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Abstract. A Zero-knowledge protocol provides provably secure entity
authentication based on a hard computational problem. Among many
schemes proposed since 1984, the most practical rely on factoring and dis-
crete log, but still they are practical schemes based on NP-hard problems.
Among them, the problem SD of decoding linear codes is in spite of some
30 years of research effort, still exponential. We study a more general
problem called MinRank that generalizes SD and contains also other well
known hard problems. MinRank is also used in cryptanalysis of several
public key cryptosystems such as birational schemes (Crypto’93), HFE
(Crypto’99), GPT cryptosystem (Eurocrypt’91), TTM (Asiacrypt’2000)
and Chen’s authentication scheme (1996).
We propose a new Zero-knowledge scheme based on MinRank. We prove
it to be Zero-knowledge by black-box simulation. An adversary able to
fraud for a given MinRank instance is either able to solve it, or is able
to compute a collision on a given hash function.
MinRank is one of the most efficient schemes based on NP-complete
problems. It can be used to prove in Zero-knowledge a solution to any
problem described by multivariate equations. We also present a version
with a public key shared by a few users, that allows anonymous group
signatures (a.k.a. ring signatures).
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1 Introduction

The general problem we address is the classical problem of interactive entity
authentication. It is known since Fiat-Shamir [5] that solving this problem com-
bined with a cryptographic hash function also allows non-interactive authenti-
cation, for example digital signatures,

The notion of Zero-knowledge identification has been formalized by Gold-
wasser, Micali and Rackoff in [18]. In such a scheme a Prover proves his identity
to a Verifier. Provided the underlying problem is difficult, we prove that there is
no interactive strategy for the Verifier communicating with the Prover, to extract
any information whatsoever on the prover’s secret. Several such schemes have
been proposed since the original Fisher-Micali-Rackoff scheme (1984), and the
most practical ones are Fiat-Shamir, Guillou-Quisquater and Schnorr schemes.
Unfortunately they rely on problems that are (believed) not NP-hard such as
factoring or discrete log. Still there are schemes using an NP-hard problem and
still practical, for example PKP by Shamir [31], CLE by Stern [35] or PPP by
Pointcheval [27]. However the most interesting schemes are in our opinion the
schemes related to coding, as the decoding problem(s) are believed intractable
even since the 1970s [2]. There were many proposals [34, 40, 20, 16, 4] and the
best of them is the scheme SD by Stern [34, 40]. The simplest decoding problem
is the problem of Syndrome Decoding (SD) and consists of finding a small weight
vector in an affine subspace of a linear space. Similarly the MinRank problem is
a problem of finding a linear (or affine) combination of given matrices that has a
small rank. Both problems are NP-hard. Moreover SD have withstood more than
20 years of extensive research on the cryptanalysis of the McEliece cryptosystem
[22] and all the known attacks for SD are still exponential, [1, 3, 21, 36, 40]. Min-
Rank in fact contains SD and thus is also probably exponential. It also contains
the decoding problem for rank-distance codes of Gabidulin, used in public-key
authentication scheme of Chen [4] cryptanalysed in [37, 11], and also used in
the public-key encryption scheme GPT [14]. The MinRank problem, not always
named so, has many applications in cryptanalysis of various schemes such as
Shamir’s birational schemes [30, 6, 7] cryptanalysed by Coppersmith, Stern and
Vaudenay solving a MinRank with a small rank. Similarly Goubin and Courtois
broke the TTM cryptosystem in [19]. In [32] Shamir and Kipnis reduced the
cryptanalysis of Hidden Field Equations (HFE) scheme [24] to MinRank.

In the present paper we present a new Zero-knowledge protocol, for Min-
Rank. More precisely we show have to prove in Zero-knowledge an ability to
compute (or have) MinRank solutions. We may build instances that have only
one solution, and for those it will also be a proof of knowledge. We show that
the scheme can also be applied to prove in Zero-knowledge a solution to any
other problem expressed as a system of multivariate equations over a finite field.

The paper is organized as follows: First we recall the basic requirements of a
Zero-knowledge protocol. Then in §3 defines MinRank and studies related hard
problems. The §4 shows how to build secure instances for practical use, evaluated
with all the 5 attacks currently known for MinRank. In the §5 we describe key
generation and setup of the MinRank identification which is described in §6. The



following §7 gives proofs of completeness, soundness and Zero-knowledge. Then
in §8 we analyse the performance of the scheme and in §8.2 we compare it to
other schemes based on NP-complete problems. In Appendix 1 we compute useful
probability distributions for ranks of matrices. The Appendix 2 contains various
practical improvements to the scheme, notably reducing the fraud probability
form 2/3 to 1/2. Finally, the Appendix 3 shows that MinRank allows to achieve
authentication and signature, for any small subgroup, of a given group of users
sharing the same public key.

