
(Not So) Random Shuffles of RC4

Ilya Mironov?

mironov@stanford.edu

Computer Science Department, Stanford University

Abstract. Most guidelines for implementation of the RC4 stream ci-
pher recommend discarding the first 256 bytes of its output. This recom-
mendation is based on the empirical fact that known attacks can either
cryptanalyze RC4 starting at any point, or become harmless after these
initial bytes are dumped. The motivation for this paper is to find a con-
servative estimate for the number of bytes that should be discarded in
order to be safe. To this end we propose an idealized model of RC4 and
analyze it applying the theory of random shuffles. Based on our analysis
of the model we recommend dumping at least 512 bytes.

1 Introduction

RC4 is a stream cipher designed by Ron Rivest in 1987. This cipher is extremely
fast and exceptionally simple, which makes it ideal for protecting network traffic.
In particular, RC4 is part of SSL and WEP implementations, which probably
makes it, in the words of its author, “the most widely-used stream cipher in the
world” [Riv01]. The design of the cipher was kept as a trade secret until 1994,
when it was leaked to the cypherpunks mailing list.

Several vulnerabilities and possible attacks, surveyed in Section 3, have ap-
peared in the open literature. Most of these attacks revolve around the concept
of a distinguisher, which is an algorithm that can reliably distinguish a pseudo-
random number generator from a truly random source. We separate weak and
strong distinguishers. Weak distinguishers may be applied to any continuous
segment of the RC4 output stream. A strong distinguisher can only detect a
bias at the beginning of the output stream and usually requires access to sev-
eral streams generated for different keys. The most staggering discovery that
falls in the second category was a statistical anomaly in the second byte of the
RC4 output, which is zero with probability twice as much as it should [FMS01].
To thwart this and other strong attacks, researchers recommend discarding the
first 256 bytes of the output. This proposal can be traced back to 1995, when
a Usenet post suggested it as a hedge against a weak-key attack [Roo95]. RSA
Security, Inc. maintains that it has been its routine recommendation.

We propose a novel idealized model for studying RC4. We use this abstract
model to estimate the number of initial bytes that ought to be dumped from the
output stream. In other words, we want to know where the beginning of RC4

? Supported by nsf contract #CCR-9732754.

ends. We conclude that this number must be more than previously thought. As
a practical corollary we describe and explain a bias in the first byte of RC4
output. This phenomenon is almost as persistent and reliable as the bias in the
second byte, even though they are completely unrelated.

2 The RC4 Cipher

RC4 is a stream cipher in which the keystream is independent of the plaintext.
The internal state consists of a permutation on numbers 0. . . 255 represented
as an array of length 256 and two indices in this array. We parameterize the
length of the permutation by a variable n that may take any integer values (not
necessarily powers of 2). The high-level view of the encryption algorithm is as
follows:

Input: L-byte message m1, . . . , mL, key K

Output: ciphertext c1, . . . , cL

state0 ← KeySched(K)
for i := 1 to L do

〈statei, zi〉 ← PseudoRand(statei−1)
ci ← zi ⊕mi

The size of the key K is variable and typically ranges from 40 to 256 bits.
The internals of the algorithm (functions KeySched and PseudoRand) are

shown in Fig. 1. Throughout the paper we denote the permutation as S, the two
indices of the internal state as i and j and assume that all arrays are indexed
starting at 0. All arithmetic is done modulo n.

KeySched(K) PseudoRand(i, j, S)

for i := 0 to n− 1 do

S[i] := i

j := 0
for i := 0 to n− 1 do i := i + 1
j := j + S[i] + K[i mod `] j := j + S[i]
swap(S[i], S[j]) swap(S[i], S[j])

i, j := 0 output z := S[S[i] + S[j]]

Fig. 1. The RC4 stream cipher.

3 Existing Attacks

Since the encryption algorithm, namely XORing the plaintext with the output
stream, is so simple, any algorithm that predicts a bit in the RC4 output can be

used to launch an attack. Consequently, any statistical anomaly in the output
stream is a potential vulnerability.

The first weak distinguisher was Golić’s [Goli97] that exploited a correlation
between zi and zi+2. Later, twelve much stronger correlations between consecu-
tive bytes of the output stream were discovered by Fluhrer and McGrew [FM00].
Two backtracking algorithms were independently proposed in [MT98] and [K+98].
In this approach the attacker tries to guess the internal state of RC4 by emulat-
ing its execution and checking it for consistency with the known output. Both
attacks are not practical because of their enormous computation complexity.

