
A preliminary version of this paper appears in Advances in Cryptology - CRYPTO ’07 Proceedings.
Lecture Notes in Computer Science, Vol. 4622, pp. 535–552, A. Menezes ed., Springer, 2007. This
is the full version.

Deterministic and Efficiently Searchable Encryption

Mihir Bellare∗ Alexandra Boldyreva† Adam O’Neill‡

Abstract

We present as-strong-as-possible definitions of privacy, and constructions achieving them,
for public-key encryption schemes where the encryption algorithm is deterministic. We obtain
as a consequence database encryption methods that permit fast (i.e. sub-linear, and in fact
logarithmic, time) search while provably providing privacy that is as strong as possible subject
to this fast search constraint. One of our constructs, called RSA-DOAEP, has the added feature
of being length preserving, so that it is the first example of a public-key cipher. We generalize
this to obtain a notion of efficiently-searchable encryption schemes which permit more flexible
privacy to search-time trade-offs via a technique called bucketization. Our results answer much-
asked questions in the database community and provide foundations for work done there.

Keywords: Public-key encryption, deterministic encryption, searchable encryption, database se-
curity.

∗Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,

CA 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported in part

by NSF grants CNS-0524765, CNS-0627779, and a gift from Intel Corporation.
†School of Computer Science, College of Computing, Georgia Institute of Technology, 266 Ferst Drive, Atlanta,

GA 30332, USA. E-mail: aboldyre@cc.gatech.edu. URL: http://www.cc.gatech.edu/∼ aboldyre. Supported in

part by NSF CAREER award 0545659.
‡School of Computer Science, College of Computing, Georgia Institute of Technology, 266 Ferst Drive, Atlanta,

GA 30332, USA. E-mail: amoneill@cc.gatech.edu. URL: http://www.cc.gatech.edu/∼ amoneill. Supported in

part by the grant of the second author.

1

Contents

1 Introduction 3

2 Notation and Conventions 6

3 Deterministic Encryption and its Security 7

4 A Useful Fact 9

5 Secure Deterministic Encryption Schemes 10
5.1 Encrypt-with-Hash . 10
5.2 RSA-DOAEP, A length-preserving deterministic scheme 11

6 Efficiently Searchable Encryption (ESE) 13
6.1 Encrypt-and-Hash ESE . 14

7 CCA and Other Extensions 16

8 Acknowledgments 20

A Proof of Theorem 5.2 23

B Proof of Theorem 6.1 27

C Proof of Theorem 6.2 29

D Proof of Theorem 7.1 34

2

1 Introduction

The classical notions of privacy for public-key encryption schemes, namely indistinguishability or
semantic security under chosen-plaintext or chosen-ciphertext attack [35, 44, 47, 28, 10], can only be
met when the encryption algorithm is randomized. This paper treats the case where the encryption
algorithm is deterministic. We begin by discussing the motivating application.

Fast search. Remote data storage in outsourced databases is of increasing interest [51]. Data
will be stored in encrypted form. (The database service provider is not trusted.) We are interested
in a public key setting, where anyone can add to the database encrypted data which a distinguished
“receiver” can retrieve and decrypt. The encryption scheme must permit search (by the receiver)
for data retrieval. Public-key encryption with keyword search (PEKS) [16, 1, 18] is a solution that
provably provides strong privacy but search takes time linear in the size of the database. Given
that databases can be terabytes in size, this is prohibitive. The practical community indicates
that they want search on encrypted data to be as efficient as on unencrypted data, where a record
containing a given field value can be retrieved in time logarithmic in the size of the database. (For
example, via appropriate tree-based data structures.) Deterministic encryption allows just this.
The encrypted fields can be stored in the data structure, and one can find a target ciphertext in
time logarithmic in the size of the database. The question is what security one can expect. To
answer this, we need a definition of privacy for deterministic encryption.

A definition. One possibility is to just ask for one-wayness, but we would like to protect partial
information about the plaintext to the maximum extent possible. To gauge what this could be,
we note two inherent limitations of deterministic encryption. First, no privacy is possible if the
plaintext is known to come from a small space. Indeed, knowing that c is the encryption under
public key pk of a plaintext x from a set X, the adversary can compute the encryption cx of x
under pk for all x ∈ X, and return as the decryption of c the x satisfying cx = c. We address this
by only requiring privacy when the plaintext is drawn from a space of large min-entropy. Second,
and more subtle, is that the ciphertext itself is partial information about the plaintext. We address
this by only requiring non-leakage of partial information when the plaintext and partial information
do not depend on the public key. This is reasonable because in real life public keys are hidden in
our software and data does not depend on them. We provide a semantic-security style definition of
privacy for deterministic encryption that takes these issues into account. While certainly weaker
than the classical notions met by randomized schemes, our notion, which we call PRIV, is still quite
strong. The next question is how to achieve this new notion.

Constructions. Our first construction is generic and natural: Deterministically encrypt plaintext
x by applying the encryption algorithm of a randomized scheme but using as coins a hash of (the
public key and) x. We show that this “Encrypt-with-Hash” deterministic encryption scheme is
PRIV secure in the random oracle (RO) model of [12] assuming the starting randomized scheme
is IND-CPA secure. Our second construction is an extension of RSA-OAEP [13, 31]. The padding
transform is deterministic but uses three Feistel rounds rather than the two of OAEP. RSA-DOAEP
is proven PRIV secure in the RO model assuming RSA is one-way. This construction has the
attractive feature of being length-preserving. (The length of the ciphertext equals the length of the
plaintext.) This is important when bandwidth is expensive —senders in the database setting could
be power-constrained devices— and for securing legacy code.

Historical context. Diffie and Hellman [26] suggested that one encrypt plaintext x by applying
to it an injective trapdoor function. A deterministic encryption scheme is just a family of injective

3

trapdoor functions, so our definition is an answer to the question of how much privacy Diffie-
Hellman encryption can provide. (We clarify that not all trapdoor functions meet our definition.
For example, plain RSA does not.)

In the symmetric setting, deterministic encryption is captured by ciphers including block ci-
phers. So far there has been no public key analog. Deterministic encryption meeting our definition
provides one, and in particular RSA-DOAEP is the first length-preserving public-key cipher.

Efficiently searchable encryption. We introduce the notion of efficiently searchable encryp-
tion (ESE) schemes. These are schemes permitting fast (i.e. logarithmic time) search. Encryption
may be randomized, but there is a deterministic function of the plaintext that can also be com-
puted from the ciphertext and serves as a “tag,” permitting the usual (fast) comparison-based
search. Deterministic encryption schemes are a special case and the notion of security remains the
same. (Our PRIV definition does not actually require encryption to be deterministic.) The bene-
fit of the generalization is to permit schemes with more flexible privacy to search-time trade-offs.
Specifically, we analyze a scheme from the database literature that we call “Hash-and-Encrypt.” It
encrypts the plaintext with a randomized scheme but also includes in the ciphertext a determin-
istic, collision-resistant hash of the plaintext. (This is an ESE scheme with the hash playing the
role of the tag, and so permits fast search.) We prove that this scheme is PRIV secure in the RO
model when the underlying encryption scheme is IND-CPA. With this scheme, loss of privacy due
to lack of entropy in the plaintext space can be compensated for by increasing the probability of
hash collisions. (This can be done, for example, by using truncated output of the hash function.)
The trade-off is that the receiver then also gets “false positives” in response to a search query and
must spend the time to sift through them to obtain the true answer. This technique is known as
bucketization in the database literature, but its security was not previously rigorously analyzed.

Discussion. Our schemes only provide privacy for plaintexts that have high min-entropy. (This is
inherent in being deterministic or efficiently searchable, not a weakness of our particular constructs.)
We do not claim database fields being encrypted have high min-entropy. They might or they might
not. The point is that practitioners have indicated that they will not sacrifice search time for
privacy. Our claim is to provide the best possible privacy subject to allowing fast search. In some
cases, this may very well mean no privacy. But we also comment that bucketization can increase
privacy (at the cost of extra processing by the receiver) when the database fields being encrypted
do not have high min-entropy.

Extensions. Our basic PRIV definition, and the above-mentioned results, are all for the CPA
(chosen-plaintext attack) case. The definition easily extends to the CCA (chosen-ciphertext attack)
case, and we call the resulting notion PRIV-CCA. Our Encrypt-with-Hash deterministic encryption
scheme is not just PRIV, but in fact PRIV-CCA, in the RO model even if the underlying randomized
encryption scheme is only IND-CPA, as long as the latter has the extra property that no ciphertext
is too likely. In Section 7 we detail this and also discuss how RSA-DOAEP and Encrypt-and-Hash
fare under CCA.

Open question. All our constructs are in the RO model. An important open question is to
construct ESE or deterministic encryption schemes meeting our definition in the standard model.
We note that in the past also we have seen new notions first emerge only with RO constructions
achieving them, but later standard model constructs have been found. This happened for example
for IBE [15, 54] and PEKS [18]. Note that the results of [33] rule out a standard model black-
box reduction from deterministic public-key encryption to ordinary public-key encryption, but the
former could still be built under other assumptions.

4

Related work. In the symmetric setting, deterministic encryption is both easier to define and
to achieve than in the asymmetric setting. Consider the experiment that picks a random challenge
bit b and key K and provides the adversary with a left-or-right oracle that, given plaintexts x0, x1

returns the encryption of xb under K. Security asks that the adversary find it hard to guess
b as long as its queries (x1

0, x
1
1), . . . , (x

q
0, x

q
1) satisfy the condition that x1

0, . . . , x
q
0 are all distinct

and also x1
1, . . . , x

q
1 are all distinct. To the best of our knowledge, this definition of privacy for

deterministic symmetric encryption first appeared in [11]. However, it is met by a PRP and in this
sense deterministic symmetric encryption goes back to [43].

Previous searchable encryption schemes provably meeting well-defined notions of privacy include
[16, 36, 1, 6, 17, 18] in the public-key setting and [52, 34, 23] in the symmetric setting. However, all
these require linear-time search, meaning the entire database must be scanned to answer each query.
In the symmetric setting, further assumptions such as the data being known in advance, and then
having the user (who is both the “sender” and “reciever” in this setting) pre-compute a specialized
index for the server, has been shown to permit efficiency comparable to ours without sacrificing
security [24]. Follow-on work to ours [4] treats ESE (as we mean it here) in the symmetric setting,
providing the symmetric analog of what we do in our current paper.

Sub-linear time searchable encryption has been much targeted by the database security commu-
nity [45, 3, 37, 25, 39, 40, 42, 38, 20, 53]. However, they mostly employ weak, non-standard or non-
existing primitives and lack definitions or proofs of security. As a notable exception, Kantarcioglu
and Clifton [41] recently called for a new direction of research on secure database servers aiming
instead for “efficient encrypted database and query processing with provable security properties.”
They also propose a new cryptographic definition that ensures schemes reveal only the number of
records accessed on each query, though a scheme meeting the definition requires tamper-resistant
trusted hardware on the server.

Definitions that, like ours, restrict security to high min-entropy plaintexts have appeared before,
specifically in the contexts of perfectly one-way probabilistic hash functions (POWHFs) [21, 22] and
information-theoretically secure one-time symmetric encryption [49, 27]. The first however cannot
be met by deterministic schemes, and neither handle the public-key related subtleties we mentioned
above. (Namely that we must limit security to plaintexts not depending on the public key.) Also
our definition considers the encryption of multiple related messages while those of [21, 22] consider
only independent messages.

Use for other applications. We note that one can also use our definitions to analyze other
systems-security applications. In particular, a notion of “convergent encryption” is proposed in
[2, 29] for the problem of eliminating wasted space in an encrypted file system by combining
duplicate files across multiple users. Despite providing some correct intuition for security of their
scheme, they are only able to formally show (for lack of a suitable security definition) that it
achieves the very weak security notion of one-wayness. One can use our definitions to show that
their scheme achieves much stronger security.

Versions of this paper and corrections. This full version of the paper corrects several typos
and mistakes from the preliminary version [9], as well as includes all omitted proofs from the latter.
Section 6, in particular the part of Section 6.1 treating bucketization, is significantly revised in this
full version. We had to withdraw Theorem 4 of the proceedings version, which we are not able to
prove. The latter is replaced here by Theorem 6.2. Although it does not cover as general a case
as was claimed in the preliminary version, it still makes significant headway in this direction. (See
Section 6.1 for more details.)

5

2 Notation and Conventions

Unless otherwise indicated, an adversary or algorithm may be randomized. An adversary is either
an algorithm or a tuple of algorithms. In the latter case, we say it is polynomial time if each
constituent algorithm is polynomial time. Unless otherwise indicated, an adversary or algorithm
is polynomial time. By convention, the running-time of an adversary includes both its actual
running-time and the time to run its overlying experiment. We let “A(. . .)⇒ z” denote the event
that algorithm A outputs z when run on the elided arguments.

If x is a string then |x| denotes its length in bits. We let x[i . . . j] denote bits i through j of
string x, for 1 ≤ i ≤ j ≤ |x|. By x1‖ · · · ‖xn we denote an encoding of x1, . . . , xn from which
x1, . . . , xn are uniquely recoverable. Vectors are denoted in boldface, for example x. If x is a vector
then |x| denotes the number of components of x and x[i] denotes its ith component (1 ≤ i ≤ |x|).

Asymmetric encryption. An (asymmetric) encryption scheme Π = (K, E ,D) consists of three
algorithms. The key-generation algorithm K takes input the unary encoding 1k of the security
parameter k to return a public key pk and matching secret key sk. The encryption algorithm E
takes 1k,pk and a plaintext x to return a ciphertext. The deterministic decryption algorithm D
takes 1k,pk, sk and a ciphertext c to return a plaintext. We require that D(1k,pk, sk, c) = x for
all k and all x ∈ PtSp(k), where the probability is over the experiment

(pk, sk)
$
← K(1k) ; c

$
← E(1k,pk, x)

and PtSp is a plaintext space associated to Π. Unless otherwise indicated, we assume PtSp(k) =
{0, 1}∗ for all k. We extend E to vectors via

Algorithm E(pk,x)

For i = 1, . . . , |x| do y[i]
$
← E(1k,pk,x[i])

Return y

We say that Π is deterministic if E is deterministic.