2 Zero-knowledge Protocols

An interactive protocol involves two entities/strategies: the Prover (P) and the
Verifier (V) that will be two probabilistic Turing machines. The Verifier and
prover interact and at the end the Verifier gives an answer: Accept or Refuse.

In known Zero-knowledge protocols, there is a possibility of fraud: a cheater
is usually able to answer to some types of questions (for which he was prepared
in advance) but not for all of them. The protocols are designed in such a way
that an answer to one question gives no information (Zero-knowledge), while
answering all the questions is proved to reveal Prover’s secret (Soundness). The
security is in fact based on the impossibility by the Prover to predict Verifier’s
questions. If we iterate the protocol, the global fraud probability becomes then
as small as we want.

A Zero-knowledge identification scheme should be: complete, sound and
Zero-knowledge:

Completeness. The legitimate Prover gets always accepted.

(Computational) Soundness. An illegitimate Prover will be rejected with
some fixed probability. We usually show the Prover that always succeeds can be
used to extract the Prover’s secret (a knowledge extractor).

Zero-knowledge. It is much stronger that saying the Verifier learns merely
nothing about the secret. We demand that no Verifier strategy, can extract
any information from the Prover, even in several interactions. It gives provable
security against active attacks. Proofs are made by simulation using the Verifier
as an oracle, or black-box, and therefore this definition has been called black box
(computational) Zero-knowledge, as formalized by Goldreich, and Oren [17]:

Definition 2.0.1 (Black box Zero-knowledge, [17]). A strategy P is told
to be black box Zero-knowledge on inputs from S (common input) if there exists
an efficient simulating algorithm U so that for every feasible Verifier strategy V ,
the two following probability ensembles are computationally indistinguishable:
– {(P, V )(x)}x∈S

def
= all the outputs of V when interacting with P on a com-

mon input x ∈ S.
– {U(V )(x)}x∈S

def
= the output of U using V as a black box, on x ∈ S.

The definition above is strong and still realistic: all well-known Zero-knowledge
protocols are proven in this model.



3 The MinRank Problem

Let M0; M1, . . . ,Mm be some η × n matrices over a ring R. The problem
MinRank(η, n,m, r, R) is to find a solution α ∈ Rm such that:

Rank(
∑

i

αiMi −M0) ≤ r.

3.1 Related Problems

This version of the MinRank, is a generalized version of one among many NP-
complete rank problems studied in [23] and [10]. In our scheme R will be a finite
field GF (q).

MinRank over a field can be defined in terms of codes: it is a decoding
problem for a kind of subfield subcode of Gabidulin’s linear rank-distance code
over GF (qη) [13, 11, 37]. Currently one of the two best known attacks to decode
rank distance codes is based on MinRank [11, 37]. Therefore MinRank is essen-
tial to the security of Chen and GPT public key schemes [14, 4, 11]. MinRank
also appears in attacks known on the HFE [32, 8, 10], TTM cryptosystem [19]
and Shamir’s birational signature scheme [30, 6, 7]. Finally, as we show in §3.3,
MinRank contains the SD problem for ordinary codes that underlies the security
of McEliece [22] and various identification schemes [34, 40, 16, 20].

MinRank over rings should also be mentioned. MinRank over ZZ might be
broken by the widely-used LLL algorithm. Indeed, when all the Mi are diagonal
of size up to 300× 300, the problem is to find a vector in a lattice with a small
number of non-zero elements, and this problem is closely related to the well
known lattice reduction problem that has numerous applications in cryptogra-
phy. Still MinRank over ZZ is undecidable in general, because it can encode any
set of diophantine equations (Tenth Hilbert’s problem) [23].

3.2 Encoding NP Problems as MinRank

The problem of proving in Zero-knowledge that a system of equations over a
finite field has a solution has already been solved in [12] under RSA or DL
intractability. Our solution is based on an NP-complete problem.

Theorem 3.2.1 (Determinant Universality, Valiant 1979). Any set of
multivariate equations over a ring can be encoded as a determinant of a ma-
trix with entries being constants or variables.

It was first shown by Valiant [38]. For a simpler, and still effective proof
see [23]. Both give an effective algorithm to encode any set of multivariate
polynomial equations as a MinRank. However the size of matrices it gives seems
hard to improve, for m equations of degree d with n variables we need matrices
of width about mnd.

