
Efficient Comb Elliptic Curve Multiplication Methods Resistant to Power

Analysis

Min Feng1, Bin B. Zhu2, Maozhi Xu1, Shipeng Li2

1School of Mathematical Sciences, Peking Univ., Beijing,100871, China

{fengmin, mzxu}@math.pku.edu.cn

2Microsoft Research Asia, Beijing, 100080, China

{binzhu, spli}@microsoft.com

Corresponding Author:

Bin B. Zhu

Microsoft Research Asia,

3F Sigma, No. 49, Zhichun Road, Haidian,

Beijing, 100080, China

Phone: (8610) 62617711 ext. 3109

Fax: (8610) 88097306

Email: binzhu@ieee.org (preferred)

or binzhu@microsoft.com

Efficient Comb Elliptic Curve Multiplication Methods Resistant to

Power Analysis

Min Feng, Bin B. Zhu, Maozhi Xu, Shipeng Li

Abstract

Elliptic Curve Cryptography (ECC) has found wide applications in smart cards and embed-

ded systems. Point multiplication plays a critical role in ECC. Many efficient point multiplication

methods have been proposed. One of them is the comb method [5] which is much more efficient

than other methods if precomputation points are calculated in advance or elsewhere. Unfortu-

nately, Many efficient point multiplication methods including the comb method are vulnerable

to power-analysis attacks. Various algorithms to make elliptic curve point multiplication se-

cure to power-analysis attacks have been proposed recently, such as the double-and-add-always

method [8], Möller’s window method [17, 18], Okeya et al.’s odd-only window method [21, 22],

and Hedabou et al.’s comb method [19]. In this paper, we first present a novel comb recoding

algorithm which converts an integer to a sequence of signed, odd-only comb bit-columns. Using

this recoding algorithm, we then present several comb methods, both Simple Power Analysis

(SPA)-nonresistant and SPA-resistant, for point multiplication. These comb methods are more

efficient than the original SPA-nonresistant comb method and Hedabou et al.’s SPA-resistant

comb method. Our comb methods inherit the advantage of a comb method, running much

faster than Möller’s window method and Okeya et al.’s odd-only window method, as well as

other window methods such as the efficient signed m-ary window method, if only the evaluation

phase is taken into account. Combined with randomization projective coordinates or other ran-

domization techniques and certain precautions in selecting elliptic curves and parameters, our

1

SPA-resistant comb methods are resistant to all power-analysis attacks.

Keywords: comb method, power-analysis attack, side-channel attack, SPA-resistant, ellip-

tic curve cryptography, ECC, power analysis, SPA, DPA, scalar multiplication, point multipli-

cation, signed odd-only comb method, smart cards.

1 Introduction

Elliptic curve Cryptography (ECC) has gained increasing popularity in public key cryptography

since it was first proposed by Miller [1] and Koblitz [2]. ECC exploits the fact that there is no

sub-exponential algorithm to solve the discrete logarithm problem on elliptic curves. Compared

with other public key cryptography such as RSA [3], ECC utilizes shorter key sizes for the same

level of security, which translates into fast computation and less demands on memory and CPU.

These advantages make ECC ideal for use in smart cards and embedded systems where storage,

power, and computing resources are at a premium.

A major component in ECC is point (or scalar) multiplication. Many efficient point multiplica-

tion methods have been developed: binary method, non-adjacent form (NAF) method, and several

window methods that play tradeoffs between storage space and execution time. A good description

of most point multiplication methods can be found in the book [4]. A method that is not included

in the book is the comb method first proposed by Lim and Lee [5], which uses a binary matrix to

represent a scalar and processes the matrix columnwise. The comb method can dramatically speed

up the main computation of point multiplication with the same precomputation space as window

methods.

Unfortunately, all the aforementioned methods are vulnerable to side-channel attacks, first

introduced by Kocher et al. [6, 7], which measure observable parameters such as timings or power

consumptions during cryptographic operations to deduce the whole or partial secret information of

2

a cryptosystem. Power analysis includes both Simple Power Analysis (SPA) and Differential Power

Analysis (DPA) [7]. In SPA, a single trace of power consumption for execution of cryptographic

operations is inspected to extract information about the cryptographic operations and the secret

key. DPA is much more powerful and sophisticated. In DPA, statistical analysis and error correction

techniques are used to analyze many traces of power consumptions to extract information correlated

to the secret key. Side-channel attacks were extended to elliptic curve cryptosystems [8]. Higher

order DPA attacks are proposed in [9, 10]. Goubin [11] proposed a refined DPA attack by using

a special point on the elliptic curve with one of coordinates being zero. A particular target of

side-channel attacks for elliptic curve cryptosystems is the scalar k in point multiplication which

computes a product kP , where P is a point on an elliptic curve E(F) over a finite field F and

k is a secret positive integer. With power analysis, partial information or the exact value of the

secret k can be deduced when Lim and Lee’s comb method [5] or the point multiplication methods

described in the book [4] are used.

Many countermeasures have been proposed to protect against side-channel attacks on ECC.

Two major strategies are used to thwart SPA attacks. The first is to make addition and doubling

operations indistinguishable. A unified formula for computing both addition and doubling has

been proposed by Liardet and Smart [12] for Jacobi-type and by Joye and Quisquater [13] for

Hasse-type elliptic curves. A common disadvantage of these methods is that the group order of

the elliptic curve has to possess certain properties, which renders them inapplicable to the elliptic

curves recommended by the National Institute of Standards and Technology (NIST) [14].

The second strategy is to remove dependency on a specific value of the secret multiplier k in the

intermediate steps of point multiplication. Coron, Okeya, et al. [8, 15, 23, 25, 24] proposed schemes

using addition chains to always execute point addition and doubling for each bit. Möller, Okeya,

et al. [17, 18, 21, 22] modified window methods by making addition chains with a fixed pattern of

3

nonzero digits. Hedabou et al. [19] proposed a first SPA-resistant comb method. Chevallier-Mames

et al. [26] proposed a scheme which, through inserted dummy operations, divides the two basic

operations in point multiplication, point doubling and point addition, into side-channel atomic

blocks so that point multiplication appears as a succession of side-channel atomic blocks that are

indistinguishable by SPA.

An SPA-resistant method is not necessarily resistant to DPA attacks, but many countermeasures

have been proposed to transform an SPA-resistant method into a DPA-resistant method. Coron

[8] proposed to use random projective coordinates. Joye and Tymen [20] proposed to use a random

isomorphism such as a random elliptic curve isomorphism and a random field isomorphism.

In this paper, we present a novel comb recoding algorithm to convert a scalar into a signed,

odd-only fixed pattern comb representation. Using this recoding algorithm, we then present a new

comb method called Signed Odd-Only Comb Method and its variations which compute point mul-

tiplication more efficiently with less precomputed points than the original comb method proposed

in [5]. Those comb methods are then modified to be SPA-resistant by exploiting the fact that

point addition and point subtraction are virtually of the same computational complexity for ellip-

tic curves. Our SPA-resistant comb methods are more efficient in both storage space and execution

time than the SPA-resistant comb method proposed by Hedabou et al. [19]. They also inherit a

comb method’s advantage – running much faster than SPA-resistant window methods when pre-

computation points are calculated in advance or elsewhere. Combined with the techniques proposed

elsewhere that convert an SPA-resistant method into a DPA-resistant method, our SPA-resistant

comb methods to be presented in this paper are secure to all power analysis attacks. The advan-

tages offered by our comb methods are very desirable for smart cards and embedded systems where

power and computing resources are at a premium.

