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Abstract— In this paper, we present a new class of public-key cryptosystem (PKC) using algebraic
coding on the basis of superimposition and randomness. The proposed PKC is featured by a generator
matrix, in a characteristic form, where the generator matrix of an algebraic code is repeatedly used
along with the generator matrix of a random code, as sub-matrices. This generator matrix, in the
characteristic form, will be referred to as K-matrix. We show that the K-matrix yields the following

advantages compared with the conventional schemes:

(i) It realizes an abundant supply of PKCs, yielding more secure PKCs.

(i) It realizes a fast encryption and decryption process.
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1 Introduction

Extensive studies have been made of the Public Key
Cryptosystem (Hereinafter Public-Key Cryptosystem
will be abbreviated as PKC). The security of most
PKCs depends on the difficulty of discrete logarithm
problem or factorization problem. Thus it is desired to
investigate another classes of PKC that do not rely on
the difficulty of these two problems.

In this paper, we shall present a new class of PKC
using algebraic coding on the basis of superimposition
and randomness. As is well known, one of the most
important applications of the error correcting codes to
the field of cryptography is due to McEliece [1], who
applied the Goppa codes to PKC. However, almost all
classes of McEliece-Type Cryptosystem use powerful
codes of large minimum distances such as Goppa codes
[1,2].

On the other hand, in step with the recent advance-
ment of the various digital systems such as error-control
systems, extension field Fym has been extensively stud-
ied and has been widely used for realizing secure and
reliable storage and transmission systems. Thus con-
structing a new class of PKC over Fy= would be desir-
able, because the various precious and abundant knowl-
edges on software and hardware techniques are avail-
able when using Fom.

In this paper, we shall present a new class of PKC
over Fyom using algebraic coding on the basis of super-
imposition [2] and randomness. The proposed PKC is
characterized by a (k+r) x 2n matrix, K-matrix, that is
constituted by two repeatedly used generator matrices
for algebraic code and a generator matrix for random
code, as shown below:

Ga

K= R

“ ], 1)

where G 4 is a k x n generator matrix of a large class of
algebraic code and R is an r X 2n generator matrix of
random code. In Eq. (1), the notation [X;Y] implies
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the concatenation of matrices X and Y. It should be
noted that the codes generated by G 4 is very general
in a sense that they are not necessarily required to have
a large minimum distance, in a sharp contrast with a
powerful code such as the generalized BCH codes [2].
We assume that almost all elements of R are generated
in a random manner. The proposed PKC constructed
on the basis of K-matrix given by Eq. (1) will be re-
ferred to as K,-PKC, where r stands for the number of
row vectors of R.

In this paper, we show that the K-matrix yields the
following advantages compared with the conventional
generator matrix:

(i) Tt realizes an abundant supply of PKCs, yielding
more secure PKCs.

(i) It realizes a fast encryption and decryption pro-
cess.

2 Preliminaries

In this section, for simplicity, we present K,-PKC
where no permutation matrix is used. In later section
we shall present K.-PKC where permutation matrices
are used.

2.1 Public and Secret Keys
Let us define the following (k + r) x 2n matrix over
Fgm :
M = SK, (2)
where S is the (k + r) x (k 4+ r) non-singular matrix
over Fym. In Eq. (2), M is made public and S is kept

secret.
[Subset of Keys]

Public Key : M
Secret Key : S,K

Another set of public keys such as e = 3, Grs,p(X)
will be added later on.

Besides public key M will be used in a permuted
form.



2.2 Matrix R
Let the matrix R in Eq. (1) be denoted by

R = [RL;RR]
|' Rii,--,Rin Rini1, > Rian ‘| o
= ; , (3
[ Rr,l;"',Rr7n Rr,n+17"'7Rr72n J

where we assume that all the elements are chosen in
a random manner under Condition C; which will be
given later.

Based on R, let us define the following (k+ 1) x n
matrix BT as follows:

Rt = R + Rpg. (4)

Let us define another matrix Rs whose columns are
constituted by the randomly chosen r columns of R*
as follows:

RTJl 57T RTJr
Rjjl 3T T RTJ!_JT

where we assume that the relation 1 < J; < Jo < --- <
J, < n holds and R is given by

Rj; =Rij + R jin- (6)

Condition ) : Among ( 2 ) choices of Rg’s for a

given R, there exist sufficiently large amount of non-
singular matrices. O

Remark 1 : As we shall discuss in the later section,
in K,-PKC, r should be chosen sufficiently small com-
pared with k& and the relation n = k holds. Evidently,
the probability that the randomly chosen Rg over Fsm
is non-singular takes on sufficiently large value for m
2 3. Thus Condition C] is satisfied and the obtain-
ing of non-singular matrix Rg yields no obstacle when
designing the proposed K,.-PKC. O

2.3 Encryption and Decryption Processes

For an easy understanding, we shall describe here the
encoding and decoding processes in a similar manner
as the describing of algorithms.