From now we always suppose that R = GF (q). Solving multivariate quadratic
equations over a field is NP-hard [26], thus:



3.3 MinRank is NP-hard
The proof of [23], however, gives instances of MinRank in which the size of
the matrices will be polynomial in the number of matrices. It might seem that
MinRank is less secure with m matrices n×n and m and n being of the same order
of magnitude. We are going to show a reduction from an NP-complete problem
that gives instances that are known to be hard both in theory in practice, with
m,n and r being of the same order of magnitude. We reduce from the Syndrome
Decoding problem of a linear error correcting code that is NP-complete. The
proof for the case q = 2 is to be found in [2], and an extension to the arbitrary
field is sketched in [39], page 1764. Let (n, k, d) be an error correcting code. The
encoding is trivial: each of the lines of the generating matrix will be put on the
diagonal of a n × n matrix Mi that will have all 0’s elsewhere. Similarly M0

contains the fixed codeword to decode. Solving MinRank with rank r is then
equivalent to correcting r errors.

4 MinRank Instances and Attacks

4.1 Preliminary Requirement

The instance of MinRank should be chosen in such a way that the probability it
has many solutions (apart from those we might put by construction) should be
small. One possible way of achieve this is an explicit reduction from an instance
of another problem that has only one solution, as for example in §3.2.

Another way is to choose parameters such that the probability it has a solu-
tion, given in Appendix 2, is small, and thus we will be able to build instances
with one (constructed) solution that are unlikely to have (m)any more. In this
case, as we show in section 10, we need to have

m ≤ mmax with mmax
def
= ηn + r2 − (η + n)r + 1

4.2 Known Attacks

We assume η ≥ n. 1 There are five attacks known for the problem MinRank. Let
ω be the exponent of the Gaussian reduction 2 ≤ ω < 3, in practice ω ' 3.

Exhaustive search. It is qmrω, see [10] for details.

Attacking square MinRank with r ≈ n. In some cases the exhaustive
search may break MinRank 2. For example we consider a MinRank with m
matrices n×n and with r = n− s. Then we have mmax = r2 +n2− 2nr = s2. A
randomly generated MinRank with such parameters can be solved in about qs2

,
which can be quite small. However if the MinRank with m >> mmax is generated
from a reduction from another problem (see §3.2) having not too many solutions,
it is still secure.
1 The problem is symmetric with respect to transposition of matrices with swapping

η and n and by inspection we verify that all the complexities given in the present
paper are already given for the better of the two cases.

2 This attack was suggested to me by prof. Claus P. Schnorr.



Attack Using Sub-matrices. This simple attack works only if r << n, not
the case in this paper, and was first used by Coppersmith, Stern and Vaudenay
in [6, 7]. It was then described in details and used in [8, 9].

MQ-solving Attacks. Another attack that works only for r << n is due
to Shamir and Kipnis [32]. It reduces MinRank to the MQ problem, i.e. to a
system of Multivariate Quadratic equations. If r << n the system is overdefined,
and surprisingly such a system will be solved in expected polynomial time [32].
Improved algorithms will give roughly about nO(r), see [10, 11, 8, 33].

Since we will never have r << n, both these attacks fail.

The Kernel Attack. is the best attack for the parameter sets we propose. It
is due to Louis Goubin and described in [19] with a complexity of qd

m
n ermω for

n = η. A more general version described in [10] and [11] gives

Min
(

qd
m
n er , qb

m
n cr+(m mod n)

)
·mω.

For small r there are further improvements described in [11].

The ”Big m” Attack This attack designed for m >> n and is described in
[11] and [10]. It is trivial and consists of constraining as many entries of the
matrix M , as possible to 0. It runs in

qMax(0,η(n−r)−m) (η(n− r))ω
.

The Syndrome Attack. Another attack for m >> n and is described in [11]
and [10]. It is not very practical and gives about

qMax( ηn−m−1
2 ,(η+n)r/2−m−r2/4) · O(rηn)

Hard Instances: All the attacks known for MinRank described above are ex-
ponential in general. In a work in progress, [11] it is conjectured that for fixed
η = n the best security of q

4
27 n2

is achieved with r = n/3 and m ≈ 4
9n2. If m is

fixed, one may also build instances as close as we want to the exhaustive search
if we put n > 3

√
m and as big as possible, and with r = n−

√
m.



4.3 Practical Parameter Choices

We propose six sets of parameters A-F that use square matrices (η = n) and
work either over GF (2) or over GF (65521), the biggest prime that fits in 16 bits.
In the following table we compare the complexity of all known attacks described
above for A-F, give the communication complexity computed following §12, as
well as the probability that it has a solution computed computed in §10.
For comparison we also include two MinRank instances that appear in the
Shamir-Kipnis attack on HFE cryptosystem 3 [32], given for the HFE Challenge
1 [24, 9] and for a subsystem of Quartz 4 [25].