This paper is organized as follows. In the next section, we introduce preliminaries for elliptic

4

curve cryptosystems and efficient elliptic curve point multiplication methods. In Section 3, side-

channel attacks and existing SPA-resistant point multiplication methods related to the methods to

be presented in this paper are described. Our novel comb recoding algorithms and comb methods

are presented in Section 4. Security analysis is also provided in this section, along with performance

comparison with other point multiplication methods. The paper is concluded in Section 6.

2 Preliminaries

2.1 Elliptic Curves Equations

An elliptic curve over a field F can be expressed by its Weierstrass form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 ai ∈ F.

We denote by E(F) the set of points (x, y) ∈ F 2 satisfying the above equation plus the “point at

infinity” O. With the chord-tangent process [4], E(F) forms an ablelian group with the point at

infinity O as the zero, and point addition as the group’s binary operation. Given two points P1

and P2 in E(F), a third point P3 = P1 +P2 ∈ E(F) as the addition of P1 and P2 can be calculated.

A special point addition that a point adds itself is called doubling. The cost of point doubling is

usually different from that of point addition. Point addition and doubling need to compute costly

field inversions. By using the Jacobian projective coordinates which represent a point P = (x, y)

as P = (X, Y, Z), where x = X/Z2 and y = Y/Z3, and the infinity point O as (θ2, θ3, 0), θ ∈ F ∗,

field inversions can be avoided at the expense of more field multiplications. A field multiplication

is usually much faster than a field inversion, resulting in faster elliptic curve point addition and

doubling.

The group E(F) generated by an elliptic curve over some finite field F meets the public key

cryptography requirements that the discrete logarithm problem is very difficult to solve. Therefore

5

ECC has been used in many standards and applications. Elliptic curves used in cryptography are

elliptic curves defined over fields F2m or fields Fp where m is a large number and p is a big prime.

Over these two types of fields, the Weierstrass form reduces to the short Weierstrass form, and

point addition and doubling are also simplified. In practical applications, elliptic curves are usually

required to contain a subgroup of a large prime order ρ. An elliptic curve cryptosystem typically

employs only points in this ρ-order subgroup of E(F). For details of elliptic curve equations and

point operations, interested readers are referred to [4].

2.2 Point Multiplication

Adding a point P to itself k times is called point multiplication or scalar multiplication, and is

denoted as Q = kP , where k is a positive integer. Many efficient algorithms have been proposed

for point multiplication, as described in the book [4]. One of them is the m-ary method which

represents an integer k with the fixed-pattern m-ary representation, where m is usually equal to 2w

for some integer w > 2. The m-ary method splits point multiplication into precomputation stage

and evaluation stage to trade storage space for execution speed.

Algorithm 1. m-ary Method.
Input: A point P , an integer k =

∑d−1
i=0 aim

i, ai ∈ {0, 1, · · · ,m− 1}
Output: Q = kP .
Precomputation Stage:
1. P1 = P .
2. For i = 2 to m− 1 do: Pi = Pi−1 + P .
3. Q = O.
Evaluation Stage:
4. For i = d− 1 to 0 by −1 do:
5. Q = mQ, which requires w doublings,
6. Q = Q + Pai.
7. Return Q.

The precomputation stage in the m-ary method needs to store m − 1 ≡ 2w − 1 points. In

our storage estimation in this paper, the input point P is always included. Let us estimate the

time cost for the method. In our cost estimation, operations involving O are not counted. The

6

precomputation stage needs to calculate 2P, 3P, · · · , [2w−1]P . Since the total number of doublings

and additions in calculating those points remains the same, and doubling is more efficient than

addition with projective coordinates which are typically used in applications, we would like to use

doubling operations as many as possible in this stage. The most efficient scheme is to calculate in

the following way:

P2i = 2Pi,

P2i+1 = P2i + P.

(1)

Using this scheme, the precomputation costs (2w−1 − 1)D + (2w−1 − 1)A, where D means point

doubling and A means point addition. As for the time cost for the evaluation stage, if we assume

the most significant digit is not zero, i.e., ad−1 6= 0, then the number of doublings in this stage is

w(d−1). If ai = 0, i 6= d−1, then the addition in Step 6 is not needed. Assuming that k is uniformly

distributed, the average number of additions in the evaluation stage is 2w−1
2w (d− 1). Therefore the

average time cost in the evaluation stage is approximately {w(d− 1)}D + {2w−1
2w (d− 1)}A, and the

average total time cost including both stages is approximately {2w−1 − 1 + w(d− 1)}D + {2w−1 −

1 + 2w−1
2w (d − 1)}A. The m-ary method can be modified to be more efficient. They can also be

extended to the signed m-ary window method. Details of these methods can be found in [4].

In 1994, Lim and Lee proposed a comb method [5] which can also calculate point multiplication

efficiently. Let k =
∑n−1

i=0 bi2i be an n-bit integer, where bi ∈ {0, 1}. For an integer w > 2, set

d = d n
we. We define

[bw−1, bw−2, · · · , b1, b0] ≡ bw−12(w−1)d + bw−22(w−2)d + · · ·+ b12d + b0,

where (bw−1, bw−2, · · · , b1, b0) ∈ Z2
w. The comb method uses a binary matrix of w rows and d

columns to represent an integer k, and processes the matrix columnwise.

Algorithm 2. Fixed-base Comb Method

7

Input: A point P , an integer k =
∑n−1

i=0 bi2i, bi ∈ {0, 1}, and a window width w > 2.
Output: Q = kP .
Precomputation Stage:
1. Compute [bw−1, · · · , b1, b0]P for all (bw−1, · · · , b1, b0) ∈ Zw

2 .
2. Write k = Kw−1|| · · · ||K1||K0, padding with 0 on the left if necessary,
where each Kj is a bit-string of length d. Let Kj

i denote the i-th bit of Kj.
Define Ki ≡ [Kw−1

i , · · · ,K1
i ,K0

i].
3. Q = O.
Evaluation Stage:
4. For i = d− 1 to 0 by −1 do:
5. Q = 2Q,
6. Q = Q +KiP .
7. Return Q.

The comb method stores 2w − 1 points in the precomputation stage. Let us estimate its time

cost. In the precomputation stage, [bw−1, · · · , b1, b0]P needs to be calculated for (bw−1, · · · , b1, b0) ∈

Zw
2 . An efficient scheme is given in [19]: First 2dP, 22dP, · · · , 2(w−1)dP are calculated. The cost

is (w − 1)d doubling operations. Next all possible combinations with only two nonzero bits in

[bw−1, · · · , b1, b0]P are calculated from the results of doubling operations. There are C2
w such

combinations. Each combination uses one point addition. There are C2
w point additions in this

step. In the next step, all combinations with three nonzero bits are calculated. There are C3
w such

combinations. Each needs one point addition from the previously calculated results. Therefore this

step costs C3
w point additions. This procedure continues until all the precomputation points have

been calculated. The total number of point additions in the precomputation stage is therefore

w∑

i=2

Ci
w =

w∑

i=0

Ci
w − C1

w − C0
w = 2w − w − 1.

In conclusion, the time cost in the precomputation stage is

{(w − 1)d}D + {(2w − w − 1)}A.