Standard security notions. Let Π = (K, E ,D) be an encryption scheme and let LR be the
oracle that on input m0,m1, b returns mb. We associate to an adversary B and a bit b the following:

Experiment Expind-cpa-b
Π,B (k)

(pk, sk)
$
← K(1k)

d
$
← BE(1k,pk,LR(·,·,b))(1k, pk)

Return d

Experiment Expind-cca-b
Π,B (k)

(pk, sk)
$
← K(1k)

d
$
← BE(1k,pk,LR(·,·,b)),D(1k,pk,sk,·)(1k, pk)

Return d

We call B an IND-CPA adversary if every query m0,m1 it makes to its LR oracle satisfies |m0| =
|m1| and an IND-CCA adversary if in addition it never queries to D(1k,pk, sk, ·) a ciphertext c
previously returned by the LR oracle. For atk ∈ {cpa, cca}, the advantage of an IND-atk adversary
B is

Advind-atk
Π,B (k) = Pr

[

Expind-atk-1
Π,B (k)⇒ 1

]

− Pr
[

Expind-atk-0
Π,B (k)⇒ 1

]

.

A standard conditioning argument shows that

Advind-atk
Π,B (k) = 2 · Pr

[

Expind-atk-b
Π,B (k)⇒ b

]

− 1 ,

where the probability is over a random choice of bit b and the coins of the experiment. Π is said
to be IND-atk secure if Advind-atk

Π,B (·) is negligible for every B.

6

Note that the definition of IND-CPA (or -CCA) allows an adversary to make as many queries
as it likes to its LR-oracle. This is known to be equivalent (with loss in security by a factor less
than or equal to the total number of LR-queries made) to allowing only one such query [8].

Game-playing. Our security analyses often employ the code-based game-playing technique of
[14]. We recall some game-related language and conventions from [14] that we will use.

A game consists of an Initialize procedure, procedures that respond to an adversary’s ora-
cle queries, and a Finalize procedure. In a proof, one typically considers a sequence of games
G1, . . . , Gn. The adversary is executed with each of these games, its execution with Gi being
determined as follows. First, the Initialize procedure executes, and its outputs, as given by the
Return statement, are passed as inputs to the adversary. Now the latter executes, oracle queries
being answered by the procedures for this purpose associated to Gi. The output of the adversary
becomes the input to the Finalize procedure of Gi. The output of the game is whatever is returned
by the Finalize procedure.

We let “GA
i ⇒s” denote the event that the output of Game Gi when executed with an adversary

A is s. Both for the games and for the adversary, we adopt the convention that boolean variables
are automatically initialized to false and arrays begin everywhere undefined.

3 Deterministic Encryption and its Security

Privacy adversaries. A privacy adversary A = (Am, Ag) is a pair of algorithms. We clarify
that Am, Ag share neither coins nor state. Am takes input 1k but not the public key, and returns a
plaintext vector x together with some side information t. Ag takes input 1k,pk and an encryption
of x under pk, and tries to compute t.

The adversary must obey the following rules. First, there must exist functions v(·), n(·) such
that |x| = v(k) and |x[i]| = n(k) for k, all (x, t) output by Am(1k), and all 1 ≤ i ≤ v(k). Second,
all plaintext vectors must have the same equality pattern, meaning for all 1 ≤ i, j ≤ v(k) there is
a symbol 3 ∈ {=, 6=} such that x[i] 3 x[j] for all (x, t) output by Am(1k). We say that A has
min-entropy µ(·) if

Pr
[

x[i] = x : (x, t)
$
← Am(1k)

]

≤ 2−µ(k)

for all 1 ≤ i ≤ v(k), all k, and all x ∈ {0, 1}∗. We say that A has high min-entropy if µ(k) ∈
ω(log(k)). The definition below is for chosen-plaintext attacks (CPA). In Section 7 we extend the
definition to take chosen-ciphertext attacks (CCA) into account.

The definition. Let Π = (K, E ,D) be an encryption scheme. Although this is an important case
of interest, the definition that follows does not assume Π to be deterministic. The definition is in
the semantic-security style of [35]. Let A be a privacy adversary as above. We associate to A,Π
the following:

7

Experiment Exppriv-1
Π,A (k)

(pk, sk)
$
← K(1k)

(x1, t1)
$
← Am(1k)

c
$
← E(1k,pk,x1)

g
$
← Ag(1

k,pk, c)
If g = t1 then return 1
Else return 0

Experiment Exppriv-0
Π,A (k)

(pk, sk)
$
← K(1k)

(x0, t0)
$
← Am(1k) ; (x1, t1)

$
← Am(1k)

c
$
← E(1k,pk,x0)

g
$
← Ag(1

k,pk, c)
If g = t1 then return 1
Else return 0

The advantage of a privacy adversary A against Π is

Advpriv
Π,A(k) = Pr

[

Exppriv-1
Π,A (k)⇒ 1

]

− Pr
[

Exppriv-0
Π,A (k)⇒ 1

]

.

Again, a standard conditioning argument shows that

Advpriv
Π,A(k) = 2 · Pr

[

Exppriv-b
Π,A (k)⇒ b

]

− 1 ,

where the probability is over a random choice of bit b and the coins of the experiment. We say that
Π is PRIV secure if Advpriv

Π,A(·) is negligible for every PTA A with high min-entropy.
As usual, in the random oracle (RO) model [12], all algorithms and adversaries are given access

to the RO(s). In particular, both Am and Ag get this access. Let us now discuss some noteworthy
aspects of the new definition.

Access to the public key. If Am were given pk, the definition would be unachievable for
deterministic Π. Indeed, Am(1k) could output (x, t) where x[1] is chosen at random from {0, 1}k ,
|x| = 1, and t = E(pk,x). Then Ag(1

k,pk, c) could return c, and A would have min-entropy k but

Advpriv
Π,A(k) ≥ 1− 2−k .

Intuitively, the ciphertext is non-trivial information about the plaintext, showing that any determin-
istic scheme leaks information about the plaintext that depends on the public key. Our definition
asks that information unrelated to the public key not leak. Note that this also means that we
provide security only for messages unrelated to the public key, which is acceptable in practice be-
cause normal data is unlikely to depend on any public key. In real life, public keys are abstractions
hidden in our software, not strings we look at.

Vectors of messages. The classical definitions explicitly only model the encryption of a single
plaintext, but a simple hybrid argument from [8] shows that security when multiple plaintexts are
encrypted follows. This hybrid argument fails in our setting, and in fact the two versions are not
equivalent, which is why we have explicitly considered the encryption of multiple messages. To
be more precise, let us say that Π is PRIV1 secure if Advpriv

Π,A(·) is negligible for every privacy
adversary A = (Am, Ag) satisfying

Pr
[

|x| = 1 : (x, t)
$
← Am(1k)

]

= 1

for all k ∈ N. We claim that PRIV1 security does not imply PRIV security. To prove this, we now
give an example of an encryption scheme Π which is PRIV1 secure but not PRIV secure. We obtain
Π = (K, E ,D) by modifying a given deterministic PRIV secure encryption scheme Π = (K, E ,D).
Specifically, we define:

8

Algorithm E(1k,pk, x)
y ← E(1k,pk, x)
z ← E(1k,pk, x)
Return y‖z

Algorithm D(1k,pk, sk, y‖z)
x← D(1k,pk, sk, y)
x′ ← D(1k,pk, sk, z)
If x′ = x then return x
Else return ⊥

Above and in what follows, s denotes the bitwise complement of a string s. The assumption
that Π is PRIV secure implies that Π is PRIV1 secure. However, the following attack shows Π
is not PRIV secure. Consider Am(1k) that picks m1,m2 from {0, 1}k and a bit b at random, and
if b = 1 outputs ((m1,m1), 1) and otherwise ((m1,m2), 0). Ag(1

k,pk, (y1‖z1, y2‖z2)) outputs 1 if
z1 = y2 and 0 otherwise. Then A = (Am, Ag) has min-entropy k but advantage 1/2.

The high min-entropy requirement. In the absence of the high-entropy restriction on A, it is
clear that the definition would be unachievable for deterministic Π. To see this, consider Am(1k)
that outputs (0, 0) with probability 1/2 and (1, 1) with probability 1/2. Then Ag(1

k,pk, c) could
return 0 if E(pk, 0) = c and 1 otherwise, giving A an advantage of 1/2. This reflects the fact that
trial encryption of candidate messages is always a possible attack when encryption is deterministic.

Security for multiple users. The classical notions of privacy, as well as ours, only model a
single user (SU) setting, where there is just one receiver and thus just one public key. An extension
of the classical notions to cover multiple users, each with their own public key, is made in [8, 7], and
these works go on to show that SU security implies multi-user (MU) security in this case. We leave
it open to appropriately extend our definition to the MU setting and then answer the following
questions: does SU security imply MU security, and do our schemes achieve MU security? But we
conjecture that the answer to the first question is “no,” while the answer to the second is “yes.”

4 A Useful Fact

Define the max public-key probability mpk(·)AE of AE as follows: for every k, we let mpkAE be the
maximum, taken over all w ∈ {0, 1}∗, of the quantity

Pr
[

pk = w : (pk, sk)
$
← K(1k)

]

.

The following shows that mpkAE(·) is negligible for any IND-CPA scheme.

Proposition 4.1 Let AE = (K, E ,D) be an encryption scheme. Then there is an IND-CPA adver-
sary B such that

mpkAE ≤
√

Advind-cpa
AE,B . (1)

Furthermore, the running-time of B is at that for O(1) computations of K,D, and B makes one
LR-query.

We clarify that (1) is a relationship between functions of k, so we are saying it holds for all k ∈ N.
For simplicity of notation we omit k here and further in the paper in similar instances.

Proof: Adversary B works as follows:

9

Algorithm BE(1k,pk,LR(·,·,b))(1k, pk)

(pk ′, sk ′)
$
← K(1k)

If pk 6= pk′ then return 0

Else c
$
← E(1k,pk,LR(0, 1, b))

b′ ← D(1k,pk ′, sk ′, c)
Return b′

Then

Pr
[

Expind-cpa-1
AE,B ⇒ 1

]

= Pr
[

pk = pk′
]

≥ (mpkAE)2 .

Pr
[

Expind-cpa-0
AE,B ⇒ 1

]

= 0 .

Subtracting, we get

Advind-cpa
AE,B ≥ (mpkAE)2 ,

as desired.

5 Secure Deterministic Encryption Schemes

We propose two constructions of deterministic schemes that we prove secure under our definition.

5.1 Encrypt-with-Hash

We first propose a generic deterministic encryption scheme that replaces the coins used by a stan-
dard encryption scheme with the hash of the message. More formally, let AE = (K, E ,D) be any
public-key encryption scheme. Say that E(1k,pk, x) draws its coins from a set Coinspk(|x|). We
write E(1k,pk, x;R) for the output of E on inputs pk, x and coins R. Let H : {0, 1}∗ → {0, 1}∗ be a
hash function with the property that H(pk‖x) ∈ Coinspk(|x|) for all pk, x ∈ {0, 1}∗. The RO-model
“Encrypt-with-Hash” deterministic encryption scheme EwH = (K,DE ,DD) is defined via

Algorithm DEH(1k,pk, x)
R← H(pk‖x)
y ← E(1k,pk, x;R)
Return y

Algorithm DDH(1k,pk, sk, y)
x← D(1k,pk, sk, y)
R← H(pk‖x)
If E(1k,pk, x;R) = y then return x
Else Return ⊥

The following implies that the Encrypt-with-Hash construction achieves PRIV-security if the
starting encryption scheme is IND-CPA and has negligible max public-key probability.

Theorem 5.1 Suppose there is a privacy adversary A = (Am, Ag) against EwH with min-entropy
µ, which outputs vectors of size v with components of length n and makes at most qh queries to its
hash oracle. Then there exists an IND-CPA adversary B against AE such that

Advpriv
EwH,A ≤ Advind-cpa

AE,B +
2qhv

2µ
+ 8qhv ·mpkAE , (2)

where mpkAE is the max public-key probability of AE. Furthermore, B makes v queries to its
LR-oracle and its running-time is at most that of A plus O(vn).

10

The proof is readily obtained from the proof of Theorem 7.1, which is in Appendix D. (We comment
in the latter in more detail about the differences.)

Although Proposition 4.1 shows that any IND-CPA encryption scheme has negligible max
public-key probability, the reduction is not tight. For most specific schemes, one can in fact easily
and unconditionally (meaning, without assumption) show that the max public-key probability is
asymptotically small. For example, in ElGamal [30], the public key contains a value gx, where x is
a random exponent in the secret key. In this case, the max public-key probability is 1/|G|, where
|G| is the order of the corresponding group.

5.2 RSA-DOAEP, A length-preserving deterministic scheme

It is sometimes important to minimize the number of bits transmitted over the network. We
devise an efficient deterministic encryption scheme that is optimal in this regard, namely is length-
preserving. (That is, the length of the ciphertext equals the length of the plaintext.) Length-
preserving schemes can also be needed for securing legacy code. Ours is the first such construction
shown secure under a definition of security substantially stronger than one-wayness, and in partic-
ular is the first construction of an asymmetric cipher.

RSA and its security. We recall some background on the RSA function [48]. An RSA trapdoor-
permutation generator security parameter k is an algorithm F that on input 1k returns (N, e), (N, d)
where N is the product of two distinct k/2-bit primes and ed ≡ 1 mod φ(N). (Here φ(·) is Euler’s
phi function.) An inverter I against F is algorithm that takes input 1k, (N, e), xe mod φ(N) and
tries to compute x. RSA trapdoor permutation generator F is one-way if for every I the function:

Advowf
F ,I(k) = Pr

[

x = x′ : ((N, e), (N, d))
$
← F(1k) ; x

$
← {0, 1}k ; x′ $

← I(1k, (N, e), xe)
]

is negligible.

The scheme. Our construction is based on RSA-OAEP [13, 31]. But in place of the randomness
in this scheme we use part of the message, and we add an extra round to the underlying transform.