Cryptosystem MinRank identification HFE

Parameter set A B C D E F Chall. 1 Quartz

m 10 10 10 81 121 190 80 103

n 6 7 11 19 21 29 80 103

η 6 7 11 19 21 29 80 103

r 3 4 8 10 10 15 7 8

q 65521 65521 65521 2 2 2 280 2103

Prα[Rank ≤ r] 0.6 0.6 0.6 0.6 0.6 2−6 < 2−105

20×Comm. [Kb] 1.94 2.99 4.86 2.17 2.36 3.13

Attack

Brute force 2168 2168 2170 281 2134 2205 280 2103

Kernel 2106 2122 2138 264 281 2128 2577 2844

Big m 2108 2205 2399 2113 2135 2243 2461k 2997k

Syndrome 2118 2312 21002 2151 2172 2339 2252k 2530k

Sub-matrices ∞ ∞ ∞ ∞ ∞ ∞ 297 2114

MQ ∞ ∞ ∞ ∞ ∞ ∞ 2152 2188

5 Setup of MinRank Identification

5.1 Key Setup

The public key are 1 + m matrices η × n over a finite field GF (q),
M0; M1, . . . ,Mm. Let r < n. To generate a random hard 5 instance we pick
1 + m − 1 (pseudo-)random matrices M0; M1, . . . ,Mm−1. We chose a random

3 The brute force factors given in the table for HFE correspond to the direct brute
force attack on HFE itself, not on MinRank that would give much more.

4 Since it is only a subsystem, an attack on MinRank does not really break Quartz.
5 The instances of MinRank generated here are such that the matrices, and a linear

combination that yields a small rank, are all random and uniformly distributed. It is
believed to give hard instances most of the time with respect to all the attacks from
section 4.2. It might change if a better way to produce hard instances is known. The
same problem is an issue for any cryptosystem based on an NP-complete problem:
there is a difference between an NP-complete problem in general, and the actual
instances in the samplable distribution generated by a finite-length algorithm.



M of rank r and we ”adapt” Mm. For this we pick a random α ∈ GF (q)m such
that αm 6= 0 and Mm is computed as:

Mm = (M + M0 −
∑

αiMi)/αm

In practice, we generate M and M1, . . . ,Mm−1 out of a pseudo-random gen-
erator with a seed of 160 bits. It is better to pick all Mi invertible, but it’s not
necessary. We may use the well-known LU method 6 to generate a deterministic
pseudo-random invertible matrix. In order to generate M , first we generate a
matrix L which is random invertible matrix r × r, completed with 0’s to an
η × n matrix. Then a random couple of invertible matrices S and T is applied
M = SLT , see Lemma 7.0.1.

The secret key It is the solution α ∈ GF (q)n such that

Rank(
∑

αi ·Mi −M0) = r.

Key sizes All the public key is generated out of a pseudo-random generator
with a seed of 160 bits, except Mm that is transmitted. The size of the public
key is thus only 160 + nη log2 q bits. The secret key requires only additional
m log2 q bits to store α.

6 MinRank Identification Scheme

We use a collision-intractable one-way hash function H for commitments that is
supposed to be behave as a random oracle. The Prover is going to convince the
Verifier of his knowledge of α (and M).

The Prover chooses two random invertible matrices S, T that are η × η and
n× n, and a totally random η × n matrix X. We call STX the triple (S, T, X).
Then, he picks a random combination β1 of the Mi:

N1 =
∑

β1i ·Mi

He puts and N2 = M + M0 + N1 and uses his secret expression of M to get:

N2 =
∑

β2i ·Mi

We have β2 − β1 = α, but each of βi (taken separately) is random and
uniformly distributed. Each of the Ni is just a random combination of the Mi.

6 This method is known to give a slight bias, but it seems easy tor repair for example
by multiplying a few such matrices and permuting columns.



One Round of Affine MinRank Identification:

1. The Prover sends to the Verifier:

−−−−−−−−−−−−−−−−−−−−→
H(STX), H(TN1S + X), H(TN2S + X − TM0S)

2. The Verifier chooses a query Q ∈ {0, 1, 2} and sends Q to the Prover.

←−−−−−−−−−−−−−−−−−−−−
Q ∈ {0, 1, 2}

3. If Q = 0 the Prover gives the following values:

−−−−−−−−−−−−−−−−−−−−→
(TN1S + X), (TN2S + X − TM0S)

Verification Q = 0: The Verifier accepts if
H(TN1S + X)andH(TN2S + X − TM0S) are correct and if

(TN2S + X − TM0S)− (TN1S + X) = TMS

is indeed a matrix of rank r.
3’ If Q = 1, 2 the Prover reveals:

−−−−−−−−−−−−−−−−−−−−→
STX, βQ

Verification Q = 1,2: The Verifier checks if S and T are invertible and
H(STX) is correct. Then he computes

TNQS =
∑

βQi TMiS

and verifies H(TN1S + X) or H(TN2S + X − TM0S).

