
Efficient Compilers for Authenticated Group Key

Exchange

Qiang Tang and Chris J. Mitchell

Information Security Group

Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK

{qiang.tang,c.mitchell}@rhul.ac.uk

10th October, 2005

Abstract

In this paper we propose two compilers which are designed to transform a
group key exchange protocol secure against any passive adversary into an
authenticated group key exchange protocol with key confirmation which is
secure against any passive adversary, active adversary, or malicious insider.
We show that the first proposed compiler gives protocols that are more ef-
ficient than those produced by the compiler of Katz and Yung. The second
proposed compiler further reduces the computational complexity of the out-
put protocols by using a Trusted Third Party (TTP). We moreover show
that, although the protocols produced by the novel compilers have lower
computational complexity than the protocols produced by the Katz-Yung
compiler, the protocols nevertheless achieve key confirmation, unlike the
protocols output by the Katz-Yung compiler.

1 Introduction

In recent years authenticated group key exchange protocols have received
increasing attention. Authenticated group key exchange enables a group of
participants to establish a common secret key over insecure public networks,
even when adversaries completely control all the communications. Authen-
ticated group key exchange ensures that only the intended users can possibly
compute the session key.

The case of 2-party authenticated key exchange has been well investigated
within the cryptographic community, and a variety of efficient and provably-

1

secure protocols have been proposed (see e.g. [1, 4, 5, 6, 11, 12]). However,
less attention has been given to the case of authenticated group key ex-
change protocols, which have more than two participants. A number of
authors have considered extending the 2-party Diffie-Hellman protocol [14]
to the group setting (see e.g. [10, 15, 18, 21]). Unfortunately, most of these
schemes only assume a passive adversary, so they are vulnerable to active
adversaries who control the communication network. Recently Bresson et al.
[9] took the lead in presenting a formal model of security for authenticated
group key exchange and providing rigorous proofs of security for particular
protocols. Their model builds on earlier work of Bellare and Rogaway in the
2-party setting [5]. Following Bresson et al.’s work, several provably secure
authenticated group key agreement protocols (see e.g. [8, 13, 17]) have been
proposed.

In this paper we are particularly interested in compilers which transform a
protocol of one type into another. In [2] Bellare, Canetti, and Krawczyk
presented a compiler which transforms unauthenticated protocols into au-
thenticated protocols in the 2-party setting. In [19], Mayer and Yung give
a compiler which transforms any 2-party protocol into a centralised group
protocol which, however, is not scalable. Recently, Katz and Yung [17] pro-
posed a compiler (referred to as the Katz-Yung compiler) which transforms
a group key exchange protocol secure against any passive adversary into
an authenticated group key exchange protocol which is secure against both
passive and active adversaries. The security of the Katz-Yung compiler is
rigorously proved, and the protocols produced by this compiler are also more
efficient and scalable than those produced by the method given in [19]. Al-
though the Katz-Yung compiler produces more efficient protocols than the
Mayer-Yung compiler, it nevertheless still produces rather inefficient pro-
tocols. Each participant is required to perform numbers of signatures and
verifications proportional to the number of rounds in the original proto-
col and the number of participants involved, respectively. Additionally, the
Katz-Yung compiler adds an additional round to the original protocol, but
does not achieve key confirmation.

In this paper we show that, if a specific group key exchange protocol is used
as input, the authenticated protocol created by the Katz-Yung compiler
can be simplified without any loss of security. Based on our analysis, we
propose two new, more efficient, compilers and prove their security. Both
our new compilers result in protocols achieving key confirmation with lower
computational complexity and round complexity than those produced by
the compiler of Katz and Yung.

The rest of this paper is organised as follows. In section 2, we review the
Katz-Yung compiler, and give a performance analysis. We also give an
example of the use of the compiler and show how to simplify the protocol

2

produced. In section 3, we propose a new compiler which transforms a
group key exchange protocol secure against any passive adversary into an
authenticated group key exchange protocol with key confirmation which is
secure against any passive adversary, active adversary, or malicious insider.
In section 4, we propose a second new compiler which outputs protocols
that are both more efficient and provide the same functionality as the first
compiler, at the cost of introducing a TTP. In section 5, we conclude the
paper.

