The paper shows that the maximum value $n_{s,t}(q)$ that $n$ can take for fixed $s$ and $t$ has a leading term that is linear in $q$ if and only if $t>s$. Moreover, for any $s$ and $t$ such that $t>s$, the paper shows how to calculate the coefficient of this linear leading term; this coefficient is explicitly calculated in some cases. As part of this process, new classes of good perfect hash families are constructed.
Category / Keywords: combinatorial cryptography Date: received 28 Jan 2003 Contact author: s blackburn at rhul ac uk Available formats: Postscript (PS) | Compressed Postscript (PS.GZ) | BibTeX Citation Note: This paper is about to undergo a major rewrite. In particular, a reference to a paper of Fachini and Nilli (Recursive bounds for perfect hashing, Discrete Applied Maths 2001) that appeared after the paper has written will be added. Fachini and Nilli's improvement of a bound of Dyachkov can be used as the `if' part of Theorem 1 of my paper (and their argument is essentially the same as the one I give). Version: 20030128:190356 (All versions of this report) Discussion forum: Show discussion | Start new discussion