6.1 Completeness

It is clear that a legitimate Prover that knows α always succeeds.

6.2 Soundness

We will show that a false Prover is rejected with probability 1
3 . Let C (Charlie

or the Cheater), be an expected polynomial time Turing machine. We suppose
that there is such a false Prover C that can answer all the questions Q. In fact
the proof below shows that such a Prover will either be able to compute
a collision for H, or be able to solve the given instance of the NP-
complete problem MinRank 7.

7 Here it can be just any instance of MinRank, however in the practical authentication
the public key is generated in a specific way, see note 1 on the bottom of page 7.



Proof: C commits (with H) to the values of TN1S+X and TN2S+X. ForQ = 1
and 2 he proves that he has indeed generated them in the form X+T (

∑
β1iMi)S

and X +T (
∑

β2iMi)S. In both cases we verify H(STX) and we are certain that
he used the same X, S and T . Finally when Q = 0 we will verify the rank of the
following matrix is indeed r:(

T (
∑

β2iMi)S − TM0S + X
)
−

(
T (

∑
β1iMi)S + X

)
=

=
m∑

i=1

(β2i − β1i) · TMiS − TM0S

When Q = 1 or 2 we check that S and T are invertible, thus
m∑

i=1

(β2i − β1i) ·Mi −M0

is also of rank r. Thus the Prover knows a solution to MinRank α = (β2−β1),
i.e. either the secret key α or an equivalent one. ut

One can see that the fraud probability for several rounds is:

Prfraud =
(

2
3

)#rounds
.

For details and an improvement to
(

1
2

)#rounds see 11.2 and 11.3.

7 Black-box Zero-knowledge of MinRank

Let the Prover strategy P be a probabilistic average polynomial time Turing
machine. We suppose that H is a random function (oracle).The simplicity of
MinRank makes very easy to show it is Zero-knowledge.

– In cases Q = 1, 2 we only disclose random unrelated variables S, T, βQ, X.
– The caseQ = 0: disclosing (TN1S+X) and (TN2S−TM0S+X) is equivalent

to disclosing (TN1S + X) and their difference TN2S − TM0S − TN1S =
TMS.
Since X is completely random, (TN1S+X) is a random matrix independent
from TMS. As for TMS, we show that it is a uniformly distributed matrix
of rank r:

Lemma 7.0.1. Let M be a η×n matrix of rank r. Let S and T be two uniformly
distributed random invertible matrices η×η and n×n. Then TMS is uniformly
distributed among all η × n matrices of rank r.

Proof sketch: All the η × n matrices M of rank r are equivalent modulo
invertible variable changes and can be written as:

M = S′ ·
(

Idr×r 0r×(n−r)

0(η−r)×r 0(η−r)×(n−r)

)
· T ′



7.1 The Exact Proof of Zero-knowledge by Simulation

We construct a simulator U with oracle access to V , see Def. 2.0.1:
1. U(V ) chooses a random query Q = 1, 2. He will prepare to answer to ques-

tions 0 and Q.
2. He chooses N =

∑
δiMi with a random δ.

3. He picks up STX = (S, T, X) with invertible S and T .
4. He picks up a random matrix R of rank r.
5. Let NQ = N and N3−Q = N + (−1)Q+1(R + M0). Now N2 −N1 = R + M0.
6. He asks for Verifier’s query on his commitment:

Q′ = V
(
H(STX), H(TN1S + X), H(TN2S − TM0S + X)

)
∈ {0, 1, 2}.

7. He repeats steps 1-6 about 2 times (rewinding),
until he does get one of the two queries he has prepared to answer:

Q′ ∈ {0,Q}

8. If Q′ = 0 the simulator U(V ) reveals (TN2S +X−TM0S) and (TN1S +X)
with indeed a difference TRS of rank r.

8’ If Q′ = Q the simulator U(V ) reveals STX and δ, that were indeed used to
construct the committed TNQS + X[−TM0S].