Another approach has been taken by Roos and Wagner [Roo95,Wag95]. They
described several classes of weak keys that either generate predictable output
or, when these keys are used, several bytes of the key can be extracted from the
output stream. Ironically, according to our definitions, these classes of weak keys
lead to strong distinguishers since they can only be applied to the beginning of
the output stream.

The results due to Mantin and Shamir [MS01] and Fluhrer, Mantin, and
Shamir [FMS01] are of most practical importance. The first work describes the
bias in the second byte of RC4, which is zero with probability twice what you
would expect. The second work presents an analysis of a broad class of weak
keys based on some parity-preserving properties in the key scheduling.

The fullest study of RC4 to date with comprehensive description of attacks
of [MS01] and [FMS01] can be found in [Man01]. [Dur01] proves exact bounds
on the effectiveness of the distinguisher of [FMS01].

If cryptanalisys of [FMS01] favors short keys, [GW00] demonstrates a related-
key attack that works better on very long keys. It is generally bad practice to
use related keys in cryptographic applications. In the case of RC4 it has turned
out to be disastrous: the second part of the [FMS01] paper cryptanalyzed the
Wired Equivalent Privacy protocol (WEP) that did just that; the attack was
implemented and shown to be feasible by [SIR02].

To contrast our work with known results, we stress that we do not exploit
weak keys. We depart from the concept of modelling RC4 as a finite automaton
(as in [Fin94]) and consider the cipher as a random walk on a symmetric group.
We do not describe any practical distinguishers other than the one that detects
a bias in the first byte. Instead we prove a necessary condition for existence of
strong distinguishers in the idealized model.

4 Random Shuffles in RC4

In this section we describe our idealized model for RC4. We model KeySched and
PseudoRand as a random shuffle and study the resulting distribution of the per-
mutation S. After one application of KeySched this distribution is not uniform,
which results in a detectable bias in the first byte of the output. This raises the
question of convergence, i.e., how fast the distribution becomes indistinguishable
from the uniform. In Section 5 we tackle this problem.

4.1 Motivational observation

It is often convenient to assume that the internal state is a random permutation.
Sometimes it is a valid assumption, but it is hardly so when we look at the
behavior of the cipher just after the key scheduling algorithm. The following
observation explains why.

Claim. After execution of KeySched we may correctly guess the sign of the per-
mutation S with probability 56%.

Before proceeding with a heuristic argument we recall the definition of the
sign of a permutation. Here we use one of many equivalent definitions. For any
representation of a permutation π as a product of non-trivial transpositions

π = (a1b1)(a2b2) . . . (ambm),

the sign is defined as

sign(π) = (−1)m =

{

+1, if 2 | m
−1, otherwise

.

The RC4 cipher initializes the permutation S with the identity permutation.
Therefore sign(S) = +1 before the main loop of KeySched. Each iteration of the
loop transposes S[i] and S[j]. Unless i = j, the transposition changes the sign
of the permutation. Heuristically, i 6= j with probability 1− 1

n and these events
are independent for different i. Therefore, the probability that the sign changes
every time, for a total of n times, is (1− 1

n)n ≈ e−1. Similarly, we may compute
the probability of the sign changing 1, 3, 5, . . . times taking on −1 at the end
and 2, 4, 6, . . . resulting in the +1 value. The limiting distribution for the two
possible values of the sign of the permutation S after KeySched is

Pr[sign(S) = (−1)n] =

(

1− 1

n

)n

+

(

n

2

)(

1− 1

n

)n−2
1

n2
+ · · ·+ 1

nn
−−−−→

e−1

(

1 +
1

2!
+

1

4!
+ . . .

)

−−−−→
n→∞

1

2
(1 + e−2)

Pr[sign(S) = (−1)n−1] = 1− Pr[sign(Sn) = (−1)n] −−−−→
n→∞

1

2
(1− e−2).

Therefore we may predict the sign of the permutation S after execution of the
key scheduling algorithm with advantage 1

2e−2 ≈ 6.7% over a random guess.
Significance of this anomaly. First, this computation is asymptotic and only
valid when n goes to infinity. However, n = 256 is large enough to make the
exact probabilities sufficiently close to their limit values.

Second, and more importantly, the argument hinges on the heuristic assump-
tion that i = j with probability 1

n and that these events for different i = 0 . . . n−1
are independent of one another. When the key length is maximal, i.e., n bytes,

and the key material is drawn from the uniform distribution, this argument is
rigorously true. For the actual RC4 parameters it is rarely the case, but the table
in Appendix B supports our heuristic.