[Encryption].
Encryption process can be given as follows:
Let the message vector m over Fym be denoted as
follows:

m:(ml,mQ;'”)mky"'amk+r)' (7)
The cyphertext C is given by
C=mM +e, (8)

where e is a 2n-symbols error vector over Fy» which is
generated in a random manner at the sender. Let us
denote the weight of the error vector e, w(e), by

w(e) = 2n — la,, (9)

where [y, is an appropriately chosen positive integer
depending on the given K-matrix. We also denote mM
as follows:

mM:(mll;m‘Iz;"':mIk;"'amIk—i-r) (10)
O

Let us partition the components of the error vector e
as shown in Fig. 1.

e = (X1;YL;YR;XR)- (11)

- er > - er >

elv"'ve% e%-‘rlv'“ven en-‘rla"'ve% 637"+17"'762n

W—/7‘ - /7\ ~ /7 - S
XL yL YR XR

Fig. 1 Partition of components of e.

In the following, we assume that the error vector
(Yr,yr) is given so that it can be corrected by the
code generated by the generator matrix G 4.

[Decryption].

Step 1 : Let us denote the received version of cypher-
text C as follows:

C =mkK +e, (12)
where m is given by
m =mS, (13)
and is denoted as
m = (Mg, Mg, -, Mg, Mgar). (14)
Let the error vector e be represented by
e=(ey;ep), (15)

where we let ey, and e be denoted by

er, = (e1,e2,-+-,ep,) (16)

and
er = (ent1,€nt2, ", €2n), (17)
respectively. In a similar manner as the error

vector e, the mK is partitioned to (mK)r and
(mK)p as follows:

K = ((mK)L; (ﬁlK)R). (18)

Note that C is now represented as

C= ((mK)L +ep; (K)R + eR). (19)



Step 2 : The message (Myy1,---,Mpyr) are decoded
based on the following vector v:

V:(ﬁlK)L-i-eL-l—(ﬁlK)R'FeR. (20)

Remark 2 : In this Step 2, e, + er = (x1 +
YR;Xr +y1) is decoded and is known to the re-
ceiver. In the following step, Step 4, (x7, +yr;0)
will be used for decoding the remaining message
(Wuy, 1, - -, i) O

Step 3 : The decoded version, (ﬁLkH, ‘e ,ﬁ’Lk+7«)R is
subtracted from the received cyphertext C given

by Eq. (12). The message (1, Mo, -, my) is
decoded by the following steps.
Step 4 : Let m' and K’ be given as follows:
m' = (g, Mo, -, M) (21)
and
K'=[Ga;Gal (22)
Then m’' K’ can be represented as
m'K' = (Fg,;Fay), (23)
where Fg, and Fg,, are given by
Fg, =Fg, =m'G4. (24)

The syndrome (x, + yg;0) obtained in Step 2 is
added on F+(x1, +y1) in the following manner:

Fo, + (x0;yL) + (x2 + yr; 0)
- FGL + (YRa yL)v (25)

where 0 is the n/2-symbols vector of all zero ele-
ments. By correcting (yr;yr), Fa, is decoded,
yielding the decoded message (1,2, - -, Mg).

Step 5 : The message vector 1 = (1, M2, -+ -, Mgy,
-+ Mgay) is decoded as follows:

m=mS ' (26)

O

Let us denote the Hamming weight of the vector ey, +
er by

w(er, +er) =n —ly, (27)

where [,, is an appropriately chosen positive integer de-
pending on the given K-matrix.

Remark 3 : It is evident that /,, and I3, are required
to be as small as possible in order to make our proposed
PKC secure. We shall show, in the next section, that
these values can be made sufficiently small. O

Theorem 1 : The messages Mmgy1, -, Mey,r can be
successfully decoded provided that there exists symbols
with no error at the sufficient number of locations of
the components of the vector (mK)y + (mK)g. 0O

3 Several Properties

3.1 Ambiguity of Matrix
When the following relation holds:

SG #G' (28)

for any Ky x Ky non-singular matrix S, then Ky x Ny
matrices, G and G', will be referred to as different.