8 Performance of the Scheme

8.1 Communication Complexity

We assume that hash values are computed with SHA-1. Thus we need 3 ·160+2
bits for the first two passes.
We note that the values of STX = (S, T, X) does not need to be transmitted,
they are in practice generated using a pseudorandom generator out of a seed
of 160 bits, using the method we described in §5.1 to generate pseudorandom
invertible matrices S and T . 8

The last pass requires 2nη log2 q bits in the case Q = 0. In the two other cases it
requires 160 + m log2 q bits. The weighted average bit complexity for the whole
scheme is 3 · 160 + 2 + 2

3 · 160 + 2
3 (nη + m) log2 q.

This is to be multiplied by the number of rounds which is ≥ 35 for the round
fraud probability of 2/3. In the Appendix 3 we show how achieve 1/2 instead
(which will require only 20 rounds) and present several other improvements. Our
best scheme (cf. 12 and 12.1) gives a communication complexity as low as :

Comm. [in bits] = 2 · 160 +
(

4 · 160 + 8 +
nη + m

2
log2 q

)
·#rounds

8 Such modifications make the security depend on an additional assumption. It seems
to be a quite weak and plausible assumption. For example here (S, T, X) should be
indistinguishable from random.



8.2 Comparison with Other Schemes

The following table compares different Zero-knowledge protocols based on NP-
complete problems based on previous work of Pointcheval [28].

PKP SD Chen [4] CLE PPP MinRank (A)
Shamir Stern Chen Stern Pointcheval Author

matrix 16 x 34 256 x 512 32 x 16 24 x 48 101 x 117 6 x 6

field IF251 IF2 IF65535 IF257 IF2 IF65521

passes 5 3 5 3/5 3/5 3

impersonation
probability

1
2

2
3

1
2

2
3 / 1

2
3
4 / 2

3
2
3 / 1

2

rounds 20 35 20 35/20 48/35 35/20

impersonation
global

10−6 10−6 10−6 10−6 10−6 10−6

public key [bits] 272 256 256 80 149 735

secret key [bits] 128 512 512 80 117 160

best attack 260 270 253 273 261 2106

bits send/round 665 954 1553 940/824 896/1040 1075/694

global
[Kbytes]

1.62 4.08 3.79 4.01/2.01 5.25/4.44 4.6/1.94

9 Conclusion and Perspectives

We described a new MinRank authentication scheme. It is proven Zero-
knowledge and relies on a linear algebra problem MinRank. This NP-hard prob-
lem contains in a very natural way some famous problems such as Syndrome
Decoding. Both these problems are believed hard on average and all the known
algorithms are exponential.

It is possible to use MinRank to prove in Zero-knowledge a knowledge of a
solution for any problem expressed as a set of multivariate equations over a finite
field (see 3.2). However, the encoding will not always be practical.

Among known schemes based on NP-complete problems MinRank is one of
the most efficient, though several schemes are not much worse.

MinRank also allows to share the public key among several users in such a
way that any small subgroup can identify itself or produce signatures.
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10 Appendix 1 - Probability Distribution of Ranks

Following [13] the probability that a random matrix η × n is of rank r is

P (η, n, r) =
(qn − 1) · . . . · (qn − qr−1)
(qr − 1) · . . . · (qr − qr−1)

· (q
η − 1) · . . . · (qη − qr−1)

qηn
.

If r ≤ min(n, η) it is non-zero, and when all the n, η, r → ∞ we get the
following approximation:

p(η, n, r) ' O(q(η+n)r−r2−ηn)
The probability that a random matrix η × n is of rank > r is about:

(1−
r∑

s=0

q(η+n)s−s2−ηn) ≈ (1− q(η+n)r−r2−ηn)

There are qm−1
q−1 non-collinear combinations α of the Mi. The probability that

all of them give Rank(
∑

i αiMi −M0) > r with r ≤ min(n, η) is about:

Prα[Rank ≤ r](η, n, r) = 1− (1− q(η+n)r−r2−ηn)
qm−1
q−1

We want to evaluate the value mmax such that for m ≤ mmax we expect to
have solutions for a random MinRank, and such that for m ≈ mmax, we expect
to have one solution on average. Therefore:

(qmmax − 1)/(q − 1) · O(q(η+n)r−r2−ηn) ≈ 1

mmax
def
= ηn + r2 − (η + n)r + 1

11 Appendix 2 - Achieving Fraud Probability 1/2

We present a technique to achieve the fraud probability 1/2 instead of 2/3. It
has the following interesting features:

– It requires additional assumption (of type one-wayness of a function).
– Should this assumption fail, the scheme is still at least as secure as before,

only with a worse impersonation probability.

The principle of the ”trick” is to replace some random choices by a determin-
istic procedure so that they are still random but cannot be chosen. We add an
additional ”verifiable” requirement on generation of some values, and thus we
eliminate some fraud scenarios (but not others). Then we modify the probabili-
ties of different questions in order to balance the probabilities for the remaining
fraud scenarios.