To estimate the time cost in the evaluation stage, we assume that the most significant bit-column

of {Ki} is not zero, i.e., Kd−1 6= 0. Then the number of doubling operations in the evaluation stage

is (d − 1). If Ki = 0, i 6= d − 1, then the point addition in Step 6 is not needed. If we assume

8

k is uniformly distributed, the probability that Ki 6= 0 is 2w−1
2w , and the average number of point

additions is 2w−1
2w (d− 1). Therefore the average time cost in the evaluation stage is approximately

{(d−1)}D+{2w−1
2w (d−1)}A. This cost is much smaller than the time cost in the evaluation stage for

the m-ary method, which is {w(d−1)}D+{2w−1
2w (d−1)}A as described previously. This gain at the

evaluation stage is at the cost of higher time cost at the precomputation stage for the comb method.

The total time cost including both stages is {(w−1)d+(d−1)}D+{(2w−w−1)+ 2w−1
2w (d−1)}A =

{wd− 1}D + {(2w − w − 1) + 2w−1
2w (d− 1)}A for the comb method.

3 Side-Channel Attacks and Countermeasures

3.1 Side-Channel Attacks

Two types of power analysis have been introduced by Kocher [6, 7]. One is Simple Power Analysis

(SPA). The other is Differential Power Analysis (DPA).

Simple Power Analysis. SPA analyzes a single trace of power consumption in a crypto-

device during point multiplication. A branch instruction condition can be identified from the

recorded power consumption data. This represents continuity of elliptic curve doubling operation.

If the double-and-add method [4] is used in computing point multiplication, each bit of the secret

multiplier k is revealed by this attack. For other point multiplication methods such as the m-ary

and comb methods, though SPA cannot deduce the value of a digit ai for the m-ary method or Ki

for the comb method, it can detect if a digit ai or Ki is zero or not, which means leak of secret

information.

Differential Power Analysis. DPA records many power traces of point multiplications, and

uses correlation among the records and an error correction technique [7] to deduce some or all

digits of the secret k. DPA is more complex yet more powerful than SPA. An SPA-resistant point

9

multiplication method is not necessarily resistant to DPA attacks, but many countermeasures can

be used to transform an SPA-resistant method to a DPA-resistant method. A common practice

is to make execution, and thus power consumption, different for identical inputs. Randomization

is usually employed to achieve this effect. All the following randomizing approaches are feasible:

randomizing an input point in projective coordinates, randomizing an exponential parameter rep-

resentation, randomizing an elliptic curve equation, and randomizing a field representation. This

paper focuses on SPA-resistant point multiplication. All these randomizing approaches can be

applied to transform our SPA-resistant methods to be also resistant to DPA attacks.

3.2 Related Existing SPA-Resistant Methods

Many countermeasures to SPA attacks have been proposed. A particular approach is to make

execution of point multiplication independent of any specific value of the multiplier k. The simplest

method is the double-and-add-always method proposed by Coron [8] which removes the branching

operation in point multiplication by adding dummy operations so that the same operations are

applied no matter the current bit is 0 or 1. Three more efficient SPA-resistant methods following

that particular approach are described below. They all divide point multiplication into two stages:

precomputation stage and evaluation stage. Our methods also follow that approach.

3.2.1 HPB’s Comb Method

Hedabou, Pinel and Bénéteau (HPB) [19] proposed recently a comb method to thwart SPA attacks.

The main idea is to extend Ki in the comb method Alg. 2 to a signed representation (K′i, si), where

each K′i is nonzero, and si is a sign. The following procedure is used to obtain such a signed

representation (K′i, si) for an odd integer k represented by Ki, 0 6 i < d, in the comb method. Let

s0 = 1. The rest is constructed as follows,

10

(K′i, si) = (Ki−1, si−1)

(K′i−1, si−1) = (Ki−1,−si−1)

if Ki = 0

(K′i, si) = (Ki, si−1)

(K′i−1, si−1) = (Ki−1, si−1)

otherwise.

HPB’s comb method applies this signed representation to the conventional comb method Alg. 2

to calculate (k+1)P for even k and (k+2)P for odd k. 2P is then calculated. P or 2P is subtracted

from the result of the conventional comb method to obtain the desired point kP .

HPB’s comb method has the same time and space costs in the precomputation stage as the

original comb method, i.e., storage of 2w−1 points and time cost of {(w−1)d}D+{(2w−w−1)}A.

The evaluation stage costs d − 1 point additions and d − 1 doublings. The last stage after the

conventional comb method costs one doubling and one subtraction. Therefore the total cost of the

HPB’s method including both precomputation and evaluation stages is (w− 1)d+(d− 1)+1 = wd

doubling operations and (2w −w− 1) + (d− 1) + 1 = 2w −w + d− 1 adding operations. Compared

with the conventional comb method Alg. 2, HPB’s method has the same storage cost and a little

higher time cost.

3.2.2 Möller’s m-ary Method

Möller proposed an SPA-resistant m-ary point multiplication method [18]. For an integer k =

∑d
i=0 ai2wi with ai ∈ {0, 1, · · · , 2w − 1}, Möller’s method first converts k to another representation

k =
∑d′

i=0 a′i2
wi such that a′i ∈ {−2w,±1,±2, · · · ,±(2w−1 − 1), 2w−1} where d′ is either d or d + 1.

Intuitively, this recoding algorithm replaces 0 digits by −2w and adjusts the next more significant

digit to keep k unchanged. The recoding algorithm is expressed recursively with two auxiliary

11

values ci and ti, 0 6 ci 6 2 and 0 6 ti 6 2w + 1. Set c0 = 0. For i = 0, · · · , d + 1, let

ti = ai + ci

and

(ci+1, a
′
i) =

(1,−2w) if ti = 0

(0, ti) if 0 < ti < 2w−1

(1,−2w + ti) if 2w−1 < ti < 2w

(2,−2w) if ti = 2w

(1, 1) if ti = 2w + 1.

Note that the equation ci+1 · 2w + a′i = ti always holds.

After the conversion, Möller’s point multiplication method is exactly the same as the m-ary

method Alg. 1 for m = 2w except that the precomputation stage needs to calculate 2P, 3P, · · · , [2w−1]P ,

and [−2w]P . These points are calculated with Eq. 1, i.e., using the same scheme as in the m-ary

method. The cost of the precomputation stage is then (2w−2 + 1)D + (2w−2− 1)A. The evaluation

stage costs w(d− 1)D + (d− 1)A if d′ = d or wdD + dA if d′ = d + 1. Therefore the total cost of

Möller’s method including both stages is at least

(2w−2 + wd− w + 1)D + (2w−2 + d− 2)A.

The precomputation stage in Möller’s method stores 2w−1 + 1 points.

3.2.3 Odd-Only m-ary Method

Okeya and Takagi (OT) proposed an SPA-resistant odd-only m-ary point multiplication method

[21]. The main idea is to convert an odd integer k =
∑d

i=0 ai2wi with ai ∈ {0, 1, · · · , 2w − 1}

to another representation k =
∑d

i=0 a′i2
wi such that a′i ∈ {±1,±3, · · · ,±(2w − 1)}. This can be

12

achieved with the following recoding algorithm developed independently by us yet equivalent to

OT’s recoding algorithm.

Algorithm 3. SPA-Resistant Odd-Only m-ary Recoding Algorithm for an Odd Scalar.
Input: An odd n-bit integer k =

∑d
i=0 ai2wi > 0 with ai ∈ {0, 1, · · · , 2w − 1}.