2 The Katz-Yung compiler

In this section we first review the Katz-Yung compiler and also discuss the
security and efficiency of the protocols it produces. We then describe an
example of an authenticated key agreement protocol output by this compiler.
Finally, we show how to simplify this authenticated key agreement protocol.

In this paper, with respect to a protocol P input to the compiler, which must
be a group key exchange protocol secure against any passive adversary, we
make the following assumptions:

1. There is no key confirmation, and all participants compute the session
key after the last round of the protocol.

2. Every protocol message is transported together with the identifier of
the source and the round number.

2.1 Description of the Katz-Yung compiler

Let Σ = (Gen ,Sign,Vrfy) be a signature scheme which is strongly unforge-
able under an adaptive chosen message attack (see, for example, [3] for a
definition). If k is a security parameter, then Gen(1k) generates a pair of
public/private keys for the signing and verification algorithms (Sign ,Vrfy).

Suppose a set S = {U1, · · · , Un} of users wish to establish a session key.
Let IDUi

represent Ui’s identity for every i (1 ≤ i ≤ n). Given P , a group
key exchange protocol secure against any passive adversary, the compiler
constructs a new protocol P ′, in which each party Ui ∈ S performs as
follows.

1. In the initialisation phase, and in addition to all the operations in
protocol P , each party Ui ∈ S generates a verification/signing key pair
(PKUi

, SKUi
) by running Gen(1k), where k is a security parameter.

3

2. Each user Ui chooses a random ri ∈ {0, 1}k and broadcasts IDUi
||0||ri,

where here, as throughout, || represents concatenation. After receiv-
ing the initial broadcast message from all other parties, each Ui sets
noncei = ((IDU1

, r1), · · · , (IDUn , rn)) and stores this as part of its
state information.

It is obvious that all the users will share the same nonce, i.e., nonce1 =
nonce2 = · · · = noncen, as long as no attacker changes the broadcast
data (or an accidental error occurs).

3. Each user Ui in S executes P according to the following rules.

• Whenever Ui is supposed to broadcast IDUi
||j||m as part of

protocol P , it computes σij = SignSKUi
(j||m||noncei) and then

broadcasts IDUi
||j||m||σij .

• Whenever Ui receives a message IDU ||j||m||σ, it checks that: (1)
U ∈ S, (2) j is the next expected sequence number for a message
from U , and (3) VrfyPKU

(j||m||noncei, σ) = 1 where here, as
throughout, 1 signifies acceptance. If any of these checks fail, Ui

aborts the protocol. Otherwise, Ui continues as it would in P
upon receiving message IDU ||j||m.

4. Each non-aborted protocol instance computes the session key as in P .

2.2 Security and efficiency

Katz and Yung [17] claim that their proposed compiler provides a scalable
way to transform a key exchange protocol secure against a passive adversary
into an authenticated protocol which is secure against an active adversary.
They also illustrate efficiency advantages over certain other provably-secure
authenticated group key exchange protocols. With respect to efficiency, we
make the following observations on the protocols produced by the Katz-Yung
compiler.

1. Each user Ui must store the nonce noncei = ((U1, r1), · · · , (Un, rn))
regardless of whether or not the protocol ends successfully. Since the
length of this information is proportional to the group size, the storage
of such state information will become a non-trivial overhead when the
group size is large.

2. From the second round onwards, the compiler requires each user to
sign all the messages it sends in the protocol run, and to verify all
the messages it receives. Since the total number of signature verifi-
cations in one round is proportional to the group size, the signature

4

verifications will potentially use a significant amount of computational
resource when the group size is large.