Third, we do not suggest that this predictor can be useful for an attack on
RC4. What we want to stress, however, is that RC4’s state is by no means
random, at least just after executing the key generation algorithm. We hope
that the above argument proves this point convincingly. In the next sections we
describe a model that captures some aspects of the permutation’s behavior and
explain other irregularities in its distribution.

4.2 Idealized model

In idealizing (in other words, simplifying) the inner workings of RC4 we take
an approach which is seemingly consistent with the initial intent of the cipher’s
designer. Indeed, all arithmetic performed on the index j is supposed to ran-
domize it, rendering j unpredictable. The only modification we make to RC4 is
to explicitly assign to j a random value whenever j gets changed (see Fig. 2).

KeySched∗ PseudoRand∗

for i := 0 to n− 1 do

S[i] := i

for i := 0 to n− 1 do i := i + 1
j := random (n) j := random (n)
swap(S[i], S[j]) swap(S[i], S[j])

i := 0 output z := S[S[i] + S[j]]

Fig. 2. Idealized RC4 stream cipher.

A closer look at the two modified algorithms KeySched∗ and PseudoRand∗

comprising the idealized RC4 reveals that their actions on S are identical and can
be unified in a single procedure (Fig. 3). This procedure reflects transpositions
that occur in the permutation over the running time of the cipher, both in the key
scheduling and the pseudo-random number generator.1 We call this procedure
the Pt shuffle, where t is the length of the output including the key scheduling
phase or the time, for short. The focus of the rest of the paper is on understanding
this shuffle and its connection with real RC4.

1 There is a slight inaccuracy in this approximation. Index i points to S[1] rather than
S[0] at the beginning of PseudoRand. We ignore this difference in our theoretical
analysis but will take it into account in computations.

S ← id

for i := 0 to t− 1 do

swap(S[i mod n], S[random(n)])

Fig. 3. Pt shuffle.

5 Exchange Shuffle

The seemingly innocuous problem of shuffling cards has become a subject in its
own right, with books and Ph.D. theses devoted entirely to it. The richness and
difficulty of the problem lies in the fact that all shuffles are not alike, and no
general method exists for dealing with some of the most interesting cases.

Card shuffling is often disguised as a problem in the theory of random walks
on groups. We refer the reader to a monograph by Diaconis [Dia88] for both
introductory and advanced material and to a recently published survey [Sal01]
of an even broader range of topics.

It is even more surprising that the Pt shuffle (Fig. 3) has attracted little at-
tention compared to other shuffles. Examples of better studied shuffling schemes
include the random transposition shuffle, when pairs of randomly chosen card are
transposed, the riffle shuffle that is modelled after the way professional players
shuffle cards, analyzed by Shannon, and several others.

Keeping up with the tradition of a large body of literature, we refer to the
permuted elements as cards and to the permutation itself as a deck. For consis-
tency with our discussion of RC4 we enumerate cards starting at 0.

5.1 Combinatorial results

To the best of our knowledge, the Pt shuffle first appeared in print as a prob-
lem in the American Mathematical Monthly [Tho65]. The problem asked for
which n the Pn shuffle is truly random, i.e. induces the uniform distribution on
permutations.2 Later on, a series of papers [RB81,SS92,GM01] explored some
combinatorial properties of the shuffle, whose summary is given below. The first
paper due to Robbins and Bolker christened Pn the exchange shuffle. We expand
usage of this term, calling Pt the exchange shuffle even when t 6= n. The shuffle
Pn, as well as any other full sweep through the deck starting with the first card,
is called a pass.

The simplest argument that demonstrates that the exchange shuffle cannot
be truly random is the following. Any single execution of Pt is chosen randomly
among nt equally likely possibilities. When n > 2, it is impossible for this scheme
to generate the uniform distribution on n! possible decks of n cards since n! does

2 Several years later another problem in the same venue [Gro77] asked to compute
the probability that i ended up in position j after the Pn shuffle. Apparently,
that problem prompted combinatorialists Robbins and Bolker to study the shuf-
fle deeper [RB81].

not divide nn. It is then only natural to ask what are the most and the least
likely permutations after one application of the exchange shuffle.

Let us first explain how to fix the exchange shuffle to make it truly ran-
dom, resulting in a uniform distribution after n steps. Instead of swapping
S[i] with a random card, it must be transposed with a card randomly chosen
from S[i] . . . S[n − 1]. This algorithm is discussed and a detailed proof is given
in [Knu75, section 3.4.2].

We list several facts of varied difficulty known about the exchange shuffle Pn.

Fact 1 [RB81] The probability of obtaining the right cycle (i.e. the final permu-
tation being (1 2 . . . n− 1 0) in cycle notation) at the end of Pn is 2n−1/nn.