Output: k =
∑d

i=0 a′i2
wi with a′i ∈ {±1,±3, · · · ,±(2w − 1)}.

1. for i = 0 to d− 1 by 1 do:
2. if ai is odd, then set a′i = ai,
3. if ai is even, then set a′i = ai + 1 and a′i−1 = a′i−1 − 2w.

Using this conversion, the m-ary method Alg. 1 is used with m = 2w to calculate [k + 1]P for

even k and [k+2]P for odd k. P or 2P is then subtracted from the result to obtain the desired point

kP . OT’s method needs to store 2w−1 points P, 3P, 5P, · · · , [2w − 1]P . These points are calculated

by computing first 2P and then the rest iteratively with the equation [i]P = 2P +[i−2]P . The cost

in this stage is 1D +(2w−1− 1)A. The for -loop in the evaluation stage costs w(d− 1)D +(d− 1)A,

and the post-for -loop processing costs one doubling to calculate 2P and one subtraction to subtract

either P or 2P . The total cost of OT’s method including both stages is therefore

(wd− w + 2)D + (2w−1 + d− 1)A.

4 Our Odd-Only Comb Method

4.1 Recoding Algorithm

Like HPB’s comb method, our approach is also to transform all the comb bit-columns {Ki} of a

scalar k into a signed nonzero representation {K′i 6= 0}. The major difference between our method

and HPB’s method is that every K′i generated by our novel recoding method is a signed odd number.

More specifically, our recoding scheme generates K ′0
i ∈ {1, 1̄} and K ′j

i ∈ {0,K ′0
i }, j 6= 0 for each

bit-column K′i ≡ [K ′w−1
i , · · · ,K ′1

i ,K ′0
i], where 1̄ is defined as −1. The advantage of our recoding

method over other comb recoding methods is that the precomputation stage needs to compute

and store only half of the points of other comb methods. The detail of our recoding algorithm is

13

described next for a window width w > 2 and d = dn+1
w e.

Algorithm 4. Signed Odd-Only Comb Recoding Algorithm for an Odd Scalar.
Input: An odd n-bit integer k =

∑n−1
i=0 bi2i with bi ∈ {0, 1}.

Output: k =
∑wd−1

i=0 b′i2
i ≡ K ′w−1|| · · · ||K ′1||K ′0, padding with 0 on the left if necessary,

where each K ′j is a binary string of d bits long. Let K ′j
r denote the r-th bit of K ′j, i.e., K ′j

r ≡ b′jd+r.
Define K′r ≡ [K ′w−1

r , · · · ,K ′1
r ,K ′0

r]. The output satisfies K ′0
r ∈ {1, 1̄} and K ′j

r ∈ {0,K ′0
r } for j 6= 0

and 0 6 r < d.
1. for i = 0 to d− 1 by 1 do:
2. if bi = 1 then set b′i = 1,
3. if bi = 0 then set b′i = 1 and b′i−1 = 1̄.
4. set e = b k

2d c and i = d

5. while i < wd do
6. if e is odd and b′i mod d = 1̄, then set b′i = 1̄ and e = b e

2c+ 1
7. else set b′i = e mod 2, and e = b e

2c
8. i = i + 1

The recoding algorithm first converts each one of the last d bits to either 1 or 1̄ by exploiting

the fact that 1 ≡ 11̄1̄ · · · 1̄, and the least significant bit is 1 for an odd k. In other words, the least

significant bit K ′0
r in each bit-column K ′

r, 0 6 r < d, is either 1 or 1̄. The rest of the recoding

algorithm processes each bit at a time from the lowest bit towards the highest bit, starting from

the d-th bit. If the current bit is 1 and has a different sign from that of the least significant bit

in the same K′r, the current bit is set to 1̄ and the value consisting of the remaining higher bits is

added by 1 to keep the value of k unchanged. This process generates wd bits {b′i} to represent an

odd n-bit integer k.

Theorem 1. Given an odd scalar k, Algorithm 4 outputs a bit string {b′i} and a sequence of bit-

columns {K′r ≡ [K ′w−1
r , · · · ,K ′1

r ,K ′0
r]} such that k =

∑wd−1
i=0 b′i2

i, K ′0
r ∈ {1, 1̄}, and K ′j

r ∈ {0,K ′0
r },

j 6= 0 for each bit-column K′r where 0 6 r < d and K ′j
r ≡ b′jd+r.

Proof. It is easy to check that each K′r generated by Alg. 4 satisfies the conditions that K ′0
r ∈ {1, 1̄}

and K ′j
r ∈ {0,K ′0

r } for j 6= 0: Since k is odd, b0 = 1. Steps 1–3 in Alg. 4 set the least significant

bit b′r in each K′r, 0 6 r < d, to be either 1 or 1̄. Therefore K ′0
r ≡ b′r ∈ {1, 1̄}, 0 6 r < d. If

b′i mod d = 1̄, b′i is set to either 1̄ in Step 6 or 0 in Step 7. If b′i mod d = 1, b′i is set to either 0 or 1

14

in Step 7. This means that all the bits except the least significant bit in each K′r are either 0 or of

the same value as the the least significant bit in the same K′r.

To prove k =
∑wd−1

i=0 b′i2
i, we first prove

d−1∑

i=0

bi2i =
d−1∑

i=0

b′i2
i. (2)

This can be done by induction. The equation
∑j

i=0 bi2i =
∑j

i=0 b′i2
i holds for j = 0 since k is odd.

If the equation is true for j < d− 1, then Steps 2 and 3 in Alg. 4 ensure that the equation is also

true for j + 1. By setting j = d− 1, we have the desired equation.

Denote the value of e as ei when it comes into the i-th loop before Step 6, where i > d. We

assert that

ei2i +
i−1∑

j=0

b′j2
j = k (3)

is always true for i > d. This can be done by induction. By using Eq. 2, we have k = ed2d +

∑d−1
i=0 bi2i = ed2d +

∑d−1
i=0 b′i2

i. This proves that Eq. 3 holds for i = d. Assume that Eq. 3 is true

for i > d. If ei is odd and b′i mod d = 1̄, we have b′i = 1̄ and ei+1 = b ei
2 c+ 1 = ei−1

2 + 1.

ei+12i+1 +
i∑

j=0

b′j2
j = (

ei − 1
2

+ 1)2i+1 − 2i +
i−1∑

j=0

b′j2
j = ei2i +

i−1∑

j=0

b′j2
j = k

The same procedure can be used to prove that ei+12i+1 +
∑i

j=0 b′j2
j = ei2i +

∑i−1
j=0 b′j2

j = k when

ei is even or b′i mod d = 1. This means that Eq. 3 is also true for i + 1. Therefore Eq. 3 is always

true for i > d.

The last thing we need to prove is ewd = 0. Because k is an integer of n bits, ed = b k
2d c is an

integer of n− d bits: ed < 2n−d. We would like to use induction to prove that for n > i > d

ei 6 2n−i. (4)

We have already proved it when i = d. Suppose it is true for a certain i, n > i > d. If ei is odd,

Ineq. 4 implies that ei 6 2n−i − 1. In this case, Steps 6–7 give

ei+1 6 bei

2
c+ 1 6 b2

n−i − 1
2

c+ 1 = 2n−(i+1) − 1 + 1 = 2n−(i+1),

15

i.e., Ineq. 4 is true for i + 1 in this case. If ei is even, then from Step 7,

ei+1 6 bei

2
c 6 b2

n−i

2
c = 2n−(i+1).