3. The compiler adds an additional round to the original protocol P ;
however, it does not provide key confirmation. As Katz and Yung
state [17], in order to achieve key confirmation a further additional
round is required.

2.3 An example application of the compiler

The following authenticated group key exchange protocol is obtained by
applying the compiler to the protocol proposed by Burmester and Desmedt
[10]. The resulted authenticated protocol has been proven secure by Katz
and Yung [17].

Suppose a cyclic group G with prime order q and generator g ∈ G is
determined in advance and known to all the users. Suppose a set S =
{Ui, · · · , Un} of users wish to establish a session key. Let IDUi

represent
Ui’s identity for every i (1 ≤ i ≤ n). During the initialisation phase, each
user Ui ∈ S generates the verification/signing keys (PKUi

, SKUi
) by running

Gen(1k). The protocol operates as follows.

1. Each user Ui begins by choosing a random ri ∈ {0, 1}k and broad-
casting Ui||0||ri. After receiving the initial broadcast message from all
other parties, Ui sets noncei = ((U1, r1), · · · , (Un, rn)) and stores it as
part of its state information.

2. Each user Ui chooses a random si ∈ Zq and computes Zi = gsi . Ui

computes a signature σi1 = SignSKUi
(1||Zi||noncei) and then broad-

casts IDUi
||1||Zi||σi1.

3. When Ui receives any message IDUj
||1||Zj ||σj1 from user Uj (1 ≤ j ≤

n, j 6= i), it checks that: (1) Uj ∈ S, (2) 1 is the next expected sequence
number for message from Uj , and (3) VrfyPKUj

(1||Zj ||noncei, σj1) = 1.

If any of these checks fail, Ui aborts the protocol. Otherwise, Ui com-
putes Xi = (Zi+1/Zi−1)

ri and the signature σi2 = SignSKUi
(2||Xi||noncei),

and broadcasts IDUi
||2||Xi||σi2.

4. When Ui receives any message IDUj
||2||Xj ||σj2 from user Uj (1 ≤ j ≤

n, j 6= i), it checks that: (1) Uj ∈ S, (2) 2 is the next expected sequence
number for message from Uj, and (3) VrfyPKUj

(2||Xj ||noncei, σj2) =

1. If any of these checks fail, Ui aborts the protocol.

5

Ui computes the session key as:

Ki = (Zi−1)
nsi · (Xi)

n−1 · (Xi+1)
n−2 · · ·Xi+n−2

= gnsi−1si · (
gsisi+1

gsi−1si
)n−1 · (

gsi+1si+2

gsisi+1
)n−2 · · ·

gsi+n−2si+n−1

gsi+n−3si+n−2

= gsi−1si+sisi+1+si+1si+2+···+si+n−2si+n−1

= gs1s2+s2s3+s3s4+···+sns1

In addition to the initialisation phase, the above protocol has three rounds.
Each participant needs to sign two messages and verify 2n signatures, in
addition to the computations involved in performing P .

2.4 A simplified version of the example protocol

We next present a simplified version of the transformed Burmester-Desmedt
protocol. In the simplified protocol, Ui (1 ≤ i ≤ n) performs the following
steps:

1. Each user Ui chooses two random numbers ri, si ∈ {0, 1}k , computes
Zi = gsi , and then broadcasts IDUi

||0||ri||Zi.

2. After receiving the broadcast message from all other parties, each user
Ui sets noncei = ((IDU1

, r1), · · · , (IDUn , rn)) and stores it as state in-
formation. Ui computes Xi = (Zi+1/Zi−1)

si , hi = Z1||Z2|| · · · ||Zn, and
σi1 = SignSKUi

(1||Xi||noncei||hi). Ui then broadcasts IDUi
||1||Xi||σi1.

3. When Ui receives any message IDUj
||1||Xj ||σj1 from user Uj (1 ≤ j ≤

n, j 6= i), it checks that: (1) Uj ∈ S, (2) 1 is the expected sequence
number, and (3) VrfyPKUj

(1|Xj |noncei|hi), σj1) = 1. If any of these

checks fail, Ui aborts the protocol.