Definition 1 : Let the number of different G’s that
satisfy a given condition C be represented as ${G}c.
The ambiguity, Agc, of the matrix G that meets the
given condition C is defined as

Agco = logy tH{G}eo. (29)
[

3.2 Several Parameters

The size of the public key, Spx, is given by
Spx =2nm(k+r) (bits). (30)
The size of the cyphertext, S¢, is given by
Sc = 2nm (bits). (31)

The coding rate (information rate), p, is given by

k+r
= . 32
p=—- (32)
Error rate € is given by
_ w(e)
=5 (33)

4 An Example of Vector y of Large Ham-
ming Weight
Let us discuss here a method of the generating of a
random error vector of large Hamming weight that can
be successfully corrected at the receiver.
We assume that the generator matrix, G, is given

as that of the quasi-cyclic code (qcc) over Fom that is
generated by the following polynomial G(X):

GX)=Go+ G X+ +G, 1 X7+ X9, (34)

where G; € Fym and G # 0.
It is evident that the code generated by such a gen-
eral polynomial has no systematic distance structure.
Let us denote (yg,yr) by y and denote y by the
following polynomial:

y(X) =yr(X)X™" +yr(X), (35)

where yr(X) and yr(X) stand for yr and yr, respec-
tively, and are denoted by

yo(X) = ez 1 X5 +eg XFH2 44 e, X" (36)
and

YR(X) = en 1 X"+ +em X T (37)



respectively.

In order to let the Hamming weight of vector y take
on a large value, we construct y(X) in the following
form:

y(X) = {n(X)}?, (38)

where 1(X) is an error polynomial corresponding to the
following error vector n randomly generated:

77:(”1;772;"‘-;ﬁnT—6); niEFZ'"a (39)

where € is an appropriately chosen positive integer. Ev-
idently, n(X) can be decoded by the following equation:

{Fo, (X) +y(X) ¥ =9(X) mod G(X),  (40)

provided that the exponent of G(X) is not divisible by
3.

It is evident that, once yr,(X) + ygr(X) is decoded,
each of the error vectors (xr,0) and (0,xp) can be
decoded by a single step of multiplication and division
by the generator polynomial G(X). Thus it is expected
that the decoding process can be performed very fast,
compared with the conventional method using Goppa
codes etc.

Another class of generator polynomials will be given
in Section 6.

In an example of K.-PKC given in the following sec-
tion, we discuss the method of adding information sym-
bols that can be considered sufficiently randomized, in-
stead of an error vector.

Remark 4 : We assume that the message vector m
over Iy is sufficiently randomized, for example, by the
using of common-key cryptosystem whose secret key
are made public, yielding a sufficiently random message
vector over Fym. |

We shall present here an example of the proposed
PKC, K,-PKC assuming the error vector given by (38).
In the following example, we assume that the 2r = 4
locations of the codeword are required to be error free
and the locations are made public.

Example 1 : Let the K-matrix of Ko-PKC is given

by
G G
K = ry;, rp 5 (4]_)
r, rh

where G, rp, rg, r;, and r’; are given as follows:

G : 127 x 254 matrix over Fyr that are gen-
erated by the polynomial G(X) over Fyr
whose degree is 127, given in Eq. (34).

ry, 'r, I, r'’5 : 254-symbols random vector
over Fo7.

The number of information symbols (in bits), x, and
the size of the cyphertext (in bits), |C|, are given by

k= (k+2) xm =903 (bits)
and (42)
|C| =2n x m = 3556 (bits),
respectively.
The size of the public-key, Sy, is given by
Spr = (kK +2) x 2n x m = 458724 (bits). (43)
The ambiguity of K matrix [Eq. (41)] is given by
A = logy H{G}gcc +1ogy t{(rr,rr)}R
+log, #{(r’,,r'’)}r = 889 + 3556 x 2 (44)
8001 (bits),

a sufficiently large value.

In Example 1, the error rate € takes on the value
0.992, extremely large value. If the message m’'s are
added instead of error vectors in this example, the cod-
ing rates are given as 0.915 [see Eq. (50) given in the
following section].

5 Discussions

5.1 Security Considerations and Improvements

(I) Improvement using permutation matrix P

So far we have discussed a class of K,-PKC that uses
no permutation matrix. Evidently using no permuta-
tion matrix may weaken the proposed PKC. In this
sub-section, we present a method for overcoming this
problem. We first assume that the generator matrix
G in Eq. (1) generates the maximum distance sepa-
rable code over Fom.