Inqq. 4 still holds. In other words, Ineq. 4 is true for i + 1 6 n. Therefore Ineq. 4 is proved to be

true for n > i > d. Ineq. 4 derives that en 6 20 = 1.

Since d = dn+1
w e, we have n + 1 6 wd. If n + 1 = wd, then ewd−1 ≡ en 6 1. If n + 1 < wd,

then from Steps 6–7, en+1 6 b en
2 c + 1 6 b1

2c + 1 = 1. Continuing with this process, we also

have ewd−1 6 1. In other words, we always have ewd−1 6 1. From Steps 2–3, we have b′d−1 = 1.

When i = wd − 1 in the loop of Steps 5–8, Step 7 is executed since b′wd−1 mod d = b′d−1 = 1, i.e.,

ewd = b ewd−1

2 c 6 b1
2c = 0. Applying this result to Eq. 3 yields the desired result k =

∑wd−1
i=0 b′i2

i.

4.2 Signed Odd-Only Comb Methods without Considering SPA

Our recoding method Algorithm 4 works only with odd scalars. If a scalar k is an even number,

we first calculate the point multiplication for the odd scalar k′ = k + 1, and then subtract P from

the result to obtain the desired result kP .

Algorithm 5. Signed Odd-Only Comb Method.
Input: A point P and an integer k.
Output: Q = kP .
Precomputation Stage:
1. Compute [bw−1, · · · , b2, b1, 1]P for all (bw−1, · · · , b2, b1) ∈ (Z2)w−1.
2. If k is even then k′ = k + 1; otherwise k′ = k.
3. Apply Alg. 4 to k′ to compute the corresponding bit-columns K′0,K′1, · · · ,K′d−1.
4. Q = O.
Evaluation Stage:
5. for i = d− 1 to 0 by −1 do:
6. Q = 2Q,
7. Q = Q +K′iP .
8. if k is even then return Q− P else return Q.

If the least significant bit of K′i is 1̄, we have K′i = −|K′i|. In this case, Step 7 in Alg. 5 actually

executes Q = Q− |K′i|P .

In practical ECC applications, only elliptic curve points in a subgroup with a large prime order ρ

are actually used. In this case, the signed odd-only comb method Alg. 5 can be modified to remove

16

the post-processing Step 8 by exploiting that facts that ρ−k is odd for even k, and [ρ−k]P = −kP .

This modified method is described as follows.

Algorithm 6. Signed Odd-Only Comb Method for a Point of Odd Order.
Input: A point P of odd order ρ, and an integer k.
Output: Q = kP .
Precomputation Stage:
1. Compute [bw−1, · · · , b2, b1, 1]P for all (bw−1, · · · , b2, b1) ∈ (Z2)w−1.
2. If k is odd, set k′ = k, else set k′ = ρ− k.
3. Applying Alg. 4 to k′ to compute the corresponding bit-columns
K′0,K′1, · · · ,K′d−1 corresponding to k′.
4. Q = O.
Evaluation Stage:
5. for i = d− 1 to 0 by −1 do:
6. Q = 2Q,
7. set Q = Q + (−1)k+1K′iP ;
8. Return Q.

Note that in Step 7 above, Q is set to Q +K′iP for odd k or Q−K′iP for even k.

In our recoding method Alg. 4, d is defined as dn+1
w e instead of d n

we used in the original comb

method Alg. 2. If n is indivisible by w, then d in our recoding method is exactly the same as that

in the original comb method, i.e., dn+1
w e = d n

we. But if n is divisible by w, our method’s d is one

larger than the d used in Alg. 2, i.e., dn+1
w e = 1 + d n

we. Increasing d by one would lead to w − 1

additional doublings in the precomputation stage, and one additional addition and one additional

doubling in the evaluation stage. Any additional operations are undesirable. Fortunately, most of

the additional operations incurred when n is divisible by w can be eliminated by playing a trick as

described in the following modified comb method.

Algorithm 7. Signed Odd-Only Comb Method for n divisible by w.

17

Input: A point P and an n-bit integer k.
Output: Q = kP .
Precomputation Stage:
1. Compute [bw−1, · · · , b2, b1, 1]P for all (bw−1, · · · , b2, b1) ∈ (Z2)w−1.
2. If k mod 4 = 0, set k′ = k/2 + 1;If k mod 4 = 1, set k′ = dk/2e;

If k mod 4 = 2, set k′ = k/2; If k mod 4 = 3, set k′ = bk/2c.
3. Applying Alg. 4 to k′ to compute the corresponding bit-columns K′0,K′1, · · · ,K′d−1.
4. Q = O.
Evaluation Stage:
5. for i = d− 1 to 0 by −1 do:
6. Q = 2Q,
7. Q = Q +K′iP .
8. if k mod 4 = 0, set Q = Q− P .
9. Q = 2Q.
10. If k mod 4 = 1, set Q = Q− P ; If k mod 4 = 3, set Q = Q + P .
11. Return Q.

Due to Step 2, the value of d used in Alg. 7 is equivalent to d n
we, the same as the original

comb method Alg. 2. Compared with Alg. 5, Alg. 7 saves w − 1 doublings in the precomputation

stage when n is divisible by w. In this case, one addition is also saved in the evaluation stage if k

mod 4 = 2. More performance comparisons of various methods will be given later in this paper.

4.3 SPA-Resistant Signed Odd-Only Comb Method

The comb methods Alg. 5 and Alg. 7 are not SPA-resistant. Even though all the bit-columns

{K′i} are nonzero in both methods, the value of the least significant bit of a scalar k is detectable

by SPA in Step 8 of Alg. 5, and information of the last two bits of a scalar k may leak out to

SPA in the steps from Step 8 on in Alg. 7. Since all Ki 6= 0, the operations in the for -loop are a

sequence of alternative point doubling and point addition, DADA · · ·DADA, for all the three comb

methods described in Section 4.2, therefore do not leak any information about the secret scalar k to

SPA. This implies that Alg. 6 is an SPA-resistant comb method if we take every scalar k (or more

specifically k′ in Step 2 of the algorithm) as an number of dlog2 ρe bits, where ρ is the order of the

point P . That is a typical assumption in studying SPA-resistant methods. By inserting dummy

operations after the for -loop, we can easily convert the preceding SPA-nonresistant methods to

18

SPA-resistant methods. Alg. 5 can be modified to the following SPA-resistant comb method.

Algorithm 8. SPA-Resistant Signed Odd-Only Comb Method.
Input: A point P and an integer k.
Output: Q = kP .
Precomputation Stage:
1. Compute [bw−1, · · · , b2, b1, 1]P for all (bw−1, · · · , b2, b1) ∈ (Z2)w−1.
2. If k is even then k′ = k + 1, else k′ = k + 2.
3. Apply Alg. 4 to k′ to compute the corresponding bit-columns K′0,K′1, · · · ,K′d−1.
4. Q = O.
Evaluation Stage:
5. for i = d− 1 to 0 by −1 do:
6. Q = 2Q,
7. Q = Q +K′iP .
8. P ′ = 2P .
9. if k is even then return Q− P else return Q− P ′.