Formally, the scheme is parameterized by functions k0(·), k1(·) > 0. The plaintext space PtSp(k)
consists of all strings of length at least max(k1(k), 2k0(k)+1). We assume here for simplicity that all
messages to encrypt have a fixed length n = n(k) satisfying n > 2k0 and n ≥ k1. Let F be an RSA
trapdoor-permutation generator with modulus length to k1 = k. The key-generation algorithm of
the associated RO-model deterministic encryption scheme RSA-DOAEP (“D” for “deterministic”)
runs F and returns (N, e) as the public key and (N, d) as the secret key. Its encryption and
decryption algorithms have oracle access to functions H1,H2 : {0, 1}∗ → {0, 1}k0 and R : {0, 1}∗ →
{0, 1}n−k0 , and are defined as follows (see Figure 1 for an illustration of the encryption algorithm):

Algorithm EH1,H2,R(1k, (N, e), x)
xl ← x[1 . . . k0]
xr ← x[k0 + 1 . . . n]
s0 ← H1((N, e)‖xr)⊕ xl

t0 ← R((N, e)‖s0)⊕ xr

s1 ← H2((N, e)‖t0)⊕ s0

pl ← (s1‖t0)[1 . . . n− k1]
pr ← (s1‖t0)[n − k1 + 1 . . . n]
c← pl‖(p

e
r mod N)

Return c

Algorithm DH1,H2,R(1k, (N, e), (N, d), c)
p1 ← c[1 . . . n− k1]
y ← c[n− k1 + 1 . . . n]
p← p1‖(y

d mod N)
s1 ← p[1 . . . k0]
t0 ← p[k0 + 1 . . . n]
s0 ← H2((N, e)‖t0)⊕ s1

xr ← R((N, e)‖s0)⊕ t0
xl ← H1((N, e)‖xr)⊕ s0

Return xl‖xr

11

t0
RSAN;e

Rs0
H2
H1(N; e)

s1

k1| {z }n� k1| {z }

n� k0k0 z }| {z }| {

y
prpl

pl

(N; e)
(N; e)xl xr

1
Figure 1: An illustration of the encryption algorithm of RSA-DOAEP.

Security. The following implies that RSA-DOAEP achieves PRIV-security if RSA is one-way.

Theorem 5.2 Suppose there exists a privacy adversary A = (Am, Ag) against RSA-DOAEP with
min-entropy µ that makes at most qhi

queries to oracle Hi for i ∈ {1, 2} and qr to oracle R, and
outputs vectors of size v with components of length n. Let qtot = qh1

+ qr + qh2
. We consider two

cases:

• Case 1: n < k0 + k1. Then there is an inverter I against RSA trapdoor-permutation generator
F such that

Advpriv
RSA-DOAEP,A ≤ qh2

v ·
√

Advowf
F ,I + 22k1−4(n−k0)+5

+ 2k1−2(n−k0)+5 +
2qrv

2k0
+

2qh1
qrv

2µ
+ 4qtot ·

ln(2k1/2 − 1)

2k1/2 − 1
. (3)

Furthermore the running-time of I is at most twice that of A plus O(log v + qh2
log qh2

+ k3
1).

• Case 2: n ≥ k0 + k1. Then there is an inverter I against RSA trapdoor-permutation generator
F such that

Advpriv
RSA-DOAEP,A ≤ v ·Advowf

F ,I

+
2qrv

2k0
+

2qh1
qrv

2µ
+ 4qtot ·

ln(2k1/2 − 1)

2k1/2 − 1
.

Furthermore, the running-time of I is at most that of A plus O(log v + qh2
log qh2

).

12

The proof is in Appendix A.
In practice, we will have e.g. k1 = 1024, and then we can set parameter k0 to, say, 160 bits

to effectively maximize security in either case of the theorem. Then, for a given application, the
relation between n − 160 and 1024 then determines which case of the theorem applies. We note
that the weaker security guarantee in Case 1 is analogous to the state-of-the-art for RSA-OAEP
itself [31, 46].

Encrypting long messages. Typically, to encrypt long messages efficiently using an asymmetric
scheme in practice, one employs hybrid encryption. This methodology in particular applies to the
Encrypt-with-Hash construction, in which the starting scheme can be a hybrid one. However, if
using hybrid encryption, RSA-DOAEP would no longer be length-preserving (since an encrypted
symmetric key would need to be included with the ciphertext). We therefore stress that one can
efficiently encrypt long messages using RSA-DOAEP without making use of hybrid encryption.
Intuitively, this is possible because the underlying Feistel network in the scheme acts like an “all-
or-nothing transform” [19], such that unless an adversary with high min-entropy inverts the RSA
image in a ciphertext then it cannot recover any information about the (long) message.

6 Efficiently Searchable Encryption (ESE)

We now turn to the application to outsourced databases, where data is sent to a remote server. The
database server is untrusted. The data in each field in the database is to be encrypted separately
under the public key of a receiver, who needs to be able to query the server and retrieve encrypted
records containing particular data efficiently. Encrypting the data deterministically provides a
possible solution to this problem. The database can be then organized into a standard (e.g. tree-
based) data structure, and a query, i.e. a ciphertext, specifies the exact piece of data the server needs
to locate, so the sever can find it (in say logarithmic time) just like for unencrypted data. In general,
though, encryption permitting efficient search does not to be deterministic per se. Accordingly, we
first define a more general primitive we call efficiently searchable encryption (ESE).

The new primitive. The idea is to associate a (deterministic) “tag” to each plaintext, which
can be computed both from the plaintext and from a ciphertext that encrypts it. The server can
compute the tag of a ciphertext to be stored in the database and use it to store the ciphertext
appropriately in a data structure. To query a plaintext, the receiver can compute and send its tag,
which the server can look up in the data structure, returning any matches and associated data.
(The receiver can then decrypt these matches and filter out any false-positives, i.e. ciphertexts
with the same tag as the query but which do not decrypt to the intended plaintext.) These two
functionalities are captured by the functions F,G below.

Let AE = (K, E ,D) be a public-key encryption scheme with associated plaintext space PtSp(·).
We say AE is a δ-efficiently searchable encryption (-ESE) scheme for some function δ(·) < 1 if there
exist deterministic algorithms F,G such that for every k we have

1. Perfect Consistency: For every k and x1 ∈ PtSp(k), the probability that the following experiment
returns 1 is 1:

(pk, sk)
$
← K(1k) ; c

$
← E(1k,pk, x1)

If F (pk, x1) = G(pk, c) then return 1 ; Else return 0

2. Computational Soundness: For every k and every algorithm M that on input 1k outputs a pair
of distinct messages in PtSp(k), the probability that the following experiment returns 1 is at

13

most δ(k):

(x0, x1)
$
←M(1k) ; (pk, sk)

$
← K(1k) ; c

$
← E(1k,pk, x1)

If F (pk, x0) = G(pk, c) then return 1 ; Else return 0

We refer to the output of F,G as the tag of the message or a corresponding ciphertext.
Above, consistency ensures that the server locates at least the desired ciphertext(s) on a query,

because their tags and those of the plaintext used to form the query are the same. Soundness limits
the number of false-positives located as well; if using a δ-ESE scheme, for a size n database we expect
to have at most δ · n false-positives on a query, over the choice of data in the database and of the
query (both not depending on the remaining), and key-generation and encryption computations.
The reasoning for this is as follows. Given query F (pk, x), define for each ciphertext c in the
database such that D(1k,pk, sk, c) 6= x the random variable Xc taking value 1 if F (pk, x) = G(pk, c)
and 0 otherwise. Define X =

∑

c Xc. The expected number of false positives on the query is then

E [X] =
∑

c

E [Xc] ≤
∑

c

δ ≤ δ · n ,

where the equality is by linearity of expectation and the first inequality follows from soundness.
Indeed, any deterministic encryption scheme is a 0-ESE scheme under our definition. Hence the

two deterministic encryption schemes we studied, namely Encrypt-with-Hash and RSA-DOAEP,
represent two particular 0-ESE schemes. To see this, let DPE = (K,DE ,D) be any deterministic
public-key encryption scheme. Then letting F and G be the algorithms that on inputs pk,m and
pk,DE(pk,m), respectively, return DE(pk,m), we see that DPE is 0-efficiently-searchable. That
is, the function δ is identically 0 here, due consistency of encryption.

However, for other ESE schemes δ may be large. This is why M is not given input pk in the
soundness condition; if it were, the condition would not make sense for large δ, because then M
could compute tags of messages itself and just output two it finds to agree on their tags. As in
our definition of privacy, this restriction is reasonable because real data and queries are unlikely to
depend on any public key.

Security of ESE. As our PRIV does not actually require the encryption scheme in question to
be deterministic, we can also use it for ESE. Here the rule that a privacy adversary output vectors
with the same equality pattern means, intuitively, that we allow the server to learn only which
records in the database contain the same field values and how many times each such value occurs
(called the occurrence profile of the data), so that it is able to efficiently search. In contrast to
deterministic encryption, we will see that using an ESE scheme with large δ can increase privacy
(at the cost of more processing by the receiver on a query) when database fields being encrypted
do not have high min-entropy.

6.1 Encrypt-and-Hash ESE

We formalize and analyze a probabilistic ESE scheme based on an approach from the database
literature in which one appends a (deterministic) hash of the plaintext to a ciphertext to enable
efficient search. Let AE = (K, E ,D) be any pubic-key encryption scheme and H : {0, 1}∗ → {0, 1}l

for some l > 0 be a hash function. The RO-model “Encrypt-and-Hash” encryption scheme EaH =
(K,HE ,HD) is defined via

14

Algorithm HEH(1k,pk, x)
h← H(pk‖x)
y ← E(1k,pk, x)
Return y‖h

Algorithm HDH(1k,pk, sk, y‖h)
x← D(1k,pk, sk, y)
h′ ← H(pk‖x)
If h′ = h then return x
Else Return ⊥

Then EaH is a 2−l-ESE scheme. For this, we let F,G be the algorithms that on inputs pk, x and
pk, E(pk, x)‖H(pk‖x), respectively, return the tag H(pk‖x); the fact that δ is identically 2−l here
follows from the fact that H is a RO with output length l.

The following implies that this construct is PRIV secure if the underlying encryption scheme is
IND-CPA, independent of l.

Theorem 6.1 Suppose there is a privacy adversary A = (Am, Ag) against EaH that outputs vectors
of size v and makes at most qh queries to its hash oracle. Then there exists an IND-CPA adversary
B against AE such that

Advpriv
EaH,A ≤ 2 ·Advind-cpa

AE,B +
qhv

2µ
+ qh ·mpkAE ,

where mpkAE is the max public-key probability of AE. Furthermore, B makes v queries to its
LR-oracle and its running-time is at most that of A.

The proof is in Appendix B.

Bucketization. Theorem 6.1 tells us that EaH achieves PRIV if plaintexts being encrypted have
high min-entropy. But in the case that they do not, one can try to compensate for this by decreasing
the length of the hash l (at the cost of more processing by the receiver on a query), resulting in more
plaintexts with the same tag. This technique is known as bucketization in the database literature.
Intuitively, the scheme may then provide some privacy, even for small message spaces, if an efficient
adversary cannot distinguish with too high a probability between ciphertexts whose tags are equal.

In the proceedings version of this paper [9], we incorrectly claimed a general bound on the
advantage of a privacy adversary A against EaH with hash length l > 0. In fact, our analysis
applies only to case that the adversary outputs vectors of size 1 and is interested in recovering
the entire message from the ciphertext. The corrected theorem is given below; we leave it open to
extend our techniques to the more general case.

Say A = (Am, Ag) is a message-recovery (MR) privacy adversary if the output of Am is always
of the form (x, x) for a string x. Suppose Am of a MR privacy adversary A puts a distribution D

on a finite set of plaintexts S. Let S = {m1, . . . mM} and pi be the probability assigned to mi by
D, meaning Am outputs (mi,mi) with probability pi. Intuitively, one cannot expect bucketization
to increase privacy in all cases because D may be too concentrated at a particular mi. Then, if
the adversary sees a ciphertext whose tag is the same as the hash of mi, it can deduce the latter
decrypts to mi with very high probability. But we show that as long as D is sufficiently “spread
out” over S then bucketization can indeed increase privacy, even if |S| is not too large. The metric
we use to measure this is the collision probability Coll [D] of D, which is defined as

∑M
i=1 p2

i .

Theorem 6.2 Suppose there is a MR privacy adversary A = (Am, Ag) such that Am puts distri-
bution D on a finite set of plaintexts S. Then there exists an IND-CPA adversary B against AE

such that

Advpriv
EaH′,A

≤ 2 ·Advind-cpa
AE,B + 12 · Coll [D] · |S| ·

2−µ · 2l

(1− 2−µ)2
. (4)

15

Furthermore, B makes one query to its LR-oracle and its running-time is at most that of A.

The proof is in Appendix C.
Note that it follows from the Cauchy-Schwarz inequality that 1/|S| ≤ Coll [D] above, with

equality just when Am puts a uniform distribution on S. So, the closer the collision probability of
D is to that of the uniform distribution on S, the better our bound. Indeed, it can be shown that
the closer the former is to the latter, the “closer” D is to the uniform distribution on S itself.

We remark that one cannot use a POWHF [21, 22] to compute the tags in place of the RO
in the Encrypt-and-Hash construction, because POWHFs are randomized and this will violate the
consistency requirement of ESE.

7 CCA and Other Extensions

Our definition, and so far our security proofs, are for the CPA case. Here we discuss extensions to
the CCA case and then other extensions such as to hash functions rather than encryption schemes.

PRIV-CCA. Extend Exppriv-b
Π,A (k) to give Ag on input 1k,pk, c oracle access to D(1k,pk, sk, ·), for

b ∈ {0, 1}, which it can query on any string not appearing as a component of c. Note that Am does
not get this decryption oracle. Then let

Advpriv-cca
Π,A (k) = Pr

[

Exppriv-cca-1
Π,A (k)⇒ 1

]

− Pr
[

Exppriv-cca-0
Π,A (k)⇒ 1

]

.

