA3,0xAC,0x28, 0x08,0xAE,0x5A,0x41, 0x67,0x7A,0x5F,0xF5, 0x2F,0x32,0x5E,0xC7,  
0xFF,0x0A,0xDA,0xA9, 0x1A,0xB9,0x84,0x55, 0x5E,0x33,0xF5,0x6D, 0x3B,0x27,0x06,0x22,  
0x76,0x47,0x84,0xBF, 0x32,0x76,0x0A,0x7A, 0x5F,0xEF,0xB7,0xAD, 0xE3,0x3C,0xBC,0x19, 
  
0x8C,0x2F,0xE1,0x95, 0xBD,0x87,0xB9,0xD6, 0xB4,0x28,0xCF,0xEF, 0x8F,0x87,0x18,0x2B,  
0xA9,0xF3,0x09,0x55, 0xA7,0x57,0xD7,0xC1, 0x83,0xA5,0xAF,0x6B, 0x7D,0x79,0x2B,0x5E,  
0x88,0x05,0xCB,0x5A, 0x6C,0xB1,0x7F,0xDB, 0xB3,0x65,0x9E,0xAA, 0x1B,0xE2,0xA0,0xB8,  
0x6F,0xE9,0xA3,0x73, 0x72,0x32,0xE6,0xD0, 0xFC,0xF1,0x6A,0x67, 0x0E,0x3A,0xDF,0x94, 
  
0x37,0x55,0x09,0xFC, 0xAB,0xB8,0x78,0x36, 0x50,0x0F,0x32,0xD6, 0xD6,0x15,0x00,0x76,  
0x26,0x9E,0x93,0xF5, 0xAA,0xF1,0xE6,0xBB, 0x34,0xD0,0x34,0x44, 0xE0,0xDF,0x4C,0x8B,  
0x11,0x6B,0x35,0xF8, 0xE3,0xED,0x65,0x05, 0x46,0x4C,0xB0,0xE3, 0x4B,0x64,0x92,0x8A,  
0xE9,0xED,0xB9,0x98, 0x65,0xA4,0xD5,0x25, 0x89,0x23,0x6A,0x9A, 0x48,0xA7,0x76,0x01 
}; 
/*============================================================*/ 
/* In this test the function DN encrypts the plaintext CONST0. The content of 
the key in RK corresponds to the state of RK after hashing of the string "abc" 
by HDN. 
*/ 
int test_abc_DN_CONST0(int rho) 
{ 
 unsigned char indata[c]; 
 unsigned char outdata[c];  
 int i,j,x; 
 for(i=0;i<MAXRHO;i++) for(j=0;j<r;j++) for(x=0;x<c;x++) rk[i][j][x] = 
0x00; 
 // IV 
 for(x=0;x<c;x++) rk[0][0][x] = IV_HDN[x];  
 // as in hashing of "abc" 
 rk[0][1][0] = 'a'; 
 rk[0][1][1] = 'b'; 
 rk[0][1][2] = 'c'; 
 rk[0][1][3] = 0x80; 
 // padding the length 
 rk[0][r-1][63] = 0x18; 
 // oracle f 
 for(x=0;x<c;x++) indata[x] = CONST0[x];  
 DN(rk,rho,indata,outdata,0); 
 if ( memcmp( outdata, DN_abc_CONST0[rho-1], 64 ) == 0 )  
  return 0; 
 else  
  return -1; 
} 
/*============================================================*/ 
/* In this test the function DN encrypts the plaintext CONST1.  The key is 
equal to the results of the first oracle f when hashing "abc". This is the 
value DN_abc_CONST0[rho-1]), padded by zero bytes. This tests how DN behaves 
in the final operation (oracle g) of HDN. 
*/ 
int test_abc_DN_CONST1(int rho) 
{ 
 unsigned char indata[c]; 
 unsigned char outdata[c];  
 int i,j,x; 
 // oracle g - padding by zero bytes 
 for(i=0;i<MAXRHO;i++) for(j=0;j<r;j++) for(x=0;x<c;x++) 