We consider any Zero-knowledge protocol in which a Prover picks up 2 values
β1 and β2 such that β2 − β1 = α is a given (usually secret) value. Usually we
will generate β1 at random and compute β2, which enables fraud scenarios in
which the adversary may chose a value for one out of β1, β2. We want to avoid
this. Let F be a function with a following properties:

(1) It is very hard to compute an inverse F−1(y) for a given random y.
(2) It is very easy to compute two solutions x and x′ such that F (x′)− F (x) is

a given value ∆y and x′ = x + ∆x with a given constant ∆x.



Example 1: F : x 7→ x2 mod N , N being an RSA modulus. The inversion
problem (1) is as hard as factoring.

Example 2: F : GF (q)n → GF (q)n is a set of random quadratic equations
over a finite field. The inversion problem (1) is called MQ, is NP-hard very
difficult in practice [26, 33].

In both examples, (2) is a linear problem easily solved.
We note that each of the above examples is applied with an operation ’+’ that

belongs to a different group. Only the first example can be used for MinRank,
as our ’+’ will be the component-by-component addition in the finite field.

11.1 Application to MinRank Scheme

Let F : GF (q)nη → GF (q)nη be a public fixed random set of quadratic equations.
In the modified MinRank scheme, the Prover picks up two 160-bit seeds Z and
STX. Let ∆y = Expand(Z) and (S, T, X) = Expand(STX) be the output of a
pseudo-random generator. He solves

(S)
{

F (T (
∑

β2iMi)S − TM0S + X) − F (T (
∑

β1iMi)S + X) = Expand(Z)
β2 − β1 = α

The first equation becomes linear in β1 after substitution of β2 = β1 + α.
He gets m linear equations with m variables β1i. If there is no solution (β1, β2)
found, he tries again with a new Z.

11.2 Verification that the Prover Follows the Scenario

If Q = 0, the Prover will send an additional value Z. The Verifier will check that
F (TN2S + X)− TM0S − F (TN1S + X) = Expand(Z). In the previous version
of MinRank scheme possible fraud scenarios were:
01 Try to be able to answer Q = 0 and 1.

It is easy to produce two matrices, seemingly T (
∑

β1iMi)S + X and
(T (

∑
β2iMi)S − TM0S + X), such that only one of them is really con-

structed in such a form, and the other is adjusted to get a difference of rank
r.

02 Try to be able to answer Q = 0 and 2 in the same way.
12 Try to be able to answer Q = 1 and 2: We pick up any STX, β1, β2 and

produce a genuine T (
∑

βQiMi)S + X[−TM0S].
0 Try to be able to answer Q = 0 only. For this we just give any matrices that

have a difference with rank r.
1 Try to be able to answer Q = 1 only. For this we produce T (

∑
β1iMi)S +X

in the required form.
2 Try to be able to answer Q = 2 only. As above.

The new version excludes the scenarios (01) and (02). Let us see why on the
example of scenario (01). We assume that a false Prover wants to answer Q = 0
and 1. He may try the following possibilities:
a. Since S, T and X are always obtained as Expand(STX), if we cheat and

have not selected them in this way, we are only able to answer Q = 0.



b. He may try to pick up β1. Since F is one way (the NP-chard problem MQ),
he will be unable to produce a matrix R such that F (Q)−F (T (

∑
β1iMi)S+

X) = Expand(Z).
c. Another way is to try find R of rank r and write the nη equations with m

variables (
∑

β2iMi −M0) − (
∑

β1iMi) = R. However to find a solution is
hard because α = β2−β1 would allow him to solve an instance of MinRank.

Still an adversary has the capacity to answer all possible questions separately:
fraud scenarios (0), (1) and (2).

11.3 Resulting Changes in the Protocol
Now we may modify the probabilities. The question Q = 0 is asked with proba-
bility 1/2 and Q = 1, 2 with probability 1/4 each. The following table shows the
probabilities of success for all fraud scenarios.

Fraud scenario 0 1 2 01 02 12 012

Pr[Success] before
1
3

1
3

1
3

2
3

2
3

2
3 0

now
1
2

1
4

1
4 0 0

1
2 0

A false Prover is detected with probability 1/2. Now only 20 instead of 35
rounds are needed to achieve the security of 10−6.

Note: We obtained a more efficient authentication scheme with an added com-
putational assumption based on the NP-hard problem MQ. This problem is
believed very hard [33], but if it wasn’t then the scenarios (01) and (02) will be
possible again and the fraud probability will be 3/4. The MinRank scheme will
remain secure, but with worse fraud probability, or equivalently, it will require
more iterations.