Fact 2 [RB81] The right cycle (1 2 . . . n − 1 0) is the least likely permutation
after one execution of Pn.

Fact 3 [RB81] The probability of obtaining the identity permutation is Qn/nn,
where Qn is the number of involutions on n elements (an involution is a permu-
tation which is its own inverse).

Fact 4 [Knu75, section 5.1.4] The number of involutions satisfies

Qn =
1√
2
nn/2e−n/2+

√
n−1/4(1 + O(n−1/2)).

Fact 5 [SS92] The probability of obtaining a derangement (a permutation with
no fixed points) using Pn is asymptotically exp(3e−1 + e−2/2 − 2) = 0.436 . . .
The expected number of fixed points is asymptotically 2− 3/e = 0.896 . . .

For comparison, if a permutation is drawn from the uniform distribution, its
probability of being a derangement is 1/e = 0.367 . . . and the expected number
of fixed points is 1.

Fact 6 [GM01] If n ≥ 18, the identity permutation is the most likely result of
the Pn shuffle.

From the facts above we conclude that the probability of any deck π is
contained within the following bounds:

1

2

(

2

n

)n

≤ Pr[π is generated by Pn] ≤ 1√
2
n−n/2e−n/2+

√
n−1/4.

The expected value for this probability is approximated using the Sterling for-
mula

E[Pr[π is generated by Pn]] =
1

n!
≈ 1√

2πn

(e

n

)n

.

There are asymptotically exponential gaps between the probabilities of the ran-
dom, the most and the least likely permutations.

However instructive and interesting these combinatorial results can be, they
are not very useful in analyzing RC4. Indeed, the chances of observing one of

the extreme permutations are negligibly small. The only notable exception is
Fact 5 that gives us a powerful distinguisher between random permutations and
the ones generated by Pn. We show more examples of this approach in the next
section.

5.2 Distinguishers

If there is a statistical anomaly in distributions of permutations that can be used
to attack RC4, the most direct way to demonstrate existence of this anomaly is
to design an algorithm that can reliably distinguish a deck shuffled by Pt from
a truly random one. We already know one such distinguisher, namely comput-
ing the sign of the permutation (Section 4.1). A practical attack based on this
distinguisher is quite unlikely, but due to its theoretical importance (unveiled in
Section 5.4) we formally define it and complete the analysis.

Sign distinguisher. First, we describe the algorithm in pseudo-code (Fig. 4).

Input: n-card deck S, time t

Output: guessed bit b: true if S is random and false if S is output by Pt

if sign(S) = (−1)t

then return false

else return true

Fig. 4. Sign distinguisher.

A computation analogous to our first analysis of this algorithm in Section 4.1
proves that the advantage of guessing bit b correctly is approximately 1

2e−2t/n.
Therefore, after two passes of the shuffle, which models discarding the first 256
bytes of the output of RC4, the sign is 1.83% more likely to be +1 than −1.
With more passes the advantage of guessing the sign vanishes exponentially fast.

To correctly compute the sign, we must know exactly the entire permuta-
tion. More useful distinguishers should be more robust to partial or inaccurate
information. Our next algorithm has precisely this property.

Position distinguisher. We observe that the likelihood of the ith card
ending up in the jth slot after the Pt shuffle is not constant, as it would be in
the case of a random deck, but instead depends on i, j, and t. Let

p
(t)
i,j = Pr[S[j] = i after Pt].

The following recurrence equation can be used to efficiently compute p for all t:

p
(0)
i,j =

{

1, if i = j

0, otherwise
(1)

and for t > 0

p
(t)
i,j =

{

p
(t−1)
i,j (1− 1

n) + 1
np

(t−1)
t0,j , j 6= t0

1
n , otherwise

, (2)

where t0 = t (mod n). In the appendix (Section A) we solve this recurrence for
the important case t = n.

Given the probabilities p
(t)
i,j , we assign to any permutation π a measure

pt(π) =

n−1
∏

i=0

p
(t)
i,π(i)

that approximates the likelihood of π after Pt. The approximation is rather
crude, since the events π(i) = a and π(j) = b are not independent (in particular,
a 6= b). In practice, instead of computing pt(π) directly, we evaluate log pt(π) =
∑n−1

i=0 log p
(t)
i,π(i). We also multiply the probabilities by a scaling factor n, which

shifts the distribution toward zero.
The expected value of pt(π) for π drawn from the uniform distribution can

be written in the following closed form. It is 1
n!perm ((p

(t)
i,j)), where (p

(t)
i,j) is the

n× n matrix of p(t)-values and perm is the permanent of a matrix. However, in
addition to the expected values we also need the distribution of this measure on
random π, as well as its distribution on decks shuffled by the exchange shuffle.
We resort to a numerical computation and experimentally find the threshold
value A used in the distinguisher in Fig. 5.