Again, a standard conditioning argument shows that

Advpriv-cca
Π,A (k) = 2 · Pr

[

Exppriv-cca-b
Π,A (k)⇒ b

]

− 1 ,

We say that Π is PRIV-CCA secure if Advpriv-cca
Π,A (·) is negligible for every A with high min-entropy.

Encrypt-with-Hash. Deterministic encryption scheme EwH is PRIV-CCA secure even if the
starting encryption scheme is only IND-CPA but meets an extra condition, namely that no cipher-
text occurs with too high a probability. More precisely, the max-ciphertext probability mc(·) of
AE = (K, E ,D) is defined as follows: we let mcAE(k) be the maximum taken over all y ∈ {0, 1}∗

and all x ∈ PtSp(k) of the quantity

Pr
[

(pk, sk)
$
← K(1k) ; c

$
← E(1k,pk, x) : c = y

]

.

Then Theorem 5.1 extends as follows.

Theorem 7.1 Suppose there is a PRIV-CCA adversary A = (Am, Ag) against EwH with min-
entropy µ, which outputs vectors of size v with components of length n and makes at most qh

queries to its hash oracle and at most qd queries to its decryption oracle. Let mpkAE and mcAE be
max public-key and max-ciphertext probabilities of AE, respectively. Then there exists an IND-CPA
adversary B against AE such that

Advpriv-cca
EwH,A ≤ Advind-cpa

AE,B +
2qhv

2µ
+ 8qh ·mpkAE + 2qd ·mcAE . (5)

Furthermore, B makes v queries to its LR-oracle and its running-time is at most that of A plus
O(vn + qhTE), where TE is the time for one computation of E on a message of length n.

The proof is given in Appendix D.

16

The requirement that mcAE(·) be small is quite mild. Most practical encryption schemes have
negligible max-ciphertext probability. For example, the “no-authenticity,” IND-CPA version of
RSA-OAEP [14] has max-ciphertext probability equal to 1/2n(k), where n(·) is the length of the
messages to encrypt, and ElGamal [32] has max-ciphertext probability 1/|G|, where G is the used
group. Thus in practice this does not amount to any extra assumption. Moreover, in general any
IND-CPA scheme AE = (K, E ,D) can be easily modified to achieve this property. Specifically,
define:

Algorithm E∗(1k,pk, x)

r
$
← {0, 1}k

c
$
← E(1k,pk, x)

Return c‖r

Algorithm D∗(1k,pk, sk, c‖r)
x← D(1k,pk, sk, c)
Return x

IND-CPA security of AE∗ follows from IND-CPA security of AE, but mcAE∗ = 2−k.
On the other hand, IND-CPA security does not imply low max-ciphertext probability in general.

To prove this, we start with an IND-CPA scheme AE = (K, E ,D) and modify it to obtain a scheme
AE′ that is still IND-CPA but has high max-ciphertext probability (namely mcAE′ = 1). Scheme
AE′ = (K, E ′,D′) works as follows:

Algorithm E ′(1k,pk, x)

y
$
← E(1k,pk, 0)

z ← D(1k, x, y)
If z = 0 then return 0
Else return E(1k,pk, x)

Algorithm D′(1k,pk, sk, c)
If c = 0 then return sk

Else return D(1k,pk, sk, c)

Above, we assume that “0” is a special ciphertext not output by E(1k,pk, ·) for all k ∈ N and pk

output by K(1k). It is easy to see that AE′ is IND-CPA but mcAE′ = 1.

RSA-DOAEP. Scheme RSA-DOAEP is not PRIV-CCA, because there is a chosen-ciphertext attack
against it. Denote by DOAEP the three-round Feistel network underlying the scheme and DOAEP−1

its inverse. Consider PRIV-CCA adversary A = (Am, Ag) against RSA-DOAEP that works as
follows:

Adversary Am(1k)

x
$
← {0, 1}n

Return (x, x)

Adversary A
D(1k,(N,e),(N,d),·)
g (1k, (N, e), c)

y
$
← {0, 1}k1

c′ ← c[1 . . . n− k1]‖(c[n − k1 + 1 . . . n] · ye mod N)
x′ ← D(1k, (N, e), (N, d), c′)
z′ ← DOAEP(x′)
s← z′[n− k1 + 1 . . . n] · y−1 mod N

Return DOAEP−1(z)

Above, n is as defined in Subsection 5.2, and, for simplicity, we do not explicitly denote RO access of
the algorithms. Adversary A is efficient and has min-entropy n but PRIV-CCA advantage 1−1/2n.

However, it is straightforward to show that when properly combined in the “encrypt-then-sign”
fashion with a secure digital signature, RSA-DOAEP does achieve PRIV-CCA in a natural “outsider
security” model analogous to that in [5]. This may come at no additional cost, for example in the
outsourced database application, which also requires authenticity anyway.

17

Extensions to other primitives. One can apply (as we do in the proof of Theorem 6.2) our
PRIV definition to a more general primitive that we call a (public-key) hiding scheme, which we
define as a pair HIDE = (Kg,F) of algorithms, where Kg on input 1k outputs a key K and F

takes 1k,K and an input x to return an output we call the ciphertext. Note that every public-key
encryption scheme (K, E ,D) has an associated hiding scheme where Kg runs K to receive output
(pk, sk) and then returns pk, and F(1k,K, ·) is the same as E(1k,pk, ·). In general, though, a hiding
scheme is not required to be invertible, covering for example the case of hash functions.

Encrypt-and-Hash. PRIV-CCA security of ESE scheme EaH requires IND-CCA security of the
starting encryption scheme AE in general, in which case the analogous statements to the theorems
in Section 6.1 hold when considering CCA attacks. (In other words, if the starting encryption
scheme is IND-CCA then EaH is PRIV-CCA, and more specifically the same bounds as in the
theorems hold for PRV-CCA adversaries in this case.) We comment in the proofs of the former
how on the proofs change in the CCA case.

In fact, the basic construct generalizes to using any deterministic hiding scheme HIDE = (Kg,F)
as defined above in place of the RO in EaH, where we replace a query H(pk, x) in the scheme by
F(K, (pk, x)). Let us call the resulting scheme EaHHIDE. Theorem 6.1 then generalizes as follows.

Theorem 7.2 Suppose there is a privacy adversary A = (Am, Ag) against EaHHIDE that outputs
vectors of size v. Then there exists an IND-CPA adversary B against AE and a privacy adversary
A′ against HIDE such that

Advpriv
EaHHIDE,A ≤ 2 ·Advind-cpa

AE,B + Advpriv
HIDE,A′ .

Furthermore, B makes v queries to its LR-oracle, A′ outputs vectors of length v with components
of length n, and the running-times of A′, B are at most that of A.

Proof: The proof is similar to the proof of Theorem 6.1, in Appendix B. We define three adver-
saries, namely B,A′ = (A′

m, A′
g), B

′ as follows:

Adv BE(1k,pk,LR(·,·,b))(1k,pk)

K
$
← Kg(1k)

(x1, t1)
$
← Am(1k)

c
$
← E(1k,pk,LR(0,x1, b))

y← F(1k,K,x1)
For i = 1 to v do:

c′[i]← c[i]‖y[i]

g
$
← Ag(1

k, (pk,K), c′)
If g = t1 then return 1
Else return 0

Adv A′
m(1k)

(x, t)
$
← Am(1k)

Return (x, t)

Adv A′
g(1

k,pk, c)

(pk, sk)
$
← K(1k)

y
$
← E(pk,0)

For i = 1 to v do:

c′[i]
$
← y[i]‖c[i]

g
$
← Ag(1

k, (pk,K), c′)
Return g

Adv B
′E(1k ,pk,LR(·,·,b))(1k,pk)

K
$
← Kg(1k)

(x0, t0)
$
← Am(1k) ; (x1, t1)

$
← Am(1k)

c
$
← E(1k,pk,LR(0,x0, b))

y← F(1k,K,x0)
For i = 1 to v do:

c′[i]← c[i]‖y[i]

g
$
← Ag(1

k, (pk,K), c′)
If g = t1 then return 1
Else return 0

The proof is a hybrid argument. Consider modified schemes EaHi = (K′, Ei) for i ∈ {1, 2, 3, 4}
defined as follows. Each EaHi has the same key-generation algorithm, namely K′, which on input

1k outputs (pk,K) where (pk, sk)
$
← K(1k) and K

$
← Kg(1k). The encryption algorithms operate

18

on vectors of size v, and are defined as follows:

E1(1
k, (pk,K),x) = E(1k,pk,x)‖F(1k,K,x)

E2(1
k, (pk,K),x) = E(1k,pk,0)‖F(1k,K,x)

E3(1
k, (pk,K),x) = E(1k,pk,0)‖F(1k,K,x′), where (x′, t′)

$
← Am(1k)

E4(1
k, (pk,K),x) = E(1k,pk,x′)‖F(1k,K,x′), where (x′, t′)

$
← Am(1k) .

Above, 0 denotes the size-v vector with each component 0n, and F is extended to vectors component-
wise analogously to encryption, as is “·‖·” where both arguments are vectors. Consider a game
with A and scheme EaHi for i ∈ {1, 2, 3, 4} that goes as follows:

Game 1

(pk,K)
$
← K′(1k)

(x, t)
$
← Am(1k)

g
$
← Ag(1

k,K, Ei(1
k, (pk,K),x))

If g = t then return 1
Else return 0

Denote by pi the probability that this game outputs 1 when run with EaHi. We have by construction

Pr
[

Exppriv-1
EaHHIDE,A⇒ 1

]

= p1 ; Pr
[

Exppriv-0
EaHHIDE,A⇒ 1

]

= p4 .

So, by definition

Advpriv
EaHHIDE,A = p1 − p4 .

Now we write

p1 − p4 = (p1 − p2) + (p2 − p3) + (p3 − p4) . (6)

To bound the right-hand side above, taking into account the definition of the advantages of B,A′, B′

we have

Advind-cpa
AE,B = p1 − p2 ; Advpriv

HIDE,A′ = p3 − p2 ; Advind-cpa
AE,B′ = p4 − p3 .

We substitute these into (6) to get

Advpriv
EaHHIDE,A = Advind-cpa

AE,B + Advpriv
HIDE,A′ + Advind-cpa

AE,B′ .

Now assuming wlog that

Advind-cpa
AE,B′ (k) ≤ Advind-cpa

AE,B (k)

and combining-like terms completes the proof.

In the RO model, it is easy to construct a PRIV secure deterministic hiding scheme HIDE′ =
(Kg′,F′) by setting Kg′ on input 1k to output a random K ∈ {0, 1}k and F′ on input 1k,K, x to
return H(K‖x), where H is a RO. But Theorem 6.1 says we can do better than scheme EaHHIDE′

in this case, in the sense that K can be dropped and H(K‖x) replaced with H(pk‖x). However,
the analysis in this case (given in Appendix B) is slightly more involved.

19

8 Acknowledgments

We would like to thank Brian Cooper and Cynthia Dwork for helpful discussions, and Alex Dent
and Ulrich Kühn for feedback on an early draft of this paper. Thanks also to Diana Smetters and
Dan Wallach for pointing us to the work of [2, 29]. Finally, we thank the anonymous reviewers of
Crypto 2007 for their comments and suggestions.

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Paillier,
and H. Shi. Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and
extensions. In V. Shoup, editor, Crypto ’05, volume 3621 of LNCS. Springer, 2005. (Cited on page 3,
5.)

[2] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.R. Douceur, J. Howell, J.R. Lorch,
M. Theimer, and R. Wattenhofer. FARSITE: Federated, available, and reliable storage for an incom-
pletely trusted environment. In Symposium on Operating System Design and Implementation (OSDI
’02). Springer, 2002. (Cited on page 5, 20.)

[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for numeric data. In
SIGMOD ’04. ACM, 2004. (Cited on page 5.)

[4] G. Amanatidis, A. Boldyreva, and A. O’Neill. New security models and provably-secure schemes for
basic query support in outsourced databases. In Working Conference on Data and Applications Security
(DBSec ’07), LNCS. Springer, 2007. (Cited on page 5.)

[5] J.-H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In L. Knudsen,
editor, EUROCRYPT ’02, volume 2332 of LNCS. Springer, 2002. (Cited on page 17.)

[6] J. Baek, R. Safavi-Naini, and W. Susilo. Public key encryption with keyword search revisited. Cryptology
ePrint Archive, Report 2005/151, 2005. (Cited on page 5.)

[7] O. Baudron, D. Pointcheval, and J. Stern. Extended notions of security for multicast public key
cryptosystems. In ICALP ’00, volume 1853 of LNCS. Springer, 2000. (Cited on page 9.)

[8] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security proofs
and improvements. In B. Preneel, editor, EUROCRYPT ’00, volume 1807 of LNCS. Springer, 2000.
(Cited on page 7, 8, 9.)

[9] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In
CRYPTO ’07, volume 4622 of LNCS. Springer, 2007. (Cited on page 5, 15.)

[10] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption.
In FOCS ’97, pages 394–403, 1997. (Cited on page 3.)

[11] M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in SSH: provably fixing the SSH
binary packet protocol. In Conference on Computer and Communications Security (CCS ’02). ACM,
2002. (Cited on page 5.)

[12] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In Conference on Computer and Communications Security (CCS ’93). ACM, 1993. (Cited on page 3,
8.)

[13] M. Bellare and P. Rogaway. Optimal asymmetric encryption – how to encrypt with RSA. In A. De
Santis, editor, Eurocrypt ’94, volume 950. Springer, 1995. (Cited on page 3, 11.)

[14] M. Bellare and P. Rogaway. The game-playing technique and its application to triple encryption.
Cryptology ePrint Archive, Report 2004/331, 2004. (Cited on page 7, 17, 24, 25, 35, 36.)

20

[15] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In M. Franklin,
editor, Crypto ’04, volume 3027 of LNCS. Springer, 2004. (Cited on page 4.)

[16] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword search.
In C. Cachin and J. Camenisch, editors, EUROCRYPT ’04, volume 3027 of LNCS. Springer, 2004.
(Cited on page 3, 5.)

[17] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data, 2007. (Cited on
page 5.)