Ui computes the session key as:

Ki = (Zi−1)
nsi · (Xi)

n−1 · (Xi+1)
n−2 · · ·Xi+n−2

= gnsi−1si · (
gsisi+1

gsi−1si
)n−1 · (

gsi+1si+2

gsisi+1
)n−2 · · ·

gsi+n−2si+n−1

gsi+n−3si+n−2

= gsi−1si+sisi+1+si+1si+2+···+si+n−2si+n−1

= gs1s2+s2s3+s3s4+···+sns1

It is easy to see that this simplified protocol is more efficient than that
obtained from directly applying the compiler in two respects: the protocol
has only two rounds, and each user only needs to compute one signature
and verify n signatures.

6

Assuming that the protocol P , i.e., the protocol of Burmester and Desmedt
[10], is secure against a passive adversary, it follows that our simplified
protocol is also secure against a passive adversary. To assess its security
against an active adversary, we first compare our simplified protocol with
that created by the Katz-Yung compiler. There are two main differences
between these two protocols:

1. The first difference is that in the simplified protocol we combine the
first two rounds of the example protocol into one round, and avoid the
signature computation.

2. The other difference is that we require each user to compute the sig-
nature on both Xi and Z1|| · · · ||Zn in the second round.

This means that the only difference in the operation of the two protocols
is that in the simplified protocol the authentication of messages sent in
the first round is conducted in the second round. As a result, it would
seem reasonable to conclude that the simplified protocol is as secure as the
example protocol given in section 2.3.

3 A new compiler without TTP

Motivated by the analysis of the example protocol in the previous section,
we now propose a new compiler that transforms a group key exchange pro-
tocol P secure against a passive adversary into an authenticated group key
exchange protocol P ′ with key confirmation which is secure against passive
and active adversaries, as well as malicious insiders. We also prove that P ′

is a secure authenticated key agreement protocol.

3.1 Description of the compiler

We assume that Σ = (Gen,Sign ,Vrfy) is a signature scheme as specified in
section 2.1. We also assume that a unique session identifier SID is securely
distributed to the participants before every instance is initiated. Note that
in [16] Katz and Shin propose the use of a session identifier to defeat insider
attacks.

Suppose a set S = {Ui, · · · , Un} of users wish to establish a session key, and
h is a one-way hash function. Let IDUi

represent Ui’s identity for every i
(1 ≤ i ≤ n).

Given P secure against any passive adversary, the compiler constructs a new
protocol P ′, in which each party Ui ∈ S performs as follows.

7

1. In addition to all the operations in the initialisation phase of P , each
party Ui ∈ S also generates a verification/signing key pair (PKUi

, SKUi
)

by running Gen(1k).

2. In each round of the protocol P , Ui performs as follows.

• In the first round of P , each user Ui sets its key exchange history
Hi,1 to be the session identifier SID, and initialises the round
number k to 1. During each round, Ui should synchronise the
round number k.

• When Ui is required to send a message mi to other users, it
broadcasts Mi = IDUi

||k||mi.

• Once Ui has received all the messages Mj (1 ≤ j ≤ n, j 6= i), it
computes the new key exchange history as:

Hi,k = h(Hi,k−1||SID||k||M1||· · ·||Mn)

Then Ui continues as it would in P upon receiving the messages
mj (1 ≤ j ≤ n, j 6= i). Note that Ui does not need to retain
copies of all received messages.

3. In an additional round, Ui computes and broadcasts the key confirma-
tion message IDUi

||k||σi, where σi = SignSKUi
(IDUi

||Hi,k||SID||k).

4. Ui verifies the key confirmation messages from Uj (1 ≤ j ≤ n, j 6= i).
If all the verifications succeed, then Ui computes the session key Ki

as specified in protocol P . Otherwise, if any verification fails, then Ui

aborts the protocol execution.