Input: n-card deck S, time t, table (p
(t)
i,j), and the threshold value A

Output: guessed bit b: true if S is random and false if S is output by Pt

p := 0
for i := 0 to n− 1 do

p := p + log np
(t)

i,S[i]

if p < A

then return false

else return true

Fig. 5. Position distinguisher. The table (p
(t)
i,j) and the threshold value A are

precomputed.

The effectiveness of this measure for different t is summarized in Section B.
The table demonstrates that for t ≤ 3n the measure pt is a good distinguisher.
Distributions of measure pn on Pn outputs and on truly random decks are plotted
in Fig. 7.

The irregularities in permutations’ distribution exploited by this distinguisher
are directly observable and show up in the first byte of the RC4 output stream.
We analyze its bias in Section 6.

5.3 Variation distance

We have demonstrated two statistical tests that the decks shuffled by Pt fail
to pass when t ≤ 3n. Once it is shown that two distributions are sufficiently
distant, existence of more potent distinguishers cannot be excluded. Our next
problem is to determine what number of passes of the exchange shuffle is enough
to rule out existence of any effective statistical tests. To put it another way, we

are concerned about computational indistinguishability of two distributions: the
uniform distribution and the one induced by Pt.

One technique to prove that two distributions can not be told apart is to show
that they are statistically close. We define the distance between two distributions.

Definition 1 (variation distance). Let P and Q be probability distributions
on set F . The variation distance between P and Q is

‖P −Q‖ = max
G⊂F

|P (G)−Q(G)| = max
G⊂F

∣

∣

∣

∣

∣

∣

∑

g∈G

P (g)−
∑

g∈G

Q(g)

∣

∣

∣

∣

∣

∣

.

The following simple fact clarifies the relation between the variation distance
and statistical tests:

Fact 7 For two probability distributions P and Q on F and any probabilistic dis-
tinguisher A : F 7→ {0, 1}, its probability of success is no more than the variation
distance between P and Q. Formally,

∣

∣

∣

∣

Pr
f←P (F)

[A(f) = 1]− Pr
f←Q(F)

[A(f) = 1]

∣

∣

∣

∣

≤ ‖P −Q‖,

where f ← P (F) means that f is sampled from the set F according to the
probability distribution P .

The converse is not true, i.e. computational indistinguishability does not imply
statistical closeness [Gold01].

Let Sn be the symmetric group on n cards. Let U(Sn) be the uniform distri-
bution on this group and Pt(Sn) be the probability distribution of decks shuffled
by Pt. Then the main problem of this section can be formulated as follows:

What is the minimal t, as a function of n and ε, such that ‖Pt(Sn) −
U(Sn)‖ < ε?

The exchange shuffle can be modelled as a Markov chain (we organize the shuffle
in passes, which have identical transition matrices on Sn). This chain is finite,
aperiodic (a permutation may stay unchanged after one pass), irreducible (each
permutation can be reached from any other within one pass) and therefore con-
verges to the unique stationary distribution. Since the uniform distribution can
be shown to be stationary, Pt(Sn) −−−→

t→∞
U(Sn) and the question posed above is

correct when ε > 0. One technical step omitted from this argument is a proof
that the variation distance between Pt and U monotonically decreases in t (see
full version of the paper [Mir02]).

5.4 Upper and lower bounds

In this section we prove explicit bounds on the convergence rate of Pt(Sn), i.e.
its variation distance from U(Sn).

Lower bound. For the lower bound we use the sign distinguisher (Fig. 4). Its
probability of success in distinguishing Pt(Sn) and the uniform distribution is
known and asymptotically equal to 1

2e−2t/n. Combining it with Fact 7 we prove
that

Theorem 8. For n→∞ and t/n→ λ:

‖Pt+1(Sn)− U(Sn)‖ >
1

2
e−2λ.

Corollary 1. If the variation distance between Pt(Sn) and U(Sn) is to be made
smaller than ε, it must hold that t/n > 1

2 ln 1
2ε .

The conclusion is that the number of discarded shuffles must grow at least lin-
early in n. For example, taking ε = 2−20 leads to t ≥ 6.5n.
Upper bound. To prove an upper bound on the convergence rate we use a
variant of an ingenious argument credited to Andrei Broder by [Dia88,Mat88].
We begin by introducing strong uniform times instrumental in the proof.