[18] X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without random oracles).
In C. Dwork, editor, CRYPTO ’06, volume 4117 of LNCS. Springer, 2006. (Cited on page 3, 4, 5.)

[19] V. Boyko. On the security properties of OAEP as an all-or-nothing transform. In M. J. Wiener, editor,
CRYPTO ’99, volume 1666 of LNCS. Springer, 1999. (Cited on page 13.)

[20] R. Brinkman, L. Feng, J. M. Doumen, P. H. Hartel, and W. Jonker. Efficient tree search in encrypted
data. Technical Report TR-CTIT-04-15, Enschede, March 2004. (Cited on page 5.)

[21] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial information. In
B. Kaliski, editor, CRYPTO ’97, volume 1294 of LNCS. Springer, 1997. (Cited on page 5, 16.)

[22] R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic hash functions. In STOC
’98. ACM, 1998. (Cited on page 5, 16.)

[23] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted data. In
J. Ioannidis, A. D. Keromytis, and M. Yung, editors, ACNS ’05, volume 3531 of LNCS, 2005. (Cited
on page 5.)

[24] R. Curtmola, J.A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: Improved
definitions and efficient constructions. In A. Juels, R. N. Wright, and S. De Capitani di Vimercati,
editors, Conference on Computer and Communications Security (CCS ’06). ACM, 2006. (Cited on
page 5.)

[25] E. Damiani, S. De Capitani Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Balancing confiden-
tiality and efficiency in untrusted relational DBMSs. In S.Jajodia, V. Atluri, and T. Jaeger, editors,
Conference on Computer and Communications Security (CCS ’03). ACM, 2003. (Cited on page 5.)

[26] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,
22(6):1130–1140, 1976. (Cited on page 3.)

[27] Y. Dodis and A. Smith. Entropic security and the encryption of high entropy messages. In J. Kilian,
editor, TCC ’05, volume 3378 of LNCS. Springer, 2005. (Cited on page 5.)

[28] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal on Computing, 30(2),
2000. (Cited on page 3.)

[29] J.R. Douceur, A. Adya, W.J. Bolosky, D. Simon, and M. Theimer. Reclaiming space from duplicate files
in a serverless distributed file system. In Conference on Distributed Computing Systems (ICDCS’02),
2002. (Cited on page 5, 20.)

[30] T. ElGamal. A public key cryptosystem and signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, Vol. 31, 1985. (Cited on page 11.)

[31] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under the RSA assumption.
In J. Kilian, editor, CRYPTO ’01, volume 2139 of LNCS. Springer, 2001. (Cited on page 3, 11, 13, 23.)

[32] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In Pro-
ceedings of CRYPTO 84 on Advances in cryptology, pages 10–18, New York, NY, USA, 1985. Springer-
Verlag New York, Inc. (Cited on page 17.)

21

[33] Y. Gertner, T. Malkin, and O. Reingold. On the impossibility of basing trapdoor functions on trapdoor
predicates. In FOCS ’01. IEEE, 2001. (Cited on page 4.)

[34] E.-J. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
http://eprint.iacr.org/2003/216/. (Cited on page 5.)

[35] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2),
1984. (Cited on page 3, 7.)

[36] P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search over encrypted data. In
M. Jakobsson, M. Yung, and J. Zhou, editors, Applied Cryptography and Network Security Conference
(ACNS ’04), volume 3089 of LNCS. Springer, 2004. (Cited on page 5.)

[37] H. Hacigümüs, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database-
service-provider model. In Conference on Management of data (SIGMOD ’02). ACM, 2002. (Cited on
page 5.)

[38] H. Hacigümüs, B. R. Iyer, and S. Mehrotra. Efficient execution of aggregation queries over encrypted
relational databases. In Y. Lee, J. Li, K.-Y. Whang, and D. Lee, editors, DASFAA ’04, volume 2973 of
LNCS. Springer, 2004. (Cited on page 5.)

[39] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In M. A. Nascimento,
M. Tamer Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, editors, VLDB ’04.
Morgan Kaufmann, 2004. (Cited on page 5.)

[40] B. R. Iyer, S. Mehrotra, E. Mykletun, G. Tsudik, and Y. Wu. A framework for efficient storage security
in RDBMS. In E. Bertino, S. Christodoulakis, D. Plexousakis, V. Christophides, M. Koubarakis,
K. Böhm, and E. Ferrari, editors, EDBT ’04, volume 2992 of LNCS. Springer, 2004. (Cited on page 5.)

[41] M. Kantracioglu and C. Clifton. Security issues in querying encrypted data. In Working Conference on
Data and Applications Security (DBSec ’05), LNCS. Springer, 2005. (Cited on page 5.)

[42] J. Li and E. Omiecinski. Efficiency and security trade-off in supporting range queries on encrypted
databases. In Working Conference on Data and Applications Security (DBSec ’05), LNCS. Springer,
2005. (Cited on page 5.)

[43] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions.
SIAM J. Comput., 17(2), 1988. (Cited on page 5.)

[44] S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic cryptosystems. SIAM
Journal on Computing, 17(2):412–426, 1988. (Cited on page 3.)

[45] G. Özsoyoglu, D. A. Singer, and S. S. Chung. Anti-tamper databases: Querying encrypted databases.
In Working Conference on Data and Applications Security (DBSec ’03), LNCS. Springer, 2003. (Cited
on page 5.)

[46] D. Pointcheval. How to encrypt properly with RSA. RSA Laboratories’ CryptoBytes, 5(1), Win-
ter/Spring 2002. (Cited on page 13.)

[47] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext
attack. In Joan Feigenbaum, editor, CRYPTO ’91, volume 576 of LNCS. Springer, 1992. (Cited on
page 3.)

[48] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining public-key cryptosystems and
digital signatures. Technical Report MIT/LCS/TM-82, 1977. (Cited on page 11.)

[49] A. Russell and H. Wang. How to fool an unbounded adversary with a short key. IEEE Transactions on
Information Theory, 52(3):1130–1140, 2006. (Cited on page 5.)

[50] V. Shoup. A computational introduction to number theory and algebra. Cambridge University Press,
New York, NY, USA, 2005. (Cited on page 26.)

22

 http://eprint.iacr.org/2003/216/

[51] Arsenal Digital Solutions. Top 10 reasons to outsource remote data protection.
http://www.arsenaldigital.com/services/remote_data_protection.htm. (Cited on page 3.)

[52] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In Sympo-
sium on Security and Privacy. IEEE, 2000. (Cited on page 5.)

[53] H. Wang and L.V.S. Lakshmanan. Efficient secure query evaluation over encrypted XML databases. In
VLDB ’06. VLDB Endowment, 2006. (Cited on page 5.)

[54] B. Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor, EURO-
CRYPT, volume 3494 of LNCS. Springer, 2005. (Cited on page 4.)

A Proof of Theorem 5.2

Since RSA-DOAEP is deterministic, we assume wlog that the plaintext components of a vector x
are distinct for all (x, t) output by Am(1k). We prove Case 1, meaning we suppose that n−k0 < k1.
(This is used in the lemma below.) Case 1 is the “harder” case in the sense that we need to use
Lemma 6 from [31]. To state this, we call a partial one-way adversary I ′ an algorithm that takes
input (N, e), xe mod φ(N) and tries to compute just the last k1− (n− k0) bits of x. (The fact that
it computes the last n−k0 bits of x is just for convenience; [31] actually proves something general.)
Let k2 = k1 − (n− k0). For a partial one-way adversary I ′, define

Advpowf
F ,I′ = Pr

[

((N, e), (N, d))
$
← F(1k) ; x

$
← {0, 1}k1 ; z

$
← I ′((N, e), xe) : z = x[k2 + 1 . . . k1]

]

.

Intuitively, the lemma says that RSA is one-way if it is partial one-way (and n− k0 is large enough
relative to k1).

Lemma A.1 [31, Lemma 6] Let F be an RSA trapdoor permutation generator with modulus
length k1 and let I ′ be a partial one-way adversary against F . Then there exists an inverter I
against F such that

Advpowf
F ,I′ ≤

√

Advowf
F ,I + 22k1−4(n−k0)+10 + 2k1−2(n−k0)+5 .

Furthermore, the running-time of I is at most twice that of I ′ plus O(k3
1).

For the proof, we construct a partial one-way adversary against F and then conclude the existence
of an inverter I by the lemma. The former, which we call GetQuery, is depicted in Figure 5. The
main games for the proof begin in Figure 2 and are continued in Figure 3.

23

http://www.arsenaldigital.com/services/remote_data_protection.htm

Equation (3) of Theorem 5.2 follows from the following sequence of inequalities, which we will
justify below:

1

2
+

1

2
Advpriv-cpa

DOAEP,A = Pr
[

G
Ag

1 ⇒ b
]

(7)

≤ Pr
[

G
Ag

2 ⇒ b
]

+ Pr[G
Ag

1 sets bad0] (8)

≤ Pr
[

G
Ag

2 ⇒ b
]

+ 2qtot ·mpkF (9)

≤ Pr
[

G
Ag

3 ⇒ b
]

+ Pr[G
Ag

2 sets bad1] + 2qtot ·mpkF (10)

≤ Pr
[

G
Ag

3 ⇒ b
]

+
qrv

2k0
+ 2qtot ·mpkF (11)

≤ Pr
[

G
Ag

4 ⇒ b
]

+
qrv

2k0
+ Pr[G

Ag

3 sets bad2] + 2qtot ·mpkF (12)

≤ Pr
[

G
Ag

4 ⇒ b
]

+
qrv

2k0
+

qh1
qrv

2µ
+ 2qtot ·mpkF (13)

≤ Pr
[

G
Ag

5 ⇒ b
]

+
qrv

2k0
+

qh1
qrv

2µ
+ Pr[G

Ag

4 sets bad3]

+ 2qtot ·mpkF (14)

≤ Pr
[

G
Ag

6 ⇒ b
]

+
qrv

2k0
+

qh1
qrv

2µ
+ Pr[G

Ag

4 sets bad3]

+ Pr[G
Ag

5 sets bad4] + 2qtot ·mpkF (15)

= Pr
[

G
Ag

7 ⇒ b
]

+
qrv

2k0
+

qh1
qrv

2µ
+ Pr[G

Ag

4 sets bad3]

+ Pr[G
Ag

5 sets bad4] + 2qtot ·mpkF (16)

≤ Pr
[

G
Ag

8 ⇒ b
]

+
qrv

2k0
+

qh1
qrv

2µ
+ Pr[G

Ag

4 sets bad3]

+ Pr[G
Ag

5 sets bad4] + Pr[G
Ag

7 sets bad5] + 2qtot ·mpkF (17)

≤
1

2
+

qrv

2k0
+

qh1
qrv

2µ
+ Pr[G

Ag

4 sets bad3]

+ Pr[G
Ag

5 sets bad4] + Pr[G
Ag

7 sets bad5] + 2qtot ·mpkF (18)

≤
1

2
+ Advpowf

F ,GetQuery +
qrv

2k0
+

qh1
qrv

2µ
+ 2qtot ·mpkF (19)

≤
1

2
+ qh2

v ·
√

Advowf
F ,I + 22k1−4(n−k0)+10 + 2k1−2(n−k0)+5

+
qrv

2k0
+

qh1
qrv

2µ
+ 2qtot ·mpkF . (20)

As we have seen, the advantage of A is also equal to 2p− 1 where p is the probability that the
adversary correctly guesses the challenge bit b in a game where we pick b at random and run the
adversary with the first experiment if b = 1 and the second if b = 0. Equation (7) follows from the
fact that Game G1 is just this game written in a convenient way. (The reasoning here is similar to
in the proof of Theorem 5.1. We clarify that the two runs of Am in the game have different coins
but the same arrays H1, R,H2 are used for the ROs, so they have the same ROs.)

Games G1, G2 differ only in statements that follow the setting of bad0, meaning are, in the
terminology of [14], identical-until-bad0 games. The Fundamental Lemma of Game Playing [14] thus
applies to justify (8). Let us denote by mpkF the max public-key probability of RSA-DOAEP (which
only depends on the underlying RSA trapdoor-permutation generator F and not on the rest of the

24

scheme). The probability H1[(N, e)‖xi,r], R[(N, e)‖si,0] or H2[(N, e)‖ti,0] for some i ∈ {1, . . . , v} is
defined, meaning the array index was queried by Am to its RO, is at most 2q ·mpkF because Am,
which makes a total of at most qtot queries to all its ROs combined, gets no information about
public key (N, e). (The factor of 2 is due to the fact that Am is run twice.) This justifies (9).

As before, the Fundamental Lemma applies to justify (10). To bound the probability that
Game G2 when executing Ag sets bad1, note that without Ag querying (N, e)‖xi,r (by which we
mean for some i ∈ {1, . . . v}) to oracle H1 nor (N, e)‖ti,0 to H2 (i.e. up to the point that bad1 is
set), the values of H∗

i,1,H
∗
i,2, si,1, ti,0 are all random and independently distributed from xb from its

perspective. To be more precise, we define an auxilliary game called Grand, shown in Figure 4, in
which all input to Ag and answers to its oracle queries are independent and random of xb and the
appropriate independent and dependent variables defined by the game are swapped. We claim that
the probability G2 when executing Ag sets bad1 is at most the probability that Grand does. To see
this, we can wlog consider a common finite space of coins associated to the executions games G2

and Grand with Ag where if G2 when executed using some particular sequence of coins from this
space sets bad1 then Grand when executed using this same coin sequence also sets bad1, because the
executions of the games on these coin sequences are identical. So the probability of setting bad1

in Grand can only go up as compared to G2. Now, since when executed with Grand, Ag gets no
information about s∗i,0 for any 1 ≤ i ≤ v, the probability that Grand when executing Ag sets bad1 is

at most qrv/2k0 , giving (11).
Equation (12) is again obtained via the Fundamental Lemma in [14]. We bound the probability

that G3 when executing Ag sets bad2 by showing that the latter implies Ag has “guessed” xb[i]
without being given any information about it, as follows. This probability is at most the probability
that Grand does, by an analogous argument to the above. But the probability of that Grand sets bad2

is, in turn, the same, over a common finite set of coins with which Ag is executed, as the probability
that the “knowledge extractor” K shown in Figure 6 outputs a list containing the plaintext xb[i]
for some 1 ≤ i ≤ v, where x0,x1, b are defined as in Grand. The probability that K outputs such
a list is at most qh1

qrv/2µ, because it gets no information about xb. So we have justified (13).
(We remark that this was the step in the proof where we use the fact that the underlying padding
transform of RSA-DOAEP consists of three Feistel rounds and not two.)