In addition to the initialisation phase, the above protocol adds one round to
the original protocol and achieves key confirmation. Each participant needs
to sign one message and verify n signatures, in addition to the computations
involved in performing P . In addition, each participant only needs to store
the (hashed) key exchange history. Hence this compiler yields protocols that
are more efficient than those produced by the Katz-Yung compiler.

Note that we are using the term key confirmation here in a different sense
to that used, for example, in [20]. That is, here key confirmation does
not mean that one participant is certain that any other participant has
actually computed the session key. Instead it guarantees that, if two or
more participants do compute the session key, then it is guaranteed that all
copies of this key are identical. This latter meaning is consistent with recent
uses of the term. A detailed discussion of key confirmation is given in [7].

8

3.2 Security analysis

We first briefly introduce our security model, and then prove our security
result.

3.2.1 Security model

We consider three kinds of adversary, namely a passive adversary, an active
adversary, and a malicious insider. The passive adversary can only eavesdrop
on the protocol messages, while the active adversary can completely control
the communication network. We do not allow the active adversary to corrupt
the long-term key of any honest entity (since we do not discuss forward
secrecy), but we do allow the active adversary to corrupt all previous session
keys. In our security model we also consider the malicious insiders who
manipulate the protocol messages in a manner deviating from the protocol
specification. For example, the malicious insiders might try to impersonate
another honest participant or mount a different key attack. It should be
noted that we do not consider the case when n−1 participants are malicious.

Definition 1. A probability P (k) (k is the security parameter) is said to be
negligible if for every polynomial f(k) there exists an integer Nf such that
P (k) ≤ 1

f(k) for all k ≥ Nf .

Definition 2. In a protocol instance, a participant accepts if it has suc-
cessfully receives and verifies (if needed) all the messages required by the
protocol specification.

Definition 3. An authenticated group key agreement protocol with key
confirmation is secure if it satisfies the following security requirements:

1. If only a passive adversary is present, any protocol instance success-
fully ends and all participants compute the same session key1. The
adversary’s advantage over the session key is negligible.

It is should be noted that the adversary’s advantage is defined in the
same way as in the protocol P .

2. When an active adversary is present, if one participant accepts in a
certain instance, then the probability that any other participant is not
involved in this instance is negligible.

3. When an active adversary is present, if all intended participants accept
in a certain instance, then the adversary’s advantage over the session
key held by any participant is negligible.

1
We assume that no accidental errors such as network failures occur.

9

4. When an active adversary is present, if all intended participants accept
in a certain instance, then the probability that their session keys are
different is negligible.

5. In any protocol instance, one or more malicious participants can only
succeed with a negligible probability in manipulating the protocol mes-
sages in a manner which deviates from the protocol specification.

3.2.2 Security result

Before proving the main theorem, we first prove the following lemma.

Lemma 3.1. Suppose Ui sends Uj message Mi in round ℓ of an instance
of a protocol P with v rounds (where 1 ≤ ℓ < v), and suppose also that Uj

receives M ′

i . Then, if M ′

i 6= Mi, Hi,v = Hj,v with a negligible probability,
i.e. Ui and Uj will almost certainly possess different key exchange histories
in the final round of P .

Proof. Since h can be regarded as a random oracle, Hi,ℓ 6= Hj,ℓ, where

Hi,ℓ = h(Hi,ℓ−1||SID||ℓ||M1||· · ·||Mi|| · · · ||Mn)

Hj,ℓ = h(Hj,ℓ−1||SID||ℓ||M ′

1||· · ·||M
′

i || · · · ||M
′

n)

Note that this claim is correct regardless of whether Hj,ℓ−1 = Hj,ℓ−1 and
Mw = M ′

w for any w (1 ≤ w ≤ n,w 6= i).

Recursively, it is straightforward to prove that Hi,z 6= Hj,z, for any z (ℓ +
1 ≤ z ≤ v), because Hi,z−1 6= Hj,z−1 and h can be regarded as a random
oracle.