Definition 2 (strong uniform time [Dia88]). Suppose we have a random-
ized shuffling process Qt on Sn, each execution of which can be unambiguously
described by a sequence q0, . . . , qt−1 in alphabet Q. A strong uniform time is a
function T : Q∗ 7→ {0, 1, . . . ,∞} with the following properties:

1. If T (q0, . . . , qt) = r <∞, then T (q0, . . . , qs) = r for all r ≤ s ≤ t.
2. If T (q0, . . . , qt) = r < ∞, then T takes the same value r on all sequences

which are prefixed with q0, . . . , qt.
3. Conditionally on T being finite, the shuffle is uniform:

Pr[π = Pt(id) | T (q0, . . . , qt) <∞] =
1

n!
.

We say that T happens when it becomes finite (and equal to the current time).
Intuitively, the first two properties mean that T cannot change its value after
this has happened. The last property implies that if we look at the decks where
T has happened, their distribution is uniform.

The following construction adapted to the exchange shuffle (Fig. 3) from
Broder’s original algorithm is crucial for this section:

At the beginning all cards numbered 0 . . . n−2 are unchecked, the (n−1)th

card is checked. Whenever the shuffling algorithm exchanges two cards,
S[i] and S[j], one of the two rules may apply before the swap takes place:

a. If S[i] is unchecked and i = j, check S[i].
b. If S[i] is unchecked and S[j] is checked, check S[i].

The event T happens when all cards become checked.

Theorem 9. The event T defined above is the strong uniform time for the Pt

shuffle.

Proof. At any given moment preceding t, let k be the number of checked cards,
A = {a1, . . . , ak} be the set of their positions, B = {b1, . . . , bk} be the set of
their labels, and Πk : A 7→ B be the correspondence between the two.

Lemma 1. For all t, the permutations Πk are uniformly distributed conditional
on k,A, and B.

Proof. [Lemma] Intuitively, when a card is checked, it joins the permutation
on checked card in a random position, keeping the set of these permutations uni-
formly distributed. All other transpositions preserve the conditional distribution
of checked cards.

More formally, the proof is by double induction on k and t. When k = 1 or
k > 1 but t = 0, the claim is vacuous. Suppose the claim is true for all k and
t < t0. Any permutation on k checked cards at time t0 was either a permutation
on the same cards at time t0 − 1, or a new card was checked. If no new card is
checked, then all possible transpositions act identically on the permutations with
the same A and B sets. It is easy to see that when a new card gets checked, all k
positions for this card in the new permutation Πk are equally likely. Therefore,
the distribution on Πk conditional on k,A, and B is uniform for t0. �[Lemma]

If the distribution of Πk|t,k,A,B is uniform for all t, we can drop the de-
pendency on t from the condition. When all cards are checked, k = n and
A = B = {0, . . . , n − 1}, the permutation on checked cards is the same as the
permutation on all cards. Since the number of checked cards is monotone, the
first two requirements of Definition 2 are automatically satisfied; the third re-
quirement has just been proved. Therefore, the event T is the strong uniform
time for the shuffle Pt. �

We want to point out that many simpler or similar checking rules would
not define a strong uniform time. For instance, always checking S[i] or S[j], or
checking S[j] if S[i] is unchecked do not result in the uniform distribution on
permutations.

The following lemma demonstrates how a strong uniform time can be used
to bound the convergence rate of a shuffling process.

Lemma 2. [Dia88] Let Qt be a shuffling process with a strong uniform time TQ.
Then for all t

‖Qt(Sn)− U(Sn)‖ ≤ Pr[TQ > t].

The last step in proving an upper bound on the variation distance between Pt

and the uniform distribution is the following fact, whose proof is given in the
appendix (Theorem ??):

There exists some constant c such that

Pr[T > cn log n]→ 0 when n→∞.

From our proof of this result it follows that c may be chosen to be less than 30.

5.5 Experimental results

Since our estimate of the rate of growth of the strong uniform time T is quite
loose and “too” asymptotic, we compute the distribution of T for n = 256
experimentally. The expected strong uniform time turns out to be

E[T] ≈ 11.16n ≈ 1.4n log n, where n = 256.

The threshold ε = 1/n was chosen as a reasonable goal. Experimentally,

Pr[T > 2n log n] < 1/n, for n = 256.

These results3 are a far cry both from the provable upper and lower bounds on
the convergence rate of Pt. There is an apparent gap between theoretical bounds
and empirical evidence.