We assume here that the proposed K,-PKC uses a
(2n x 2n) permutation matrix P in a general form,
yielding the following public key:

M = SKP (45)

Using this public-key, it is easy to see that the K,-
PKC generated by G4 mentioned above is able to cor-
rect n/4 errors. In this case, error rate € is given by
e = 1/4, sufficiently large values when k takes on the
value k 2 100. Letting the weight of vector (ep + eg)
be denoted by w(er, + er), the error vector &, in v is
given by

w(eL + eR)

en = (46)

It is easy to see that when the row vector of R are
sufficiently random, messages mgi1,---, M1 can be
successfully decoded provided that the error rate &,
satisfies €, S 1/2.

(II) Improvement using permutation matrix Pk,

We assume here that the error vector in Section 4 is
used. Then the following 2n x 2n permutation matrix
Pg_ can be used for improving the security:

Py 0 P

Pk.=| 0 I, 0 |, (47)
P, o Py
2 2



where Pg, P’% , % and P%’ are random permutation
matrices and I, is the nxn identity matrix. We also see
that when the error vector y is given by Eq. (38) and
error vectors xy, and xg are given in a random manner,
excluding 2r locations of the cyphertext mM Pk, , then

the error rate s, for Ko-PKC is given by

2n — 4
on = . 48
€2 o ( )

As an example, for K»-PKC, in order to decode my.4+1
and my2 successfully, it is required, according to the
choice of € = 2 in Eq. (39), that the following relation
holds for a random error vector e as shown below:
=e =e

=0. (49)

6%,1 =e

w3

30— 3
sn—1 5n

It should be noted that other components of e are
chosen in a totally random manner.

Theorem 2 : If the error vectors for which (er,er)
is given by Eq. (38) are substituted by the randomized
message vectors, then coding rate p is given by

k+r+23%+n—2r

2n
n n 11
= (= ——7r)/2n ~ —.
(3-|-n—|-2 r)/2n D (50)

O

Remark 5 : Using of [, in Eq. (47) implies that the
public key M is used without permutation, yielding a
possibility of introducing a weakness to our proposed

scheme here. We shall improve this problem in the
following, (TIT). O

(IIT) Improvement using permutation matrix Py
We assume here that the following permutation ma-
trix Pg_ is used:

Py 0 P
pP. 0 P
2 2

where P, is an n X n permutation matrix. We also
assume that the following generator polynomial is used
for constructing the generator matrix G.

G(X) = Grs,p(X)I(X — ), (52)

where Grg p(X) is the generator polynomial of Reed-
Solomon (RS) code of the minimum distance D. We
assume that the minimum distance D satisfies the fol-
lowing;:

D=2t+1 (53)

In Eq. (52), we assume that o; € Fym is non-zero
and randomly chosen

The generator polynomial G(X) is very general in a
sense that it generates the codes that include RS codes
and totally random codes as particular cases.

Example 2 : K-matrix is given exactly in the same
form of matrix as shown by Eq. (41) in Exam-
ple 1. The G4 and ry, rg, 7, rly are given as
follows:

G4+ 256 x 512 matrix over Fhs that is gener-
ated with the polynomial G(X) given by
Eq. (52), where the minimum distance is
given by D = 201.

rL, 'g, r'r, vy ¢ 256-symbols random vector
over Fys.

The number of information symbols, «, and the size
of the cyphertext, |C| are given by

k= (k+2) xm=2064 (bits)
and (54)
|C| =2n x m = 8192 (bits),

respectively.
The size of the public-key, Spy, is given by

Spr = (K +2) x 2n x m = 2113536 (bits). (55)
The ambiguity of G 4 is given by
Ac, =log, #H{Ga}c ~ 8 x 56 = 448 (bits).  (56)

The ambiguity of K matrix used for constructing K-
PKC is given by

Ax = logy#{Ga}c +logy #{(rL,Tr)}c
448 + 16384 = 16832 (bits).  (57)

In this case the probability that the randomly chosen
k = 258 symbols of the part of the cyphertext with
errors y1, and yg have no error is given by (53)%® ~
4.4 x 10725, sufficiently small value.

(IV) On Lee-Brickell attack

When h symbols are shown to be error free among
the 2n symbols that constitutes the cyphertext over
Fym | the message myi, ma, -+, M4, can be estimated
by searching all the possible patterns of the k + r —
h symbols. Let us now discuss on this matter in the
following.