As we have just mentioned, in studying SPA-resistant methods a scalar is considered as a

number of dlog2 ρe bits where ρ is the order of the point P , i.e., n = dlog2 ρe in Alg. 4. In this case,

if dlog2 ρe is divisible by w, the value of d used in Alg. 8 is one larger than the d in the original comb

method Alg. 2, resulting in higher computational complexity. The following SPA-resistant method

does not increase d in this case, and therefore removes the increased computational complexity.

Algorithm 9. SPA-Resistant Signed Odd-Only Comb Method for n = dlog2 ρe divisible by w.
Input: A point P of order ρ, and an n-bit integer k.
Output: Q = kP .
Precomputation Stage:
1. Compute [bw−1, · · · , b2, b1, 1]P for all (bw−1, · · · , b2, b1) ∈ (Z2)w−1

2. If k > ρ
2 set k∗ = ρ− k; else set k∗ = k.

3. If k∗ is even then k′ = k∗ + 1, else k′ = k∗ + 2.
4. Apply Alg. 4 to k′ to compute the corresponding bit-columns K′0,K′1, · · · ,K′d−1.
5. Q = O.
Evaluation Stage:
6. for i = d− 1 to 0 by −1 do:
7. Q = 2Q,
8. if k > ρ

2 then Q = Q−K′iP else Q = Q +K′iP .
9. P ′ = 2P .
10. if k > ρ

2 then set ∆ = 1 else set ∆ = −1.
11. if k∗ is even set Q = Q + ∆P else set Q = Q + ∆P ′.

Step 2 in Alg. 9 ensures that k∗ is less than or equal to ρ
2 . k′ should be a number of dlog2 ρe− 1

bits to ensure that d used in the method is equal to dlog2 ρe
w . If not, we can set k′ to k∗ − 1 for even

k∗ and k∗ − 2 for odd k∗ in Step 3 to achieve the desired result. In this case, Step 10 is modified

19

to set ∆ to −1 for k > ρ
2 and 1 otherwise.

4.4 Security against Power Analysis

The security of our SPA-resistant comb point multiplication methods is discussed in this section.

We first consider the security against SPA, and then describe how to transform our comb methods

to resist DPA, the second-order DPA, and other side-channel attacks.

Like other SPA-resistant methods [19, 17, 18, 21, 22], our SPA-resistant comb methods exploit

the fact that point subtraction is virtually the same as point addition for power analysis. In

addition, these comb methods perform one point addition (or point subtraction) and one doubling

at each loop, and the same post-for -loop steps disregarding the scalar’s value. This means that

the same sequence is executed no matter what value a scalar k actually is. Therefore SPA cannot

extract any information about the secret k by examining power consumption of the executions. In

other words, our SPA-resistant comb methods are really SPA-resistant.

Like other SPA-resistant point multiplication methods, our SPA-resistant comb methods are not

necessarily resistant to DPA attacks. Randomization projective coordinates or random isomorphic

curves can be used to transform those SPA-resistant methods into DPA-resistant methods.

Okeya and Sakurai’s second-order DPA attack [10] might still be successfully applied to our SPA-

resistant comb methods when the just-mentioned randomization schemes are used. This second

order attack exploits the correlation between power consumption and hamming weight of the loaded

data to determine which K′i is loaded. To thwart this second-order DPA attack, we can use the

same scheme proposed in [19] to protect HPB’s comb method – to randomize all precomputed

points after getting the point in the table so that there is no fixed hamming weight.

Goubin [11] recently proposed a refined DPA attack on many randomization schemes. This

attack employs special points with one of coordinates being zero. To deal with Goubin’s DPA

20

attack, a simply way is to choose elliptic curves

E : y2 = x3 + ax + b

defined over Fp (p > 3) with b not being a quadratic residue modulo p, and to reject any point (x, 0)

as an input point in applications of our SPA-resistant comb methods. If the cardinality #E(Fp)

is a big prime number, points (x, 0) cannot be eligible input points since they are not on elliptic

curves. Combining with the aforementioned randomization techniques and measures, our comb

methods can thwart all power-analysis attacks.

4.5 Efficiency

All our comb methods require storage of 2w−1 points. In the precomputation stage of our comb

methods, 2dP, 22dP, · · · , 2(w−1)dP are first calculated. This costs (w−1)d point doublings. Then all

possible combinations [bw−1, bw−2, · · · , b2, b1, 1]P with (bw−1, bw−2, · · · , b2, b1) ∈ Z2
w−1 are calcu-

lated in the same way as the precomputaion stage for Alg. 2, which costs 2w−1− 1 point additions.

The cost of our comb methods in the precomputation stage is therefore {(w−1)d}D+{2w−1−1}A.

The time cost in the evaluation stage varies a little for different comb methods due to the post-for -

loop processing steps. Assume that the scalar k is randomly distributed, then the average cost in

the evaluation stage is (d−1)D +(d− 1
2)A for Alg. 5, (d−1)D +(d−1)A for Alg. 6, dD +(d− 1

4)A

for Alg. 7, and dD + dA for both Alg. 8 and Alg. 9.

We would like to compare our fixed-base comb methods described in Section 4.2 with the original

fixed-base comb method Alg. 2. Table 1 lists the space and time costs for those methods. Our

comb methods in Table 1 store 2w−1, which is about half of the stored 2w− 1 points in the original

comb method Alg. 2. In addition, our comb methods Algs. 5 – 7 save 2w−1−w point additions than

the original comb method Alg. 2 in the precomputation stage. The evaluation stage has a similar

time cost for all the four methods in Table 1. If we want to maintain about the same storage space

21

Table 1: Comparison of space and average time costs for the original fixed-base comb
method and our fixed-base comb methods described in Section 4.2.

Original Comb Alg. 5 Alg. 6 Alg. 7
d d n

we dn+1
w e dn+1

w e n
w where w|n

Storage 2w − 1 2w−1 2w−1 2w−1

Pre- (w − 1)dD (w − 1)dD (w − 1)dD (w − 1)dD
Stage (2w − w − 1)A (2w−1 − 1)A (2w−1 − 1)A (2w−1 − 1)A
Eva- (d− 1)D (d− 1)D (d− 1)D dD

Stage 2w−1
2w (d− 1)A (d− 1

2)A (d− 1)A (d− 1
4)A

Total (wd− 1)D (wd− 1)D (wd− 1)D wdD

Cost (2w − w − 1 + 2w−1
2w (d− 1))A (2w−1 + d− 3

2)A (2w−1 + d− 2)A (2w−1 + d− 5
4)A

Table 2: Comparison of space and average time costs for SPA-resistant comb methods
(n = dlog2 ρe)
.

HPB’s Comb Alg. 6 Alg. 8 Alg. 9
d d n

we dn+1
w e dn+1

w e d n
we

Storage 2w − 1 2w−1 2w−1 2w−1

Pre- (w − 1)dD (w − 1)dD (w − 1)dD (w − 1)dD
Stage (2w − w − 1)A (2w−1 − 1)A (2w−1 − 1)A (2w−1 − 1)A
Eva- dD (d− 1)D dD dD
Stage dA (d− 1)A dA dA

Total wdD (wd− 1)D wdD wdD
Cost (2w − w + d− 1)A (2w−1 + d− 2)A (2w−1 + d− 1)A (2w−1 + d− 1)A

for pre-computed points, our methods Algs. 5 – 7 can choose the value of w as w2 = w1 + 1, one

larger than the value w = w1 used in the original comb method, resulting in a similar storage (2w1

v.s. 2w1 − 1) as the original comb method Alg. 2 yet faster computation in the evaluation stage,

thanks to smaller d used in our methods.