Under the definitions and assumptions in section 3.2.1, we have the following
security theorem.

Theorem 3.2. If h can be considered as a random oracle, the compiler
transforms a group key exchange protocol P secure against any passive ad-
versary into an authenticated group key exchange protocol P ′ with key con-
firmation which is secure under our definition.

Proof. Without loss of generality, we assume that P ′ has v (v ≥ 2) rounds.

The first security requirement is straightforwardly satisfied based on the
assumption that the original protocol is secure against any passive adversary.

In order to gain a greater advantage than a passive adversary in a certain
protocol instance of P ′, an active adversary must manipulate some of the
protocol messages in the first v − 1 rounds, because the adversary can gain

10

no advantage if it only manipulates the key confirmation messages in the last
round. Without loss of generality, we suppose that the adversary replaces
Mi with M ′

i which is sent to Uj by Ui in the l-th (1 ≤ l ≤ v − 1) round of
the protocol instance. By lemma 3.1, the probability that Hi,v = Hj,v holds
is negligible.

In the v-th round, Ui broadcasts the key confirmation message IDUi
||k||σi =

SignSKUi
(IDUi

||Hi,v||SID||k), and Uj broadcasts the key confirmation mes-

sage IDUj
||k||σj = SignSKUj

(IDUj
||Hj,v||SID||k), where Hi,v 6= Hj,v (from

above). In order to make any honest participant accept, the active adver-
sary thus needs to block one of these two messages and broadcast a forged
key confirmation message. Without loss of generality, we suppose that the
adversary wants to forge Ui’s key confirmation message, i.e. the adversary
wants to forge a signature σi = SignSKUi

(IDUi
||Hj,v||SID||k). Because the

session identifier SID is unique, the adversary cannot obtain this signature
from Ui in any other protocol instance. Hence, the adversary needs to forge
the signature himself, which can only be successfully achieved with a neg-
ligible probability based on the assumption that the signature scheme is
unforgeable under an adaptive chosen message attack.

Based on these analysis, it is straightforward to verify that security require-
ments 2 − 4 are satisfied.

In order to gain any advantage, one or more malicious participants can
manipulate the protocol messages in the first v − 1 rounds in the following
two ways:

1. Replacing the message(s) from one set of honest participants to an-
other set of honest participants.

2. Sending different messages, which must be the same as those required
by the protocol, to some honest participants (of which there must be at
least two, given our assumption of at most n-2 malicious participants).

In both cases, at least two honest participants will possess different versions
of the key exchange history when they generate the key confirmation mes-
sages in v-th round. Based on the previous analysis for the active adversary,
it is easy to verify that the malicious participant(s) can also only succeed
with a negligible probability. As a result, we have proved that P ′ satisfies
the fifth security requirement.

As a result, we have proved that P ′ is a secure authenticated group key
agreement protocol with key confirmation.

11

4 A new compiler with TTP

4.1 Description of the compiler

We assume that Σ = (Gen,Sign ,Vrfy) is a signature scheme as specified in
section 2.1. We also assume that a unique session identifier SID is securely
distributed to the participants and the TTP before every protocol instance is
initiated. In addition, we assume that the TTP acts honestly and is trusted
by all the participants.

Suppose a set S = {Ui, · · · , Un} of users wish to establish a session key, and
h is a one-way hash function. Let IDUi

represent Ui’s identity for every i
(1 ≤ i ≤ n).

Given a protocol P secure against any passive adversary, the compiler con-
structs a new protocol P ′, in which each party Ui ∈ S performs as follows.

1. In addition to all the operations in the initialisation phase of P , the
TTP generates a verification/signing key pair (PKTA, SKTA) by run-
ning Gen(1k), and makes PKTA known to all the potential partici-
pants. Each party Ui ∈ S also generates a key pair (PKUi

, SKUi
) by

running Gen(1k). The TTP is equipped with reliable copies of all the
public keys PKUi

(1 ≤ i ≤ n).