 rk[i][j][x] = 0x00; 
 // the initialization value is DN_abc_CONST0[rho-1][0..63]  
 for(x=0;x<c;x++) rk[0][0][x] = DN_abc_CONST0[rho-1][x];  
 // oracle g: plaintext CONST1 
 for(x=0;x<c;x++) indata[x] = CONST1[x];  
 DN(rk,rho,indata,outdata,0); 
 if ( memcmp( outdata, DN_abc_CONST1[rho-1], 64 ) == 0 )  
  return 0; 
 else  
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  return -1; 
} 
/*============================================================*/ 
/* This is DN mega-test, described in the Appendix E. */ 
int test_mega_DN(int rho) 
{ 
 unsigned char indata[c]; 
 unsigned char outdata[c];  
 int i,j,x; 
 
 // RK[0] and entry for the first encryption 
 for(j=0;j<r;j++) for(x=0;x<c;x++) rk[0][j][x] = 0;  
 for(x=0;x<c;x++) indata[x] = 0;   
 
 // 100x  
 for(i=0;i<100;i++) 
 { 
  DN(rk,rho,indata,outdata,0); 
  for(x=0;x<c;x++) indata[x] = outdata[x]; 
  
  for(j=0;j<r;j++) 
  { 
   DN(rk,rho,indata,outdata,0);  
   for(x=0;x<c;x++) rk[0][j][x] = outdata[x]; 
  } 
 
 } 
  
 if ( memcmp( outdata, DN_mega[rho-1], 64 ) == 0 )  
  return 0; 
 else  
  return -1; 
} 
/*============================================================*/ 
/* Test HDN("abc") */ 
int test_abc_HDN(int rho) 
{ 
 HDN_CTX ctx; 
 Init_HDN (&ctx,rho); 
 Update_HDN(&ctx, "abc", 3); 
 Final_HDN(&ctx); 
 
 // intermediate value has to be equal to DN_abc_CONST0 
 if ( memcmp( ctx.rk[0][0], DN_abc_CONST0[rho-1], 64 ) != 0 ) return -1; 
 Final_HDN_2(&ctx);  
 // check 
 if ( memcmp( ctx.rk[0][0], HDN_abc[rho-1], 64 ) != 0 ) return -1; 
 // it has to be HDN_abc ==  DN_abc_CONST1 
 if ( memcmp( ctx.rk[0][0], DN_abc_CONST1[rho-1], 64 ) != 0 ) return -1; 
 return 0; 
} 
/*============================================================*/ 
/* This is mega-test for HDN, described in the Appendix E. */ 
int test_mega_HDN(int rho) 
{ 
 unsigned char *data; 
 int actual_len; 
 unsigned char* actual_ptr; 
 HDN_CTX ctx; 
 int i,x; 
 
 data = malloc(65000); 
 
 actual_ptr = data; 
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 actual_len = 0; 
 
 data[0] = 'a'; data[1] = 'b'; data[2] = 'c'; 
 actual_ptr+=3; 
 actual_len+=3; 
 
 for(i=0;i<100;i++) 
 { 
  Init_HDN (&ctx,rho); 
  Update_HDN(&ctx, data, actual_len); 
  Final_HDN(&ctx); 
  Final_HDN_2(&ctx); 
 
