Paper 2007/041

Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes

B. Skoric, S. Katzenbeisser, and M. U. Celik

Abstract

Fingerprinting provides a means of tracing unauthorized redistribution of digital data by individually marking each authorized copy with a personalized serial number. In order to prevent a group of users from collectively escaping identification, collusion-secure fingerprinting codes have been proposed. In this paper, we introduce a new construction of a collusion-secure fingerprinting code which is similar to a recent construction by Tardos but achieves shorter code lengths and allows for codes over arbitrary alphabets. For binary alphabets, users and a false accusation probability of , a code length of is provably sufficient to withstand collusion attacks of at most colluders. This improves Tardos' construction by a factor of . Furthermore, invoking the Central Limit Theorem we show that even a code length of is sufficient in most cases. For -ary alphabets, assuming the restricted digit model, the code size can be further reduced. Numerical results show that a reduction of 35\% is achievable for and 80\% for~.

Metadata
Available format(s)
PDF PS
Publication info
Published elsewhere. Modified version has been submitted to Designs, Codes and Cryptography
Keywords
collusion-resistant watermarking
Contact author(s)
boris skoric @ philips com
History
2007-02-14: received
Short URL
https://ia.cr/2007/041
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2007/041,
      author = {B.  Skoric and S.  Katzenbeisser and M. U.  Celik},
      title = {Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes},
      howpublished = {Cryptology {ePrint} Archive, Paper 2007/041},
      year = {2007},
      url = {https://eprint.iacr.org/2007/041}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.