2. In each round of the protocol P , Ui performs according to the following
rules.

• In the first round of P , Ui sets its key exchange history Hi,1 to
SID, and initialises the round number k to 1. During each round,
Ui should synchronise the round number k.

• When Ui is supposed to send message mi to other users, it broad-
casts Mi = IDUi

||k||mi.

• When Ui receives the message Mj from user Uj (1 ≤ j ≤ n), it
computes the new key exchange history as:

Hi,k = h(Hi,k−1||SID||k||M1||· · ·||Mn)

Then Ui continues as it would in P upon receiving the messages
Mj . As before, Ui does not need to store copies of received mes-
sages.

• In an additional round, Ui computes and sends the key confirma-
tion message IDUi

||k||Hi,t||σi to the TTP, where

σi = SignSKUi
(IDUi

||Hi,t||SID||k)

12

3. The TTP checks whether all the key exchange histories from Uj (1 ≤
j ≤ n) are the same, and verifies each signature. If all these ver-
ifications succeed, the TTP computes and broadcasts the signature
σTA = SignSKTA

(Hi,k||SID||k). Otherwise, the TTP broadcasts a fail-
ure message σTA = SignSKTA

(SID||str), where str is a pre-determined
string indicating protocol failure.

4. Ui verifies the signature from TA. If the verification succeeds, then Ui

computes the session key Ki as required in protocol P . If this check
fails, or if Ui receives a failure message from the TTP, then Ui aborts
the protocol.

In addition to the initialisation phase, the above protocol adds two rounds to
the original protocol and achieves key confirmation. Each participant needs
to sign one message and verify one signature, in addition to the computations
involved in performing P . In addition, it only needs to store the (hashed)
key exchange history. Of course, the TTP needs to verify n signatures and
generate one signature.

4.2 Security analysis

In the same security model described in section 3.2.1, we have the following
security theorem.

Theorem 4.1. If h can be considered as a random oracle, the compiler
transforms a group key exchange protocol P secure against any passive ad-
versary into an authenticated group key agreement protocol P ′ with key con-
firmation which is secure under our definition.

Proof. Based on the uniqueness of SID and the security properties (unforge-
able under an chosen message attack) of the deployed signature scheme, we
make the following two observations regarding a single instance of P ′:

1. The TTP can verify whether all participants possess the same key
exchange history by checking all the signatures σi (1 ≤ i ≤ n).

2. Inherently, all honest participants can verify whether all other partici-
pants possess the same key exchange history by verifying the signature
σTA. Note that the same key exchange history guarantees that they
compute the same session key.

Based on these two observations and the proof of Theorem 3.1, the theorem
follows.

13

5 Conclusion

In this paper, we have investigated existing methods for building authen-
ticated group key agreement protocols. We have proposed two compilers
that transform a group key exchange protocol secure against any passive
adversary into an efficient authenticated group key exchange protocol with
key confirmation which is secure against any passive adversary, active adver-
sary, or malicious insider. We have shown that protocols generated by both
novel compilers are more efficient than those generated by the Katz-Yung
compiler.

References

[1] S. Al-Riyami and K. Paterson. Tripartite authenticated key agreement
protocols from pairings. In K. G. Paterson, editor, Proc. IMA Con-
ference on Cryptography and Coding, volume 2898 of Lecture Notes in
Computer Science, pages 332–359. Springer-Verlag, 2003.

[2] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the
design and analysis of authentication and key exchange protocols. In
Proceedings of the thirtieth annual ACM Symposium on the Theory of
Computing, pages 419 – 428. ACM, 1998.

[3] M. Bellare and G. Neven. Transitive signatures based on factoring and
RSA. In Y. Zheng, editor, Advances in Cryptology — Asiacrypt 2002,
volume 2501 of Lecture Notes in Computer Science, pages 397–414.
Springer, 2002.