As usual, the Fundamental Lemma in [14] applies to justify all of (14), (15), and (17). We delay
bounding the probabilities here until later.

Next consider when Ag executed with Game G6 queries (N, e)‖xi,r to H1 but prior to this has
queried neither (N, e)‖si,0 to R nor (N, e)‖ti,0 to H2. Then, in reply to query (N, e)‖xi,r , it receives
H∗

i,1, which is random and independent from everything given to Ag so far. Then, after it queries
(N, e)‖xi,r to H1, we see from the code that the answers given to Ag in reply to any of its queries
are likewise random and independent. This means that, instead replying to query (N, e)‖xi,r with
the special string H∗

i,1 defined at the beginning of the game, we could simply reply with a random
and independent string chosen “on the fly” during the particular invocation of the procedure to
respond to H1 queries. In other words, we may drop the “Else” statement in this procedure to
result in an equivalent game G6, which justifies (16).

Now, we have that the probability that G8 outputs the challenge bit b chosen randomly at the
beginning of the game when executing Ag is at most 1/2, because this game does not give Ag any
information about xb, giving (18).

Finally, observe that in each of the following cases, the probability that Ag causes the relevant
game to set the flag also causes Grand to do so with at least the same probability: game G4 sets bad3,
game G5 sets bad4, and game G7 sets bad5. The argument here is analogous to the justification

25

of (11). Moreover, these cases exhaust all the possible sequences of queries made by Ag for which
Ag queries (N, e)‖ti,0 for some i to its H2 oracle. Now the input to Ag and its oracle replies are
distributed identically when executed with Grand and when run by algorithm GetQuery, except that
the procedure to respond to queries to H2 in Grand explicitly checks whether a query made by Ag

is equal to ti,0 for some i, whereas algorithm GetQuery simply guesses whether this is the case by
picking j when the first such query (which it hopes is tw,0) will occur, at which point its output is
determined. (Game Grand also defines some additional variables, makes some “If” checks, and sets
some flags omitted by GetQuery, but none of these influence game output.) Since w, j are random
and independent and Ag gets no information about them, we have

Pr[G
Ag

3 sets bad2] + Pr[G
Ag

5 sets bad3] + Pr[G
Ag

7 sets bad4] ≤ qh2
v ·Advpowf

F ,GetQuery ,

justifying (19). Equation (20) then follows by Lemma A.1.
Finally, we proceed to bound the max public-key probability of RSA-DOAEP as follows. We

first recall the following fact, which can be derived from a proof of Chebyshev’s theorem about the
density of primes (see [50, Theorem 5.3]).

Fact A.2 Let π(n) be the number of prime numbers less than or equal to an integer n. Then for
all n

π(n) ≥
2n

ln(n)
.

Claim A.3 Let mpkF denote the max public-key probability of scheme RSA-DOAEP with modulus
length k1 = k. Then

mpkF ≤
ln(2k1/2 − 1)

2k1/2 − 1
.

Proof: Fix some k1/2-bit prime numbers p′, q′. We have that

mpkF ≤ Pr
[

p′ · q′ = p · q : ((p · q, e), (p · q, d))
$
← F(1k)

]

= Pr
[

(p′ = p ∧ q′ = q) ∨ (p′ = q ∧ q′ = p) : ((p · q, e), (p · q, d))
$
← F(1k)

]

≤ Pr
[

p′ = p ∨ p′ = q : ((p · q, e), (p · q, d))
$
← F(1k)

]

≤ 2 ·
ln(2k1/2 − 1)

2 · (2k1/2 − 1)
,

as desired. Above, the second line is by unique factorization and the last uses Fact A.2.

Applying Claim A.3 to (20) and re-arranging yields (3). To finish the proof, we justify the running-
time analysis of I by taking into account the convention that the running-time of A includes
that of its overlying experiment. Additional time-complexity for GetQuery here is for picking two
random numbers between 1 and qh2

, v, respectively, and maintaining a counter up to value at most
qh2

, incremented each time Ag makes a query to oracle H2, which is O(log v + qh2
log qh2

). Then
applying the running-time analysis in Lemma A.1, we have that the running-time of I twice that
of GetQuery plus O(k3

1), as desired.

26

B Proof of Theorem 6.1

We actually define two adversaries, namely B,B′, for the proof, as shown below. At the conclusion
of the proof, we comment on how to extend it to the CCA case.

Adversary BE(1k,pk,LR(·,·,b))(1k,pk)
Run Am on input 1k:
On query Hash(s‖x):
If H[s‖x] is undefined then

H[s‖x]
$
← {0, 1}l

Return H[s‖x]
Let (x1, t1) be the output of Am

c
$
← E(pk,LR(x1,0, b))

For i = 1 to v do:
If H[pk‖x[i]] is undefined then

H[pk‖x[i]]
$
← {0, 1}l

c[i]← c[i]‖H[pk‖x1[i]]
Run Ag on input 1k,pk, c:
On query Hash(s‖x):
If H[s‖x] is undefined then

H[s‖x]
$
← {0, 1}l

Return H[s‖x]
Let g be the output of Ag

If g = t1 then return 1
Else return 0

Adversary B
′E(1k ,pk,LR(·,·,b))(1k,pk)

Run Am twice on input 1k:
On query Hash(s‖x):
If H[s‖x] is undefined then

H[s‖x]
$
← {0, 1}l

Return H[s‖x]
Let (x0, t0), (x1, t1) be the outputs of Am

c
$
← E(pk,LR(x0,0, b))

For i = 1 to v do:
If H[pk‖x0[i]] is undefined then

H[pk‖x0[i]]
$
← {0, 1}l

c[i]← c[i]‖H[pk‖x0[i]]
Run Ag on input 1k,pk, c:
On query Hash(s‖x):
If H[s‖x] is undefined then

H[s‖x]
$
← {0, 1}l

Return H[s‖x]
Let g be the output of Ag

If g = t0 then return 1
Else return 0

Above, 0 denotes the size-v vector with each component 0n. We clarify that the two runs of Am, in
each of B,B′, have different coins but the same array H is used for the RO, so they have the same
RO. The proof is a hybrid argument. Consider modified schemes EaHi = (K′, Ei) for i ∈ {1, 2, 3, 4},
defined as follows. Each EaHi has the same key-generation algorithm, namely K′, which on input
1k outputs pk, where (pk, sk) is the output of K(1k) with random coins. The encryption algorithms
operate on vectors of size v, and are defined as follows:

E1(1
k,pk,x) = E(1k,pk,x)‖H(pk‖x)

E2(1
k,pk,x) = E(1k,pk,0)‖H(pk‖x)

E3(1
k,pk,x) = E(1k,pk,0)‖H(pk‖x′), where (x′, t′)

$
← Am(1k)

E4(1
k,pk,x) = E(1k,pk,x′)‖H(pk‖x′), where (x′, t′)

$
← Am(1k) .

Above, 0 denotes the size-v vector with each component 0n, and hash H is extended to vectors
component-wise analogously to encryption, as is the in-fix “‖” operation where both arguments are
vectors. Consider executing A against EaHi for each i ∈ {1, 2, 3, 4} in the following game:

27

Game 1

pk
$
← K′(1k)

(x, t)
$
← Am(1k)

g
$
← Ag(1

k,pk, Ei(1
k,pk,x))

If g = t then return 1
Else return 0

For the analysis, let us call a RO query public-key prefixed if it is of the form pk‖y for some y. Let
“BAD1” denote the event that Am makes a public-key prefixed query to its RO. Let “BAD2” denote
the event that Ag makes a RO query of the form pk‖x[i] for some and i ∈ {1, . . . , v}. Lastly, let
“E” denote the event that Game 1 outputs 1, and let Pri [·] be the probability of the argument
when Game 1 is executed with A,EaHi. We first claim that

Advpriv
EaH,A = Pr1 [E]− Pr4 [E] .

This is clear by construction of EaH1,EaH4, taking into account the definition of the advantage of
A. Now expand the above as

Pr1 [E]− Pr4 [E] = (Pr1 [E]− Pr2 [E]) + (Pr2 [E]− Pr3 [E]) + (Pr3 [E]− Pr4 [E]) .(21)

Towards bounding the right-hand side, we next claim that

Advind-cpa
AE,B ≥ Pr1 [E]− Pr2 [E] .

This follows from comparing runs of B and of Game 1 with EaH1,EaH2, taking into account the
definition of the advantage of B. Next we claim that

Pr2 [E]− Pr3 [E] ≤ Pr2 [BAD1] + Pr2 [BAD2] .

We will justify this below. Assuming it for the moment, let us next argue that

Pr2 [BAD1] ≤ qh ·mpkAE ; Pr2 [BAD2] ≤ qhv · 2
−µ .

To see the first, note that Am, which makes at most qh RO queries, when executed in Game 1
against EaH2 (or in fact any of the schemes) does not get any information about pk. To see the
second, observe that when Ag is executed against EaH2, it is not given any information about x
until BAD2 occurs. Similarly to before, we also have that

Advind-cpa
AE,B′ ≥ Pr3 [E]− Pr4 [E] .

Now we substitute all these into (21) to get

Advpriv
EaH,A ≤ Advind-cpa

AE,B + qh ·mpkAE + qhv · 2
−µ + Advind-cpa

AE,B′ .

Assuming wlog that

Advind-cpa
AE,B′ ≤ Advind-cpa

AE,B

and combining like-terms then yields (4). So it remains to prove the following.

28

Claim B.1 The claim is that

Pr2 [E] ≤ Pr3 [E] + Pr2 [BAD1] + Pr2 [BAD2] .

Proof: The claim follows from the following sequence of inequalities:

Pr2 [E] = Pr2
[

E ∧ BAD1 ∧ BAD2

]

+ Pr2 [E ∧ (BAD1 ∨ BAD2)]

≤ Pr2
[

E | BAD1 ∧ BAD2

]

· Pr2
[

BAD1 ∧ BAD2

]

+ Pr2 [BAD1 ∨ BAD2]

= Pr3
[

E | BAD1 ∧ BAD2

]

· Pr3
[

BAD1 ∧ BAD2

]

+ Pr2 [BAD1 ∨ BAD2]

= Pr3
[

E ∧ BAD1 ∧ BAD2

]

+ Pr2 [BAD1 ∨ BAD2]

≤ Pr3 [E] + Pr2 [BAD1] + Pr2 [BAD2] .

To see the third line above, consider runs of Game 1 with EaH2,EaH3 and A over a common finite
set of coins; note that a sequence of coins (which includes the coins for A) that cause Game 1 with
EaH2 and A to output 1 and for which both BAD1,BAD2 are not true and just those that cause
Game 1 with EaH3 and A to output 1 and for which both BAD1,BAD2 are not true, because if
BAD1,BAD2 are not true then the executions of each are identical.

Extending the proof to CCA. To extend the above proof to show PRIV-CCA security of EaH

assuming IND-CCA security of the starting encryption scheme AE, adversaries B,B′ would addi-
tionally have access to decryption oracle D(1k,pk, sk, ·) and would simulate answers to queries of
Ag to oracle HD(1k,pk, sk, ·) as follows: On query c‖h, check if c‖h′ for any string h′ occurs in input
c to Ag; if so, return ⊥. Otherwise, compute HD(1k,pk, sk, c‖h) by using oracle D(1k,pk, sk, ·) to
decrypt c and return the result to Ag. This “works” because hash function H is deterministic. So,
if Ag submits decryption query c‖h such that some c‖h′ occurs in its input c, then either h′ = h
(which is not a query Ag is allowed to make), or else h′ is not the hash of the decryption of c, and
therefore D(1k,pk, sk, c‖h) outputs ⊥. The rest of the proof remains essentially identical.

C Proof of Theorem 6.2

For simplicity, we analyze a modified scheme EaH′ = (K,HE ′) where the ciphertext is dropped from
the output, namely we just have HE

′H(pk, x) = H(pk‖x). (This is a “hiding scheme” as defined
in Section 7.) Our analysis then implies Theorem 6.2 by a simple hybrid argument. (Moreover,
essentially the same hybrid argument can be used to treat PRIV-CCA security of EaH assuming
IND-CCA security of AE.) As a warm-up, we start with the case that Am puts a uniform distribution
on a finite set of plaintexts S.

The uniform case. Say that MR adversary A is uniform if Am puts a uniform distribution on
some finite set of plaintexts S. For a uniform MR adversary A we claim that

Advpriv
EaH′,A

≤ 6 ·
2l

|S| − 1
. (22)

Note that this is quite a good bound because we expect the advantage of A in this case to be about
the inverse of the size of the “bucket” in which the challenge message chosen by Am lies (because
Ag can do no better than simply guessing at random a message from this bucket), and the expected
bucket size is |S|/2l. So the bound says that we are basically off by at most a small constant factor.
To deduce it, we consider a simplified game that works as follows:

29

Game 1

h0, h1, . . . , hM
$
← {0, 1}l

m
$
← {m0, . . . ,mM}

C ← {i ≥ 1 : hi = h0}
Return |C|

Regarding h0 as the hash of the challenge message m, the game is, intuitively, returning how
many other plaintexts besides the challenge message have hash value equal to that of the challenge
message. To bound A’s advantage, we would like to know how large we expect the game’s output
to be. For this, we define some random variables. Let S = {m0,m1, . . . ,mM}. For i = 1 to M
define the random variable

Xi(h0, . . . , hM) =

{

1 if hi = h0,

0 O.W. ,

and define X =
∑M

i=1 Xi. So Game 1 returns the value of X. Note that the Xi are pairwise
independent. Some simple computations that we will need are (where free variables have implicit
universal quantification):

E [Xi] = 2−l; E [X] =

m
∑

i=1

E [Xi] = M · 2−l ,

where the second is from linearity of expectation. Now, for some 0 ≤ α ≤ 1 to be determined later,
we claim the following inequalities, which we will justify below:

Advpriv
EaH′,A

= Pr
[

Exppriv-1
EaH′,A

⇒ 1
]

− Pr
[

Exppriv-0
EaH′,A

⇒ 1
]

≤ Pr
[

Exppriv-1
EaH′,A

⇒ 1
]

≤ E

[

1

1 + X

]

≤ Pr [X ≤ α · E [X]] ·
1

1
+ Pr [X > α ·E [X]] ·

1

α · E [X]

≤ Pr [X ≤ α · E [X]] +
1

α ·E [X]

≤ Pr [X ≤ α · E [X]] +
2l

α ·M
.