6 First Byte of RC4 Output

As was shown in Section 5.2, the permutation S is not random after the key
scheduling algorithm, and quite noticeably so (Section ?? gives explicit formula
for individual probabilities). The first byte of RC4 output is z0 = S[S[1]+S[S[1]]]
(in some cases a swap would affect the result). If the permutation is not uniform,
there is no reason to believe that z0 will be uniformly distributed. It is not, and
in Fig. 6 we may see the fluctuations in distribution of z0 around its mean value
(the picture is zoomed in, the actual difference in probabilities is 0.6%).

0.00385

0.00387

0.00389

0.00391

0.00393

0.00395

1 33 65 97 129 161 193 225

Fig. 6. Bias in the first byte.

Since the distribution of z0 is different from the uniform distribution across
the map, the difference between the two distributions is easily observable. Ap-
plying the information-theoretic bound from [FM00] on the number of necessary
samples required for a reliable distinguisher, we have that about 1,700 first bytes
are sufficient to recognize the distribution with 10% double-sided error.

3 Tabulated for different n, the mean and the tail probability support the hypothesis
that their asymptotic is Θ(n log n).

We note that the exact probability distributions following from (1) and (2)
are not sufficient to compute the bias in the first byte. The positions occupied
by individual cards are not independent, and this must be taken into account.

7 Conclusion

We identified a weakness in RC4 stemming from an imperfect shuffling algorithm
used in the key scheduling phase and the pseudo-random number generator. The
weakness is noticeable in the first byte but does not disappear until at least
the third or the fourth pass (512 or 768 bytes away from the beginning of the
output). To find out when the nonuniformity vanishes completely we analyze an
idealization of RC4 in the form of the exchange shuffle. There is an asymptotic
gap between the upper and lower bounds on the convergence rate of the exchange
shuffle, and there is no doubt that the constant factor in the upper bound can
be improved.

Our most conservative recommendation is based on the experimental data
on the tail probability of the strong uniform time T (Section 5.5). This means
that discarding the initial 12 · 256 bytes most likely eliminates the possibility of
a strong attack.

Dumping several times more than 256 bytes from the output stream (twice
or three times this number) appears to be just as reasonable a precaution. We
recommend doing so in most applications.

As a final remark we want to stress that the analysis of the idealized model
of RC4 should on no account be accepted as a proof of its security. Many known
vulnerabilities, such as weak attacks [Goli97,FM00] as well as results due to
Fluhrer, Mantin, and Shamir are not captured by our model.

8 Acknowledgement

This work would have never started without excellent talks given at Stanford
by Glenn Durfee and Scott Fluhrer. I am extremely grateful to Dan Boneh
and Persi Diaconis for numerous valuable discussions and suggestions. It is my
pleasure to thank Itsik Mantin for showing me [Man01]. I would also like to thank
David Aldous, Philippe Golle, Ronald Rivest, Adi Shamir, David Wagner, and
anonymous referees for their helpful comments.

References

[Dia88] P. Diaconis. Group Representations in Probability and Statistics. Lecture
Notes-Monograph Series, vol. 11, IMS, Hayward, CA, 1988.

[Dur01] G. Durfee. Distinguishers for the RC4 stream cipher. Unpublished manuscript,
2001.

[Fin94] H. Finney. An RC4 cycle that can’t happen. Post in sci.crypt, message-id
35hq1u$c72@news1.shell, 18 September, 1994.

[FM00] S. Fluhrer and D. McGrew. Statistical analysis of the alleged RC4 keystream
generator. In proceedings Fast Software Encryption 2000, pp. 19–30, Lecture
Notes in Computer Science, vol. 1978, Springer-Verlag, 2000.

[FMS01] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling algo-
rithm of RC4. In proceedings SAC 2001, pp. 1–24, Eighth Annual Workshop
on Selected Areas in Cryptography, August 2001.

[Gold01] O. Goldreich. The Foundations of Cryptography. Basic tools. Cambridge
University Press, Cambridge, England, 2001.

[GM01] D. Goldstein and D. Moews. The identity is the most likely exchange shuffle
for large n. arXiv:math.co/0010066 available from arXiv.org.

[Goli97] J. Golić. Linear statistical weakness of alleged RC4 keystream generator.
In proceedings Eurocrypt ’97, Lecture Notes in Computer Science, vol. 1233,
Springer-Verlag, 1997.

[Gro77] J. Grossman. Problem E 2645. Amererican Mathematical Monthly, vol. 84(3),
p. 217, 1977.

[GW00] A. Grosul and D. Wallach. A related-key analysis of RC4. TR00-358, Rice
University, 2000.