Now let us compare our SPA-resistant comb methods with HPB’s SPA-resistant comb method.

The space and time costs for those SPA-resistant methods are listed in Table 2. Again, our SPA-

resistant comb methods use about half of the storage for pre-computed points as HPB’s comb

method, yet save 2w−1 − w point additions in the precomputation stage. Our Algs. 8 and 9 have

the same time cost as HPB’s method in the evaluation stage, while our Alg. 6 saves one point

22

Table 3: Space and average time costs for SPA-nonresistant signed m-ary method and
SPA-resistant Möller’s and OT’s window methods (n = dlog2 ρe)

.

Signed m-ary window Möller’s windowa OT’s window
d d n

we d n
we d n

we
Storage 2w−2 2w−1 + 1 2w−1

Pre- 1D (2w−2 + 1)D 1D
Stage (2w−2 − 1)A (2w−2 − 1)A (2w−1 − 1)A
Eva- (wd− w)D (wd− w)D (wd− w + 1)D
Stage (wd+1

w+1 − 1)A (d− 1)A dA

Total (wd− w + 1)D (2w−2 + wd− w + 1)D (wd− w + 2)D
Cost (2w−2 + wd+1

w+1 − 2)A (2w−2 + d− 2)A (2w−1 + d− 1)A

aReplacing d by d+1 for Möller’s window method if the case d′ = d + 1 occurs.

doubling and one point addition in this stage. From the data in Table 2, our Alg. 6 is the most

efficient SPA-resistant comb method if n is not divisible by w. When n is divisible by w, our Alg. 9

is recommended since dn+1
w e is one larger than n

w in this case, resulting in higher time cost.

We would also like to compare our SPA-resistant methods with other efficient SPA-resistant

point multiplication methods. The space and time costs for Möller’s window method [18] and

OT’s window method [21] are listed in the second and third columns of Table 3. From Tables 2

and 3, our SPA-resistant comb methods store the same number of pre-computed points as OT’s

window method and one point less than Möller’s window method. Since point doubling is faster

than point addition, Möller’s method is the most efficient SPA-resistant method if the total time

cost including both precomputation and evaluations stages is considered. OT’s window method is

also more efficient than ours in this case. If precomputation points can be calculated in advance

or elsewhere, i.e., if only the time cost in the evaluation stage is considered, our comb methods are

much faster than both Möller’s method and OT’s method. Our SPA-resistant comb methods are

always better than HPB’s comb method no matter if the precomputation is included or not in the

time cost estimation.

To make a point multiplication method resistant to SPA attacks, additional operations are

needed to remove dependency of the cryptographic execution procedure on the specific value of k.

23

This means that efficiency of an SPA-resistant method is lowered in general as compared to SPA-

nonresistant methods with a similar approach. The most efficient point multiplication method if

total time cost including both precomputation and evaluation stages is considered is the signed

m-ary window method ([4], p. 70), an SPA-nonresistant method. The space and time costs for the

signed m-ary window method are listed in the first column of Table 3. This method requires less

points to be stored yet runs faster than all the SPA-resistant methods, ours or others. The space

and time penalty is well-deserved in many applications that security is a top priority. If only the

evaluation stage is considered, our comb methods are faster than the signed m-ary window method.

In fact, our comb methods are the fastest in this case.

5 Application Examples

Our comb methods can be used in many ECC applications. They are particularly efficient if

precomputation can be computed in advance or by somebody else, which is the case in many

applications. This section describes a couple of such application scenarios. One example is a system

that a smart card is used to provide a tamper-resistant and secure environment to store secrets and

execute critical cryptographic operations, while a separate, more powerful computing subsystem is

responsible for the rest operations. Cellular phones and wireless application protocol (WAP) devices

are typical examples of such a system. In a cellular phone, the Subscriber Identification Module

(SIM) card is a smart card to store securely critical subscriber’s information and authentication

and encryption algorithms responsible for providing legitimate access to the wireless network. The

phone’s CPU, memory, and storage are responsible to the rest operations. A Wireless Identity

Module (WIM) card play a similar role in a WAP device. In such a system, we may be able

to dedicate the precomputation to the more powerful device’s CPU while use the smart card to

execute the evaluation stage, if the computed points by the device’s CPU are observable but not

24

tamperable. Note that precomputation does not contain any secrets unless the point itself is a

secret.

The Elliptic Curve Digital Signature Algorithm (ECDSA) is another example. ECDSA is the

elliptic curve analogue of the Digital Signature Algorithm (DSA) specified in a U. S. government

standard called the Digital Signature Standard [27]. ECDSA has been accepted in many standards

[29]. It includes signature generation and verification. Let P be a publicly known elliptic curve

point and ρ be the prime order of the point P . A signature is generated and verified in the following

way:

ECDSA Signature Generation: To sign a message m, an entity A associated with a key pair

(d,Q) executes the following steps:

1. Select a random or pseudorandom integer k, 1 6 k < ρ.

2. Compute kP = (x1, y1) and r = x1 mod ρ. If r = 0, go to Step 1.

3. Compute k−1 mod ρ.

4. Compute e = SHA-1(m), where SHA-1 is a Secure Hash Algorithm (SHA) specified in the

Secure Hash Standard [28].

5. Compute s = k−1(e + dr) mod ρ. If s = 0, go to Step 1.

6. The signature generated by A for the message m is (r, s).

ECDSA Signature Verification: To verify A’s signature (r, s) on a message m, an entity B

obtains A’s public key Q and executes the following steps:

1. Verify that r and s are integers in the interval [1, ρ− 1].

2. Compute e = SHA-1(m).

25

3. Compute w = s−1 mod ρ.

4. Compute u1 = ew mod ρ and u2 = rw mod ρ.

5. Compute X = u1P + u2Q = (x1, y1). If X = O, reject the signature. Otherwise, compute

v = x1 mod ρ.

6. Accept the signature if and only if v = r.

For an ECDSA signature, P, ρ and r, s, e are public values. The scalar k has to be kept secret.

Otherwise the private key d can be derived from the equation s = k−1(e + dr) mod ρ. Therefore

the private key d and the ECDSA signature generation must be securely stored and executed. This

can be conveniently achieved with a smart card, which stores P ’s precomputed points and uses a

point multiplication method resistant to power analysis to calculate kP . Our SPA-resistant comb

methods are ideal for this application since only the evaluation stage is executed in generating

a signature. ECDSA signature verification, on the other hand, does not use any secret key. In

verifying an ECDSA signature, our SPA-nonresistant comb methods can be used to compute u1P

and the signed m-ary window method is used to compute u2Q. This is an efficient combination of

point multiplication methods since P ’s precomputation points can be calculated in advance, and a

comb method is more efficient than other methods in this case. As a contrast, Q’s precomputation

points cannot be calculated in advance since the public key Q varies from one entity to another.

The signed m-ary window method is appropriate in this case.