Of these, the first is by definition and the second is because dropping the second term on the
right-hand side can only cause the latter to go up.

For the third, we can consider runs of Game 1 and the priv-1 experiment, over a common finite
set of coins, respectively. In a run of the experiment and A, the best strategy for Ag to recover
challenge message x is to output at random one of the messages from S whose hash value (when
concatenated with pk) is equal to its input H(pk‖x). Its success probability is therefore at most
1/n, where n is the number of such messages. Now look at a run of Game 1 on the same coins.
Viewing h0 as the hash of the challenge message for Ag, it returns exactly n− 1. As X takes this
return value, the probability (over the random coins of the experiment and A) that A recovers the
challenge message when executed in the priv-1 experiment is at most E [1/(1 + X)].

The fourth line is a conditioning argument, where we use that if X ≤ α ·E [X] then 1/(1 + X)
is at most 1/(1+0) and if X > α ·E [X] then 1/(1+X) is at most 1/(1+α ·E [X]) ≤ 1/α ·E [X].

30

The fifth is dropping a positive factor less than 1 and the sixth is substitution according to our
previous calculation of E [X].

So it remains to bound the probability on the last line. For this, we claim the following.

Claim C.1 For any 0 ≤ α ≤ 1, we have

Pr [X ≤ α ·E [X]] ≤
1

(1− α)2
·

2l

M
.

Proof: The claim follows from the following inequalities, which we return to justify below:

Pr [X ≤ α · E [X]] ≤ Pr [|X −E [X] | ≥ (1− α) ·E [X]]

≤
Var [X]

(1− α)2 ·E [X]2

≤
E [X]

(1− α)2 ·E [X]2

=
1

(1− α)2
·

2l

M
.

The first and last are just algebraic manipulation and substitution according to our previous cal-
culations. The second is by Chebyshev’s inequality. For the third, we use:

Var [X] =
M
∑

i=1

Var [Xi]

≤

M
∑

i=1

E [Xi]

= E [X] .

Of these, the first is by pairwise independence, and the second follows from the fact that for any
binary-valued random variable Y , Var [Y] ≤ E [Y]. The last we have already seen.

Now, substituting according to the claim gives

Advpriv
EaH′,A

≤
1

(1− α)2
·

2l

M
+

2l

α ·M
.

Setting α to 1/2 and replacing M with |S| − 1 yields (22). This completes our analysis of the
uniform case.

The non-uniform case. Now consider the more general case of a MR privacy adversary A where
Am does not necessarily put the uniform distribution, but instead some arbitrary distribution D,
on set S of plaintexts. Let µ be the min-entropy, and set p = 2−µ. This time, let |S| = M . For
i ∈ {1, . . . ,M}, let pi be the probability given to mi according to D. In this case, we claim that

Advpriv
EaH′,A

≤ 12 · Coll [D] · |S| ·
2−µ · 2l

(1− 2−µ)2
. (23)

To help interpret the above, first ignore the factor Coll [D] · |S| in the expression. Then the above
is similar to what we had in the uniform case, where |S| = 2µ; the difference is that there is a

31

factor of (1 − 2−µ)2 now, but as long as the min-entropy is not very close to zero, the bound is
still good. Looking at the Coll [D] · |S| factor now, we note it is a fact (which follows from the
Cauchy-Schwarz inequality) that 1/|S| ≤ Coll [D], with equality just when Am puts a uniform
distribution on S. The closer these quantities, the better our bound.

To derive (23), we generalize our previous approach and consider a simplified game that works
as follows:

Game 2

h1, . . . , hM
$
← {0, 1}l

I
D

← {1, . . . ,M}
C ← {i 6= I : hi = hI}
Return

∑

i∈C pi

Above, “I
D

←{1, . . . ,M}” means that I is assigned a value from {1, . . . ,M} according to distribution
D. Intuitively, regarding I as the index of the challenge message, Game 2 returns the “weight” of
the set of messages that have the same hash as the challenge message (not including the latter)
with respect to D. As before, this will help us determine A’s maximal advantage. Now define for
all i = 1 to M and j = 1 to M subject to j 6= i the random variables

Xi,j(h1, . . . , hM) =

{

pi if hi = hj ,

0 O.W.

and Xi(h1, . . . , hM) =
∑

j 6=i Xi,j(h1, . . . , hM). So Game 2 returns the value of XI . Note that, for
fixed i, the Xi,j are pairwise independent (as j varies). Some basic calculations we will need are as
follows (where, as before, all free variables have implicit universal quantification):

E [Xi,j] =
pj

2l
;

1− p

2l
≤ E [Xi] =

∑

j 6=i pj

2l
≤

1

2l
.

Var [Xi,j] =
p2

j

2l
−

p2
j

22l
≤

p2
j

2l
; Var [Xi] =

∑

j 6=i

Var [Xi,j] ≤

∑

j 6=i p
2
j

2l
.

Of these, the top left is a simple computation. In the top right, we use linearity of expectation
for the equality, and the fact that

∑M
i=1 pi = 1 for the upper bound and pi ≤ p for the lower.

Moving to the bottom left, we first apply the definition of variance and computations of E [X] and
E

[

X2
]

, and then drop the second term for the upper-bound. In the bottom right, we use pairwise
independence for the equality and the previous calculation for the upper-bound.

32

Now for some 0 ≤ α ≤ 1 to be determined later, we claim the following inequalities, which we
then return to justify below:

Advpriv
EaH′,A

= Pr
[

Exppriv-1
EaH′,A

⇒ 1
]

− Pr
[

Exppriv-0
EaH′,A

⇒ 1
]

≤ Pr
[

Exppriv-1
EaH′,A

⇒ 1
]

≤ E

[

p

pI + XI

]

= p ·
M
∑

i=1

E

[

1

pi + Xi
| I = i

]

· Pr [I = i]

= p ·

M
∑

i=1

E

[

1

pi + Xi
| I = i

]

· pi

≤ p ·
M
∑

i=1

(

Pr [Xi ≤ α ·E [Xi]] ·
1

pi
+ Pr [Xi > α ·E [Xi]] ·

1

α · E [Xi]

)

pi

≤ p ·

M
∑

i=1

Pr [Xi ≤ α ·E [Xi]] +
pi

α · E [Xi]

≤ p ·
M
∑

i=1

Pr [Xi ≤ α ·E [Xi]] +
p · 2l

α · (1− p)
.

Of these, the first line is by definition and the second is just dropping the second term.
The third line follows by considering runs of Game 2 and the priv-1 experiment over a common

finite set of coins. When executed by the experiment, the best strategy for Ag to guess challenge
message x is output a plaintext x′ from S whose hash value (when concatenated with pk) is equal
to its input H(pk‖x) and that has the highest probability of being output by Am over all such
plaintexts. Regarding S as indexed from 1 to M and I as the index of the challenge message, we
see that the probability of success of this strategy is exactly pI/

∑

j pj, where j in the sum here
and below is taken over all indices such that H(pk‖xj) = H(pk‖xI). Now when executed on the
same coins, Game 2 returns

∑

j pj − pI , the value of XI . So the probability that the experiment
outputs 1 is at most E [p/(pI + XI)] (using pI ≤ p in the numerator).

The fourth line is expansion by conditional expectation, and the fifth is by definition of pi. For
the sixth, we use a conditioning argument, noting that if Xi ≤ α · E [Xi] then pi/(pi + Xi) is at
most pi/pi, while if Xi > α ·E [Xi] then pi/(pi +Xi) is at least pi/(α ·E [Xi]). The seventh drops
a positive factor less than 1. Finally, the last uses pi ≤ p and our previous lower-bound on E [Xi].

So we need to bound the probability on the last line. For this, we claim the following.

Claim C.2 For all 0 ≤ α ≤ 1 and 0 ≤ i ≤M , we have

Pr [Xi ≤ α ·E [Xi]] ≤
Coll [D] · 2l

(1− α)2 · (1− p)2
.

33

Proof: We have

Pr [Xi ≤ α ·E [Xi]] ≤ Pr [|Xi −E [Xi] | ≥ (1− α) · E [Xi]]

≤
Var [Xi]

(1− α)2 · E [X]2

≤
22l ·

∑

j 6=i p
2
j

2l · (1− α)2 · (1− p)2

≤
2l · Coll [D]

(1− α)2 · (1− p)2

Above, the first line is algebraic manipulation. The second line is by Chebyshev’s inequality. The
third is substitution according to previous calculations. The last uses the fact that

∑

j 6=i p
2
j ≤

Coll [D] for all i (because the former omits a positive term of the latter).

Substituting according to the claim, we get

Advpriv
EaH′,A

≤ p ·

M
∑

i=1

Coll [D] · 2l

(1− α)2 · (1− p)2
+

pi · 2
l

α · (1− p)

≤
p · Coll [D] · 2l ·M

(1− α)2 · (1− p)2
+

p · 2l

α · (1− p)
.

Then, setting α = 1/2, using (1 − p)2 ≤ 1 − p to make denominators the same and p · 2l ≤
p · Coll [D] · 2l · M to make the numerators the same, and combining terms yields (23). This
completes our analysis of the non-uniform case.

D Proof of Theorem 7.1

Since EwH is deterministic, we assume wlog that the plaintext components of a vector x are always
distinct for all (x, t) output by Am(1k). Ind-cpa adversary B for the proof is depicted in Figure 7.
We consider the games depicted in Figure 8. (To prove Theorem 5.1 instead, the procedure in the
games and the code of B to respond to A’s decryption queries and the assignments to array E
would simply be dropped.)

Equation (5) of Theorem 7.1 follows from the following sequence of inequalities, which we will
justify below:

34

1

2
+

1

2
Advpriv-cca

DPE,A = Pr
[

G
Ag

1 ⇒ b
]

(24)

≤ Pr
[

G
Ag

2 ⇒ b
]

+ Pr[G
Ag

1 sets bad0] (25)

≤ Pr
[

G
Ag

2 ⇒ b
]

+ 4qhv ·mpkAE (26)

≤ Pr
[

G
Ag

3 ⇒ b
]

+ 4qhv ·mpkAE (27)

≤ Pr
[

G
Ag

4 ⇒ b
]

+ Pr[G
Ag

3 sets bad1] + 4qhv ·mpkAE (28)

≤ Pr
[

G
Ag

4 ⇒ b
]

+
qhv

2µ
+ 4qhv ·mpkAE (29)

= Pr
[

G
Ag

5 ⇒ b
]

+
qhv

2µ
+ 4qhv ·mpkAE (30)

≤ Pr
[

G
Ag

6 ⇒ b
]

+
qhv

2µ
+ 4qhv ·mpkAE + Pr[G

Ag

6 sets bad1] (31)

≤ Pr
[

G
Ag

6 ⇒ b
]

+
qhv

2µ
+ qd ·mcAE + 4qhv ·mpkAE (32)

=
1

2
+

1

2
Advind-cpa

AE,B (k) +
qhv

2µ
+ qd ·mcAE + 4qhv ·mpkAE . (33)

The advantage of A is, as we have seen, equal to 2p − 1 where p is the probability that the
adversary correctly guesses the challenge bit b in a game where we pick b at random and run the
adversary with the first experiment if b = 1 and the second if b = 0. Game G1 is exactly this game
written in a convenient way. Intuitively, the game tries to pick values of H[pk‖xi[j]] for i ∈ {0, 1}
and j ∈ {1, . . . , v} used as coins for encryption upfront before running Ag, but in the case that
Am has already queried one of the indices to its RO the game uses its previous reply instead. We
clarify that the two runs of Am have different coins but the same array H is used for the RO, so
they have the same RO. Game G1 also sets a few flags, but they do not influence game output. We
have justified (24).

Games G1, G2 differ only in statements that follow the setting of bad0, meaning are, in the
terminology of [14], identical-until-bad0 games. The Fundamental Lemma of Game Playing [14]
thus applies to justify (25). The probability that H[pk‖xi[j]] for fixed i ∈ {0, 1} and j ∈ {1, . . . , v}
is defined, meaning pk‖xi[j] was queried by Am to its RO, is at most 2qh ·mpkAE because Am gets
no information about pk. (The factor of 2 is due to the fact that Am is run twice.) Summing over
all possible values of i, j, we obtain (26).

The Finalize procedure of Game G3 begins by defining its output bit d in certain ways depending
on the flags zer, one if either of these are true, and otherwise defining it as in G2. However, in case
the value of d set by the first two “If” statements is wrong, meaning not equal to b, the third “If”
statement corrects, setting d to b. The net result is that in the cases that G3 assigns d differently
from G2, the assignment made by G3 is correct, meaning equal to b. Additionally, G3 sets a flag
bad, but this does not influence its choice of d. So the probability that the output of Ag equals b
can only go up. We have justified (27).

As before, the Fundamental Lemma of Game Playing [14] applies to justify (28). The probability
that Ag makes a hash query x ∈ x1−b when executed with G3 is at most qhv/2µ because Ag gets
no information about x1−b. This justifies (29).

As in the proof of the Fundamental Lemma in [14], we can consider a common finite space of
coins associated to the executions of Ag with either G4 or G5. Consider the execution of Ag with

35

G4 when a particular coin sequence is chosen at random from this set. One of the boxed statements
in the procedure to respond to a hash query can be executed only if either one = true or zer = true,
due to the “If” statements that precede the boxed statements. However, once one of these flags is
set to true, the output of the Finalize procedure is determined. (Nothing further that happens in
the execution can change it. Note we use here that at most one of zer, one can be true, never both,
and once one of them is true, it never becomes false.) This means that the boxed statements have
no effect on the output of the game, and eliminating them results in the equivalent game G5. We
have justified (30). (To prove Theorem 5.1, we would basically be done at this point.)