[4] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key ex-
change secure against dictionary attacks. In B. Preneel, editor, Ad-
vances in Cryptology — Eurocrypt 2000, volume 1807 of Lecture Notes
in Computer Science, pages 139–155. Springer-Verlag, 2000.

[5] M. Bellare and P. Rogaway. Entity authentication and key distribution.
In D. R. Stinson, editor, Advances in Cryptology – Crypto ’93, volume
773 of Lecture Notes in Computer Science, pages 110–125. Springer-
Verlag, 1993.

[6] M. Bellare and P. Rogaway. Provably secure session key distribution:
The three party case. In Proc. of the 27th ACM Symposium on the
Theory of Computing, pages 57–66. ACM, 1995.

[7] C. Boyd and A. Mathuria. Protocols for Authentication and Key Es-
tablishment. Springer, 2004.

14

[8] E. Bresson and D. Catalano. Constant round authenticated group
key agreement via distributed computation. In F. Bao, R. Deng, and
J. Zhou, editors, Proc. of PKC 2004, volume 2947 of Lecture Notes in
Computer Science, pages 115–129. Springer, 2004.

[9] E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman
key exchange secure against dictionary attacks. In Y. Zheng, editor, Ad-
vances in Cryptology — Asiacrypt 2002, volume 2501 of Lecture Notes
in Computer Science, pages 497–514. Springer-Verlag, 2002.

[10] M. Burmester and Y. Desmedt. A secure and efficient conference key
distribution system. In A. D. Santis, editor, Advances in Cryptology—
EUROCRYPT ’94, volume 950 of Lecture Notes in Computer Science,
pages 275–286. Springer-Verlag, 1994.

[11] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In B. Pfitzmann, editor, Ad-
vances in Cryptology — Eurocrypt 2001, volume 2045 of Lecture Notes
in Computer Science, pages 453–474. Springer-Verlag, 2001.

[12] L. Chen and C. Kudla. Identity based authenticated key agreement
protocols from pairings. In Proc. of the 16th IEEE Computer Security
Foundations Workshop — CSFW 2003, pages 219–233. IEEE Com-
puter Society Press, 2003.

[13] K. Y. Choi, J. Y. Hwang, and D. H. Lee. Efficient ID-based group key
agreement with bilinear maps. In F. Bao, R. Deng, and J. Y. Zhou,
editors, Proceedings of the 2004 International Workshop on Practice
and Theory in Public Key Cryptography (PKC ’04), volume 2947 of
Lecture Notes in Computer Science, pages 130–144. Springer-Verlag,
2004.

[14] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

[15] I. Ingemarsson, D. Tang, and C. Wong. A conference key distribu-
tion system. IEEE Transactions on Information Theory, 28(5):714–720,
1982.

[16] J. Katz and J. Shin. Modeling insider attacks on group key-exchange
protocols. Cryptology ePrint Archive: Report 2005/163, 2005.

[17] J. Katz and M. Yung. Scalable protocols for authenticated group key
exchange. In D. Boneh, editor, Advances in Cryptology — Crypto 2003,
volume 2729 of Lecture Notes in Computer Science, pages 110–125.
Springer-Verlag, 2003.

15

[18] Y. Kim, A. Perrig, and G. Tsudik. Communication-Efficient group key
agreement. In Proc. IFIP TC11 16th Annual Working Conference on
Information Security, pages 229–244. Kluwer, 2001.

[19] A. Mayer and M. Yung. Secure protocol transformation via “expan-
sion”: from two-party to groups. In CCS ’99: Proceedings of the 6th
ACM conference on Computer and Communications Security, pages
83–92. ACM, 1999.

[20] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

[21] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener. A secure audio
teleconference system. In H. Krawczyk, editor, Advances in Cryptology
— Crypto ’98, volume 403 of Lecture Notes in Computer Science, pages
520–528. Springer-Verlag, 1998.

16