  // intermediate check of hash "abc" 
  if(i == 0)  
  if ( memcmp( ctx.rk[0][0], HDN_abc[rho-1], 64 ) != 0 ) return -1; 
   
  for(x=0;x<c;x++) 
  { 
   *actual_ptr = ctx.rk[0][0][x]; 
   actual_ptr++; 
   actual_len++; 
  } 
 } 
 free(data); 
 
 if ( memcmp( ctx.rk[0][0], HDN_mega[rho-1], 64 ) == 0 ) return 0; 
 else return -1; 
} 
/*=========================================================*/ 
int speed_test_HDN(unsigned long M, int rho) 
{  
 // hash M megabytes 
 unsigned char buff[10000]; 
 unsigned long i; 
 HDN_CTX ctx; 
 memset(buff, 'a', 10000);  
 Init_HDN (&ctx, rho); 
 for (i = 0; i< 100*M; i++) Update_HDN(&ctx, buff,10000L); 
 Final_HDN(&ctx); 
 Final_HDN_2(&ctx); 
 return 0; 
} 
/*=========================================================*/ 
int main( void ) 
{ 
 int i,j,rho, print = 0; 
 
 double   cas1, dt, speed; 
 unsigned long  delka; 
  
 //initialize multiplication tables  
 Init_MDS4x4_tables(); 
 Init_MDS16x16_tables(); 
  
 // check constants 
 if ( Check_Const() == 0 )  
  printf("Check_const: OK\n"); 
 else 
  printf("Check_const: Failed\n");  
  

// check matrix  
 if ( Check_Matrix() == 0 )  
  printf("Check matrix: OK\n"); 
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 else 
  printf("Check matrix: Failed\n");  
 
 // DN test, CONST0 
 for(i=1;i<MAXRHO+1;i++) 
 { 
  if ( test_abc_DN_CONST0(i) == 0 )  
   printf("test_abc_DN_CONST0(%d) OK\n",i); 
  else 
   printf("test_abc_DN_CONST0(%d) Failed\n",i); 
 } 
 
 // DN test, CONST1 
 for(i=1;i<MAXRHO+1;i++) 
 { 
  if ( test_abc_DN_CONST1(i) == 0 ) 
  printf("test_abc_DN_CONST1(%d) OK\n",i); 
  else 
   printf("test_abc_DN_CONST1(%d) Failed\n",i); 
 } 
 
 // DN mega-test 
 for(i=1;i<MAXRHO+1;i++) 
 { 
  if ( test_mega_DN(i) == 0 ) 
  printf("test_mega_DN(%d) OK\n",i); 
  else 
   printf("test_mega_DN(%d) Failed\n",i); 
 } 
  
 // HDN mega-test 
 for(i=1;i<MAXRHO+1;i++) 
 { 
  if ( test_mega_HDN(i) == 0 ) 
   printf("test_mega_HDN(%d) OK\n",i); 
  else 
   printf("test_mega_HDN(%d) Failed\n",i); 
 } 
 
 // HDN, "abc" 
 for(i=1;i<MAXRHO+1;i++) 
 { 
  if ( test_abc_HDN(i) == 0 ) 
   printf("test_abc_HDN(%d) OK\n",i); 
  else 
   printf("test_abc_HDN(%d) Failed\n",i); 
 } 
 

//speed test  
 printf( "\nspeed test - ...." ); 
 delka = 10;dt = 1.0*(double)(delka); 
 for(rho = 1; rho <MAXRHO+1; rho++) 
 { 
  StartTimer(); 
  j = speed_test_HDN(delka, rho ); 
  cas1 = StopTimer();speed = dt/cas1; 

printf("\n Length: %4.0f MB. Speed of HDN-%d: %f 
MByte/s",dt,rho,speed); 

 } 
 
 printf( "\nEnd of test. Push ENTER.\n" ); 
 getch(); 
 return 0; 
} 
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13. Appendix E: Test vectors for DN(512, 
8192) and HDN(512, 8192) 

The test vectors are defined for ρ = 1 to 10 rounds in order to verify the 
implementations correctness. The corresponding test variables are shown in arrays of 
10 elements. The variable ρ is denoted as rho in the source code, its maximal value as 
MAXRHO. HDN basic test is the hash code of “abc” string. During the hashing, 
transformation DN with CONST0 on input is called and with CONST1 on input within 
the final modification. The result is the HDN hash code. Transformation DN with 
CONST0 and CONST1 input constants are tested with input key arrays that are 
produced during the hashing of “abc” string with HDN. Thus, the test vectors for DN 
are the test vectors for the inner states of HDN hashing the string “abc”. In total, we 
have these test vectors  