Let the probability that a randomly generated error
symbols e, assumes an element 3 € Fym be denoted by
Ple, = 3]. Obviously, this probability is given by

Ple, =pg]=2"" (58)

Consequently, the probability, Po(¢), that the obtain-
ing of a error vector correctly is given by

Po(e) = (27m)kFr=h), (59)

Let us consider the Lee-Brickell Attack [4] on our
K5-PKC given in Example 1. Evidently each of the
remaining 125 symbols has an error with probability
1 — 277, In order to perform Lee-Brickell attack, we
have to estimate 129 — 4 = 125 error free symbols in



yr, and yg in an exhaustive manner. The probability
of the obtaining of error symbols is given by 271257 =
27875 an extremely small value.

In Example 2, while the error rate in (x1,,xpg) is ap-
proximately 1.0, the error rate in (y,,yg) is only % =
0.195. Thus the corresponding part of the cyphertext
may be threatened by Lee-Brickell attack. However the
probability of the obtaining of error free symbols among

L 412 512y _3g
512 symbols is given by (¢ )/(55g) = 1:59 % 1075,

sufficiently small value.

(V) Improvements by letting error rate be smaller
K,-PKC given in Example 1, we have chosen the error
rate p in x7, and xg to be approximately 1.0. Conse-
quently the locations of 2r error free symbols should
be made public. However the publication of error free
symbols may introduce a certain weakness in our K-
PKC. To overcome this problem, the simplest way is to
make the error rate smaller. We shall discuss on this
matter using the numerical example for K,.-PKC given
in Example 2.

We let error rate in x7, and xg be 2, yielding error
free rate in (xr, + Yr;Xr + ¥1) to be % . % = 0.152.

The expectation of the number of error free symbols
in the above vector is given by 67.8. The standard vari-
ation is given by /512 x 0.152 x 0.848 = 8.124. The
probability of obtaining less than 8 error free symbols,
and more than 129 error free symbols Plz < 6,2 >
128], is then given by 1.54 x 10713, sufficiently small
value.

When error symbols are substituted by message sym-
bols, the coding rate p can be given as

i n i n
n+r+mlog2(t)+t+mlog2(n6 )+n5n

n

= . (60
p o (60)
For example, the coding rate in Example 2 is now given

by p = 0.82, sufficiently large value.

5.2 Computational Efforts on Encryption and
Decryption

In this section, we briefly discuss on the computa-
tional efforts on Encryption and Decryption for the
proposed K,-PKC. First, we shall define the following
symbol:

R, : Residue class ring modulo a polynomial G(X) of
degree g over Fom.

a(X),b(X),c(X) : Elements of R,.

In the following, we assume that r = 1. A general-
ization to the case where r > 1 is straightforward. For
K,-PKC with error vector given by (38), basically, the
following operations are performed.

For encryption:

(1) mM, yielding mM.
(2) e +mM, yielding C [Eq. (9)].

For decryption:

(1) (e+mM)P L.
(2) (mMK)L +er + (MmK)g + eg.
(3)

Assuming 1My, in 2™ ways on 11 (rL,TR) +
CP~!, yielding 1 and X1, + yg..

(4)
(5)

Fo+xp + (XL + yR,O), yielding Fg + (yR,yL).

{Fo(X)+y(X)3}* " = y(X) mod G(X), yielding
(YR, YR)-

(6)
(7)
(8)
(9) (MG )G, yielding m.

XL tYR+ YR =XL.
z(X)X9- X9 =z(X) mod G(X).

CP' + (x1,y1,0,0), yielding mG 4.

(10) S, yielding m.

6 Concluding Remarks

We have proposed a new class of PKC using alge-
braic coding on the basis of superimposition and ran-
domness. The proposed schemes have the following
features:

The freedom of choosing K-matrix is larger than that
of the choosing of generator matrix based on the alge-
braic error correcting codes such as Goppa codes [2],
under the same size of public-key.

It seems that our proposed PKC, K,-PKC with ex-
tremely large number of errors has improved the secu-
rity level significantly compared with the conventional
scheme. For example, in the proposed PKC, K.-PKC
probability of the estimating of error free k+r message
successfully can be made sufficiently small. Besides the
proposed scheme has opened up a new problem of con-
structing a new class of PKC based on algebraic coding
with high coding rate.

A Appendix: Simple K-PSK

In this appendix, we shall present the simplest K-
PKC where (k +r) x n K matrix is given as follows:
GO

ke[ 49 o

In Eq. (61), we assume that G is generated by a gen-
erator polynomial G(X). The 0 is 7 x 2n zero matrix
and R is an r x (2n + r) random matrix. It should be
noted that the matrix 0 can be located any place.

However this simple structure of K-matrix, Kg, may
cause another problem of introducing a certain weak-
ness in our scheme unless message symbols are suffi-
ciently randomized. Further investigation has been left
for future.
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