Again, the Fundamental Lemma of Game Playing [14] applies to justify (31). When executed
in Game G5, the probability that a decryption query y made by Ag to is a valid ciphertext for some
message m such that Ag has not queried pk‖x to its hash oracle is at most mcAE. This is because,
without any information about H[pk‖x], H[pk‖x] and the coins used by E(pk, x) have the same
distribution from the perspective of Ag. This implies (32).

Notice that the assignment to x to D(sk, y) in the procedure to respond to decryption queries
in Game G6 does not influence the output of the procedure. To make this explicit, we drop this
assignment and the associated code from this procedure to yield an equivalent game G7. Similarly
to before, Game G7 is now just the game defining the advantage of B written in a convenient way.
The code for B does not set flags bad0, bad1 whereas G7 makes some “If” checks and sets these
flags, but these flags do not affect the game output. We have justified (33). Re-arranging yields (5).

Finally, to justify the claim about the running-time of B, recall the convention to include in
the running-time of A that of its overlying experiment. So, in addition to the time to run A, B’s
time-complexity is dominated by the time needed to create a hash table containing the elements
of x0,x1, which is O(vn), as well as for encrypting each hash query made by Ag. So its additional
overhead is O(vn + qhTE), as asserted.

36

procedure Initialize

Games G1 , G2 −G8

b
$
← {0, 1}

Run Am on input 1k twice:
On query H1(z‖x):
If H1[z‖x] is undefined then

H1[z‖x]
$
← {0, 1}k0

Return H1[z‖x]
On query R(z‖x):
If R[z‖x] is undefined then

R[z‖x]
$
← {0, 1}n−k0

Return R[z‖x]
On query H2(z‖x):
If H2[z‖x] is undefined then

H2[z‖x]
$
← {0, 1}k0

Return H2[z‖x]
Let (t0,x0), (t1,x1) be the outputs of Am

((N, e), (N, d))
$
← F(1k)

For i = 1 to v do:
xi,l ← xb[i][1 . . . k0]
xi,r ← xb[i][k0 + 1 . . . n]

H∗
i,1,H

∗
i,2

$
← {0, 1}k0 ; R∗

i
$
← {0, 1}n−k0

If H1[(N, e)‖xi,r] is defined then

bad0 ← true ; H∗
i,1 ← H1[(N, e)‖xi,r]

If R[(N, e)‖si,0] is defined then

bad0 ← true ; R∗
i ← R[(N, e)‖si,0]

If H2[(N, e)‖ti,0] is defined then

bad0 ← true ; H∗
i,2 ← H1[(N, e)‖ti,0]

si,0 ← H∗
i,1 ⊕ xi,l ; ti,0 ← R∗

i ⊕ xi,r

si,1 ← H∗
i,2 ⊕ si,0

pi,l ← (si,1‖ti,0)[1 . . . n− k1]
yi ← ((si,1‖ti,0)[n− k1 + 1 . . . n])e mod N
c[i]← pi,l‖yi

Return (1k, (N, e), c)

On query H1(z‖x): Games G1, G2 , G3

If H1[z‖x] is undefined then

H1[z‖x]
$
←{0,1}k0

If z = (N, e) then
If ∃i such that x = xi,r then

If Hi,2[T0] is defined then
H1[z‖x]← H∗

i,1

If R[si,0] is defined then

H1[z‖x]← H∗
i,1 /* bad1 must be set */

Return H1[z‖x]

On query R(z‖x): Games G1, G2 , G3

If R[z‖x] is undefined then

R[z‖x]
$
←{0,1}n−k0

If z = (N, e) then
If ∃i such that x = si,0 then

If H2[ti,0] is defined then
R[z‖x]← R∗

i

If H1[z‖xr] is undefined then

bad1 ← true ; R[z‖x]← R∗
i

Return R[z‖x]

On query R(z‖x): Games G3 , G4

If R[z‖x] is undefined then

R[z‖x]
$
←{0,1}n−k0

If z = (N, e)
If ∃i such that x = si,0 then

If H2[z‖ti,0] is defined then
R[z‖x]← R∗

i

If H1[z‖xi,r] is defined then

bad2 ← true ; R[z‖x]← R∗
i

Return R[z‖x]

Figure 2: Start of the games for the proof of Theorem 5.2. Games whose names are boxed include the

boxed statements, while un-boxed games do not. The games are continued in Figure 3. All games have the

same Finalize procedure, namely procedure Finalize(g): If g = t0 then Return 1, Else Return 0.

37

On query H2(z‖x): Games G1 −G4 , G5

If H2[z‖x] is undefined then

H2[z‖x]
$
←{0,1}k0

If z = (N, e) then
If ∃i such that x = ti,0 then

If R[z‖si,0] is defined then

bad3 ← true ; H2[z‖x]← H∗
i,2

Else H2[z‖x]← H∗
i,2

Return H2[z‖x]

On query H2(z‖x): Games G5 , G6

If H2[z‖x] is undefined then

H2[z‖x]
$
←{0,1}k0

If z = (N, e) then
If ∃i such that x = ti,0 then

If H1[z‖xi,r] is defined then

bad4 ← true ; H2[z‖x]← H∗
i,2

Else H2[z‖x]← H∗
i,2

Return H2[z‖x]

On query H1(z‖x): Games G6 , G7, G8

If H1[z‖x] is undefined then

H1[z‖x]
$
←{0,1}k0

If z = (N, e) then
If ∃i such that x = xi,r then

If Hi,2[z‖T0] is defined then
H1[z‖x]← H∗

i,1

Else H1[z‖x]← H∗
i,1

Return H1[z‖x]

On query H2(z‖x): Games G7 , G8

If H2[z‖x] is undefined then

H2[z‖x]
$
←{0,1}k0

If z = (N, e) then
If ∃i such that x = ti,0 then

If R[z‖si,0],H1[z‖xi,r] are undefined then

bad5 ← true ; H2[z‖x]← H∗
i,2

Return R[z‖x]

Figure 3: Continuation of games for the proof of Theorem 5.2, started in Figure 2. Games whose names

are boxed include the boxed statements, while un-boxed games do not. All games have the same Finalize

procedure, namely procedure Finalize(g): If g = t0 then Return 1, Else Return 0.

38

procedure Initialize

b
$
← {0, 1}

Run Am on input 1k twice:
On query H1(z‖x):
If H1[z‖x] is undefined then

H1[z‖x]
$
← {0, 1}k0

Return H1[z‖x]
On query R(z‖x):
If R[z‖x] is undefined then

R[z‖x]
$
← {0, 1}n−k0

Return R[z‖x]
On query H2(z‖x):
If H2[z‖x] is undefined then

H2[z‖x]
$
← {0, 1}k0

Return H2[z‖x]
Let (t0,x0), (t1,x1) be the outputs of Am

((N, e), (N, d))
$
← F

For i = 1 to v do:
xi,l ← xb[i][1 . . . k0]
xi,r ← xb[i][k0 + 1 . . . n]

si,1
$
← {0, 1}k0 ; ti,0

$
← {0, 1}n−k0

pi,l ← (si,1‖ti,0)[1 . . . n− k1]
yi ← ((si,1‖ti,0)[n − k1 + 1 . . . n])e mod N
c[i]← pi,l‖yi

H∗
i,2

$
← {0, 1}k0 ; si,0 ← H∗

i,2 ⊕ si,1

R∗
i ← ti,0 ⊕ xi,r ; H∗

i,1 ← si,0 ⊕ xi,l

Return (1k, (N, e), c)

On query H1(z‖x):

If H1[z‖x] is undefined then

H1[z‖x]
$
←{0,1}k0

Return H1[z‖x]

On query R(z‖x):

If R[z‖x] is undefined then

R[z‖x]
$
←{0,1}n−k0

If ∃i such that x = si,0 then
If H1[z‖xr] is undefined then

bad1 ← true

Else bad2 ← true

Return R[z‖x]

On query H2(z‖x):

If H2[z‖x] is undefined then

H2[z‖x]
$
←{0,1}k0

If ∃i such that x = ti,0 then
If R[z‖si,0] is defined

bad3 ← true ;
Else If H1[z‖xi,r] is defined then

bad4 ← true

Else bad5 ← true

Return H2[z‖x]

procedure Finalize(g)

If g = t0 then Return 1
Else Return 0

Figure 4: Game Grand for the proof of Theorem 5.2.

39

Algorithm GetQuery(1k, (N, e), y)
ctr ← 0

j
$
← {1, . . . , qH2

} ; w
$
← {1, . . . , v}

c
$
← ({0, 1}n)×v /* pick random v-size vector */

c′
$
← {0, 1}n−k1

c[w]← c′‖y
Run Ag on input 1k, (N, e), c, replying to its oracle queries as follows:

On query H1(z‖x):

If H1[z‖x] is undefined then

H1[z‖x]
$
← {0, 1}k0

Return H1[z‖x]
On query R(z‖x):

If R[z‖x] is undefined then

R[z‖x]
$
← {0, 1}n−k0

Return R[z‖x]
On query H2(z‖x):

ctr ← ctr + 1
If H2[z‖x] is undefined then

H2[z‖x]
$
← {0, 1}k0

If ctr = j then
T ← x

Return H2[z‖x]
Until Ag halts
Return T

Figure 5: Algorithm GetQuery for proof of Theorem 5.2.

40

Algorithm K(1k)

((N, e), (N, d))
$
← F(1k)

c
$
← ({0, 1}n)×v /* pick random v-size vector */

Run Ag on input 1k, f, c, replying to its oracle queries as follows:
On query H1(z‖x):

If H1[z‖x] is undefined then
If z = (N, e) then add x to L1

H1[z‖x]
$
← {0, 1}n−k0

Return H1[z‖x]
On query R(z‖x):

If R[z‖x] is undefined then
For all z ∈ L1 add x⊕H1[(N, e)‖z]‖z to L2

R[z‖x]
$
← {0, 1}k0

Return R[z‖x]
On query H2(z‖x):

If H2[z‖x] is undefined then

H2[z‖x]
$
← {0, 1}n−k0

Return H2[z‖x]
Until Ag halts
Return L2

Figure 6: “Knowledge extractor” K used in the proof of Theorem 5.2.

41

Adversary BE(1k ,pk,LR(·,·,b))(1k,pk)
Run Am on input 1k twice, replying to its oracle queries as follows:

On query Hash(s‖x):
If H[s‖x] is undefined then

H[s‖x]
$
← Coinss(|x|)

Return H[s‖x]
Let (x0, t0), (x1, t1) be the outputs of Am

c
$
← E(1k,pk,LR(x0,x1, b))

Run Ag on input 1k,pk, c, replying to its oracle queries as follows:
On query Hash(s‖x):

If H[s‖x] is undefined then

H[s‖x]
$
← Coinss(|x|)

If s = pk then
E[z]← E(1k, pk, z;H[s‖x])
If x ∈ x0 then

If one = false then zer← true

If x ∈ x1 then
If zer = false then one← true

Return H[pk‖x]
On query Decrypt(1k,pk, sk, y):

If ∃z such that E[z] = y then return z
Else return ⊥

Let g be the output of Ag

If zer = true then d← 0
Else If one = true then d← 1

Else If g = t1 then d← 1 else d← 0
Return d

Figure 7: Ind-cpa adversary B for proof of Theorem 7.1.

42

procedure Initialize

Games G1 , G2, G3–G7

b
$
← {0, 1}

(pk, sk)
$
← K(1k)

Run Am on input 1k twice:
On query Hash(s‖x):
If H[s‖x] is undefined then

H[s‖x]
$
← Coinss(|x|)

Return H[s‖x]
Let (x0, t0), (x1, t1) be the outputs of Am

For i = 0 to 1 do:
For j = 1 to v do:

Ri,j
$
← Coinspk(|xi[j]|)

If H[pk‖xi[j]] is defined then

bad0 ← true ; Ri,j ← H[pk‖xi[j]]

yi[j]← E(1
k,pk,xi[j];Ri,j)

Return 1k,pk,yb

On query Hash(s‖x):

Games G1 −G4 , G5–G7

If H[s‖x] is undefined then

H[s‖x]
$
← Coinss(|x|)

If s = pk then
E[z]← E(1k,pk, x;H[s‖x])
If ∃i such that x = x0[i] then

If one = false then zer← true

H[s‖x]← R0,i

If ∃j such that x = x1[j] then
If zer = false then one← true

H[s‖x]← R1,j

Return H[s‖x]

On query Decrypt(y):

Games G1 −G5 , G6

If ∃z such that E[z] = y then return z
x← D(1k,pk, sk, y)
If x = ⊥ then return ⊥
If H[pk‖x] is undefined then

H[pk‖x]
$
← Coinspk(|x|)

E[x]← E(1k,pk, x;H[pk‖x])
If E[x] = y then

bad2 ← true ; Return x
Return ⊥

On query Decrypt(y): Game G7

If ∃z such that E[z] = y then return z
Else return ⊥

procedure Finalize(g) Games G1, G2

If g = t1 then d← 1 else d← 0
Return d

procedure Finalize(g) Games G3 , G4–G7

If zer = true then d← 0
Else If one = true then d← 1

Else If g = t1 then d← 1 else d← 0
If (b = 1 ∧ zer = true) ∨ (b = 0 ∧ one = true)

then bad1 ← true ; d← b
Return d

Figure 8: Games for the proof of Theorem 7.1. There are a total of 7 games. The games whose names are

boxed include the boxed statements, while un-boxed games do not.

43

	Introduction
	Notation and Conventions
	Deterministic Encryption and its Security
	A Useful Fact
	Secure Deterministic Encryption Schemes
	Encrypt-with-Hash
	RSA-DOAEP, A length-preserving deterministic scheme

	Efficiently Searchable Encryption (ESE)
	Encrypt-and-Hash ESE

	CCA and Other Extensions
	Acknowledgments
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??