• string DN_abc_CONST0, the result of the first transformation DN during string 
"abc" hashing, 

• string DN_abc_CONST1, the result of DN with constant CONST1 within the 
final modification during string “abc” hashing, 

• string HDN_abc, the final result of string "abc" hashing using HDN. 
DN_abc_CONST1 and HDN_abc have to be identical. The strings DN_abc_CONST0 
and DN_abc_CONST1 are compared with the strings obtained.  

 
Moreover, so-called mega-tests are defined for both functions, DN and HDN where 
these function are called many times with different input data. Their description is to 
follow.  

13.1. DN test vectors 

13.1.1. DN_abc_CONST0 
Plaintext: CONST0 
Key:  
rk[0][0] = IV,  
rk[0][1][0] = 0x61; // 'a'; 
rk[0][1][1] = 0x62; // 'b'; 
rk[0][1][2] = 0x63; // 'c'; 
rk[0][1][3] = 0x80; // padding 
all the remaining bytes rk[0][][] are 0x00 except the last byte (the length of bit string 
"abc" is 24 = 0x18): rk[0][15][63] = 0x18; 
Ciphertext: see array DN_abc_CONST0[MAXRHO][c], where the result is stored (c = 
64 bytes of ciphertext) for 1 to 10 rounds. 

13.1.2. DN_abc_CONST1 
Plaintext: CONST1 
Key:  
rk[0][0] = DN_abc_CONST0,  
all the remaining bytes rk[0][][] are 0x00  
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Ciphertext: see array DN_abc_CONST1[MAXRHO][c], where the result is stored (c = 
64 bytes of ciphertext) for 1 to 10 rounds. 

13.1.3. DN mega-test 
Both, the plaintext and round keys RK[0][0..15][0..63] are set to zeros during the 
initialization of this mega-test. 
The following loop is repeated 100 times: 

• With the current setting encrypt the plaintext. The plaintext is overwritten with 
the resulting 64 bytes. 

• With the current setting encrypt the plaintext. Round key RK[0][0] is 
overwritten with the resulting 64 bytes. 

• With the current setting encrypt the plaintext. Round key RK[0][1] is 
overwritten with the resulting 64 bytes. 

• … 
• With the current setting encrypt the plaintext. Round key RK[0][15] is 

overwritten with the resulting 64 bytes. 
 
In total, 1700 (100*17) encryptions are engaged. The test value is the result of the last 
operation. The test values are stored in array DN_mega[MAXRHO][c], with the 
resulting c = 64 bytes of ciphertext for 1 to 10 rounds. 

13.2. HDN test vectors 

13.2.1. Test value HDN("abc") 
The test values for 1 to 10 rounds are stored in array HDN_abc. They have to be 
identical to values in DN_abc_CONST1. Moreover, the program checks if array 
DN_abc_CONST0 is obtained as the inner state during the compression of the first 
block 

13.2.2. HDN mega-test 
Function HDN is called 100 times iteratively during this test. First, 64 byte hash code 
HDN(“abc”) is computed and padded to string “abc”. The resulting 3 + 64 bytes are 
hashed again and padded again to its input. This procedure is repeated for 100 times. 
The final output is HDN("abc" || HDN("abc") || HDN("abc" || HDN("abc")) || 
......))))))...). The test values are stored in array HDN_mega for 1 to 10 rounds. 

13.3. DN a HDN testing program 
Testing module main_test_definition_DN_and_HDN.c computes the entire test vectors 
for functions DN and HDN, the program speed is determined at the end; all for 1 to 10 
rounds. 
 
 
 
 
Note. Source codes are available on http://cryptography.hyperlink.cz/. 
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