[K+98] L. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege. Analysis
methods for (alleged) RC4. In proceedings Asiacrypt ’98, Lecture Notes in
Computer Science, vol. 1514, Springer-Verlag, 1998.

[Knu75] D. Knuth. The Art of Computer Programming. Second Edition. Addison-
Wesley, Reading, MA, 1975.

[Man01] I. Mantin. Analysis of the stream cipher RC4. Master’s Thesis, Weizmann
Insitute, Israel, 2001.

[MS01] I. Mantin and A. Shamir. A practical attack on broadcast RC4. In proceedings
Fast Software Encryption 2001, Lecture Notes in Computer Science, Springer-
Verlag, 2001.

[Mat88] P. Matthews. A strong uniform time for random transpositions. Journal of

Theoretical Probability, vol. 1(4), 1988.
[Mir02] I. Mironov. (Not So) Random Shuffles of RC4. full version of

this paper. Cryptology ePrint Archive, Report 2002/003, available form
http://eprint.iacr.org/, 2001.

[Mis98] S. Mister. Cryptanalysis of RC4-like ciphers. Master’s Thesis, Queen’s Uni-
versity, Kingston, Ontario, Canada. May 1998.

[MT98] S. Mister and S. Tavares. Cryptanalysis of RC4-like ciphers. In proceedings
SAC ’98, Fifth Annual Workshop on Selected Areas in Cryptography, August
1998.

[Riv01] R. Rivest. RSA Security response to weaknesses in key scheduling al-
gorithm of RC4. Technical note available from RSA Security, Inc. site.
http://www.rsasecurity.com/rsalabs/technotes/wep.html, 2001.

[RB81] D. Robbins and E. Bolker. The bias of three pseudo-random shuffles. Acqua-

tiones Mathematicae, vol. 22, pp. 268–292, 1981.
[Roo95] A. Roos. Class of weak keys in the RC4 stream cipher. Two

posts in sci.crypt, message-id 43u1eh$1j3@hermes.is.co.za and
44ebge$llf@hermes.is.co.za, 1995.

[Rue86] R. Rueppel. Analysis and Design of Stream Ciphers. Springer-Verlag, 1986.
[Sal01] L. Saloff-Coste, Probability on groups: random walks and invariant diffusions.

Notices of the American Mathemtatical Society, vol. 48(9), pp. 968–977. 2001.
[SS92] F. Schmidt and R. Simion, Card shuffling and a transformation on Sn. Ac-

quationes Mathematicae, vol. 44, pp. 11–34, 1992.

[SIR02] A. Stubblefield, J. Ioannidis, and A. Rubin. Using the Fluhrer, Mantin, and
Shamir attack to break WEP. In proceedings NDSS ’02. 2002.

[Tho65] E. Thorp. Problem E 1763. American Mathematical Monthly, vol. 72(2),
p. 183, 1965.

[Wag95] D. Wagner. My RC4 weak keys. Post in sci.crypt, message-id
447o1l$cbj@cnn.princeton.EDU, 26 September, 1995.

A A solution to the recurrence

Claim. Solution to the equations (1) and (2) at time t = n is given by

p
(n)
a,b =

{

1
n

[

(1− 1
n)n−b−1 + (1− 1

n)a
]

, if b < a
1
n

[

(1− 1
n)a +

(

1− (1− 1
n)a

)

(1− 1
n)n−b−1

]

, if b ≥ a.

Proof. Notice that the card that has been indexed by i at least once has equal
chances of ending up in any slot at time n. With this in mind consider the case
of b < a (the card moves left). There are two possibilities for this outcome.
First, it may happen if at time i = b the ath card is indexed by j and after the
swap, when S[b] = a, the bth slot is never visited again. The probability of this
event is 1

n (1− 1
n)n−b−1. Second, when i = a and a = S[a], the ath card become

“randomized” and has equal chances of being in any position at the end of the
pass. In this case, the probability that the ath card ends up in the bth slot is
1
n (1− 1

n)a.
The case a ≤ b is treated analogously. �

B Experimental Data

The following table summarizes success probability of the position distinguisher
for different t (Section 5.2) with n = 256.

t Cut-off A Advantage

n 0.0 60%
2n 0.0 3.4%
3n 0.0 0.1%
4n — unreliable

Figure 7 plots two distributions of the measure pt (Fig. 5), one on the random
decks and another on Pn(Sn) (decks shuffled with one pass of the exchange
shuffle).

Fig. 7. Two distributions of measure pt for U(Sn) and Pn(Sn), where n = 256.