6 Conclusion

In this paper, we presented a novel signed odd-only comb recoding algorithm to convert a scalar

k to a sequence of signed odd-only nonzero comb bit-columns. Using this recoding algorithm,

we presented several novel SPA-nonresistant and SPA-resistant comb methods to calculate point

26

multiplication for elliptic curve cryptosystems. Our comb methods store less number of points

and runs faster than the original SPA-nonresistant comb method and HPB’s SPA-resistant comb

method. In addition, our proposed comb methods inherit a comb method’s advantage – running

much faster than any window methods, such as SPA-resistant Möller’s and OT’s window methods,

and SPA-nonresistant signed m-ary window method, when precomputation points are calculated

in advance or elsewhere. These features of our comb methods are very desirable in smart cards and

embedded systems where power and computing resources are at a premium. When combined with

randomization techniques and certain precautions in selecting elliptic curves and parameters, our

presented SPA-resistant comb methods can thwart all side-channel attacks.

References

[1] V. S. Miller, “Use of Elliptic Curves in Cryptography,” Advances in Cryptology – CRYPTO’85,

H. C. Williams, Ed., LNCS 218, pp. 417–426, Springer-Verlag, 1986.

[2] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computation, vol. 48, pp. 203–209,

1987.

[3] R. L. Rivest, A. Shamir, and L. M. Adleman, “A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems,” Comm. of ACM, vol. 21, no. 2, pp. 120–126, 1978.

[4] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptography, Cambridge Univ.

Press, 1999.

[5] C. Lim and P. Lee, “More Flexible Exponentiation with Precomputation,” Advances in Cryp-

tology – CRYPTO’94, Y. G. Desmedt, Ed., LNCS 839, pp. 95–107, Springer-Verlag, 1994.

27

[6] P. C. Kocher, “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS and Other

Systems,” Advances in Cryptology – CRYPTO’96, N. Koblitz, Ed., LNCS 1109, pp. 104–113,

Springer-Verlag, 1996.

[7] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Advances in Cryptology –

CRYPTO’99, M. Wiener, Ed., LNCS 1666, pp. 388–397, Springer-Verlag, 1999.

[8] J. S. Coron, “Resistance Against Differential Power Analysis for Elliptic Curve Cryptosystems,”

Cryptographic Hardware and Embedded Systems – CHES’99, Ç. K. Koç and C. Paar Eds., LNCS

1717, pp. 292–302, Springer-Verlag, 1999.

[9] T. S. Messerges, “Using Second-Order Power Analysis to Attack DPA Resistant Software,”

Cryptographic Hardware and Embedded Systems – CHES’2000, Ç. K. Koç and C. Paar, Eds.,

LNCS 1965, pp. 238–251, Springer-Verlag, 2000.

[10] K. Okeya and K. Sakurai, “A Second-Order DPA Attack Breaks a Window-Method Based

Countermeasure against Side Channel Attacks,” Proc. 5th Intl. Conf. on Information Security,

LNCS 2433, pp. 389–401, Springer-Verlag, 2002.

[11] L. Goubin, “A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems,” Public Key

Cryptography – PKC’2003, Y. G. Desmedt Ed., LNCS 2567, pp 199–211, Springer-Verlag, 2003.

[12] P. V. Liardet and N. P. Smart, “Preventing SPA/DPA in ECC Systems Using the Jacobi

Form,” Cryptographic Hardware and Embedded Systems – CHES’2001, Ç. K. Koç, D. Naccache,

and C. Paar, Eds., LNCS 2162, pp. 391–401, Springer-Verlag, 2001.

[13] M. Joye and J. J. Quisquater, “Hessian Elliptic Curves and Side-Channel Attacks,” Crypto-

graphic Hardware and Embedded Systems – CHES’2001, Ç. K. Koç, D. Naccache, and C. Paar,

Eds., LNCS 2162, pp. 402–410, Springer-Verlag, 2001.

28

[14] National Institute of Standards and Technology (NIST), Digital Signature Standard (DSS),

FIPS Pub. 186-2, 2000.

[15] K. Okeya, H. Kurumatani, and K. Sakurai, “Elliptic Curves with the Montgomery-Form and

Their Cryptographic Applications,” Public Key Cryptography– PKC’2000, H. Imai, Y. Zheng,

Eds., LNCS 1751, pp. 238–257, Springer-Verlag, 2000.

[16] P. L. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Factorization,” Math-

ematics of Computation, vol. 48, pp. 243–264, 1987.

[17] B. Möller, “Securing Elliptic Curve Point Multiplication against Side-Channel Attacks,” Infor-

mation Security, G.I Davida and Y. Frankel, Eds., LNCS 2200, pp. 324–334, Springer-Verlag,

2001.

[18] B. Möller, “Securing Elliptic Curve Point Multiplication against

Side-Channel Attacks, Addendum: Efficiency Improvement,”

http://www.informatik.tudarmstadt.de/TI/Mitarbeiter/moeller/ecc-scaisc01.pdf, 2001.

[19] M. Hedabou, P. Pinel, and L. Bébéteau, “A Comb Method to Render ECC Resistant against

Side Chiannel Attacks,” http://eprint.iacr.org/2004/342.pdf, 2004.

[20] M. Joye and C. Tymen, “Protections against Differential Analysis for Elliptic Curve Cryptogra-

phy – An Algebraic Approach,” Cryptographic Hardware and Embedded Systems – CHES’2001,

Ç. K. Koç, D. Naccache, and C. Paar, Eds., LNCS 2162, pp. 377–390, Springer-Verlag, 2001.

[21] K. Okeya and T. Takagi, “The Width-w NAF Method Provides Small Memory and Fast

Elliptic Scalar Multiplication Secure against Side Channel Attacks,” Topics in Cryptology, The

Cryptographers’ Track at the RSA Conference 2003 (CT-RSA 2003), LNCS 2612, pp. 328–342,

2003.

29

[22] K.Okeya and T.Takagi, “A More Flexible Countermeasure against Side Channel Attacks Using

Window Method” cryptographic Hardware and Embedded Systems – CHES’2003, C. D. Walter,

Ç. K. Koç, and C. Paar, Eds., LNCS 2779, pp. 397–410, 2003.

[23] W. Fischer, C. Giraud, E. W. Knudsen, and J.-P. Seifert, “Parallel Scalar Multiplication on

General Elliptic Curve over Fp Hedged against Non-Differential Side-Channel Attacks,” IACR,

Cryptography ePrint Archieve 2002/007, http://eprint.iacr.org/2002/007, 2002.

[24] E. Brier and M. Joye, “Weierstrass Elliptic Curves and Side-Channel Attacks,” Public Key

Cryptography (PKC2002), LNCS 2274, pp. 335–345, 2002.

[25] T. Izu, and T. Takagi, “A Fast Parallel Elliptic Curve Multiplication Resistant against Side

Channel Attacks,” Public Key Cryptography (PKC 2002), LNCS 2274, pp. 280–296, 2002.

[26] B. Chevallier-Mames, M. Ciet, and M. Joye, “Low-Cost Solutions for Preventing Simple Side-

Channel Analysis: Side-Channel Atomicity,” IEEE Transaction on Computers, vol. 53, no. 6,

pp. 760–768, June 2004.

[27] National Institute of Standards and Technology, Digital Signature Standard, FIPS Pub. 186,

1994.

[28] National Institute of Standards and Technology, Secure Hash Standard, FIPS Pub. 180-1, 1993.

[29] D. Johnson and A. Menezes, “The Elliptic Curve Digital Signature Algorithm (ECDSA),”

Technical Report CORR 99-34, Dept. of C&O, University of Waterloo, Canada. Also available

from http://www.cacr.math.uwaterloo.ca.

30