11.4 Further Improvements

First we remark that if Q = 0, it is not necessary at all to transmit the two
values TN2S−TM0S +X and TN1S +X. In fact it is enough to transmit their
difference TMS and Z that is already among the values that are transmitted.
The values of TN2S − TM0S + X and TN1S + X can be then recovered by the
Verifier that has to solve a system similar to (11.1.(S)). We saved a transfer of
one matrix η × n.

Another improvement is to use only one seed STXZ with:
(S, T, X, Z) = Expand(STXZ)

12 The Modified Version MinRank-v2

Now we integrate all improvements in order to have a general view. The prover
chooses a random seed of 160-bits STXZ. Let

(S, T, X, Z) = Expand(STXZ)
∆y = Expand(Z)



Now the Prover solves:

(S)
{

F (T (
∑

β2iMi)S − TM0S + X) − F (T (
∑

β1iMi)S + X) = Expand(Z)
β2 − β1 = α

If there is no solution, (β1, β2), we try again a small number of times. with a
different seed STXZ. Then in each round of authentication:

1. The Prover sends to the Verifier:
−−−−−−−−−−−−−−−−−−−−→

H(STXZ), H(TN1S + X), H(TN2S + X − TM0S)

2. The Verifier chooses a query Q, such that Q = 0 with probability 1/2, and
Q ∈ {1, 2} with probability 1/4 each. He sends Q to the Prover.

←−−−−−−−−−−−−−−−−−−−−
Q ∈ {0, 1, 2}

3. If Q = 0, the Prover gives the following values:
−−−−−−−−−−−−−−−−−−−−→

TMS, Z

Verification Q = 0: The Verifier will compute the (TN1S + X) and
(TN2S + X − TM0S), see 11.4 Then he will accept if H(TN1S + X) and
H(TN2S + X − TM0S) are correct, and if Rank(TMS) = r.

3’ In the case Q = 1, 2, the Prover reveals:
−−−−−−−−−−−−−−−−−−−−→

STXZ, βQ

Verification Q = 1,2: The Verifier checks if S and T are invertible and if
H(STXZ) is correct. Then he computes

TNQS =
∑

βQi TMiS

and verifies the correctness of H(TN1S + X) or H(TN2S + X − TM0S).

12.1 Improvements in the Communications

As in 8.1 we compute the communication complexity of the new version. By
inspection we see that it becomes:(

3 · 160 + 2 +
nη + m

2
log2 q

)
·#rounds

Remark: The value of 160 bits for a length of seeds and commitments is ap-
propriate for the security level of 280 and should be increased otherwise. For
example for a security level 2SF we should use 2SF bits. So we get(

6SF + 2 +
nη + m

2
log2 q

)
·#rounds



Chaining random seeds. It is also possible to save on the size of random
seeds used in the scheme and use one single seed A0 of 2SF bits for the whole
scheme. Each time we compute a seed Ai as the following:

Ai = H(A0||i||b1, . . . , b7)
with an appropriate length hash function and with 7 random bits bi, as the

seed STXZ = Ai will only work in sec. 12 with a probability different than 1.
Thus we may try again for bi in order to have a working seed. With 27 = 128
tries we have a negligible probability to never find an appropriate seed. The
main seed A0 is only given at the end, after all rounds of authentication, and
only then all the verifications are carried. Now, with the exception of A0, each
round requires only 4SF +7+2+ nη+m

2 log2 q bits. Thus we get a communication
complexity of

2SF +
(

4SF + 9 +
nη + m

2
log2 q

)
·#rounds.

13 Appendix 3 - Multi-user Setting

It is easy to produce almost totally random instances of MinRank with sev-
eral users, each of which has one solution to MinRank and no information about
other solutions. We pick 1+m [pseudo-]random matrices M0;M1, . . . ,Mm. Each
user i has the right to pick up a matrix Ui such that Ui −M0, plus some ran-
domly chosen linear combination of the M1 . . .Mm, has a small rank. It can
be done for an unlimited (in practice) number of users. Then the set of matri-
ces: M0;M1, . . . ,Mm; with the {Ui|i ∈ G} is the public key for any small 9

subgroup G.

13.1 Ring Signatures with MinRank

A well known method (see [5]) that transforms a Zero-knowledge protocol into a
signature scheme will also apply to MinRank. This in turn can be combined with
the above multi-user setting. We obtain an anonymous group signature scheme
known as a ring signature scheme [29], with the following properties:

– Each group member signs with his own private key (no shared secrets).
– He may sign on behalf on any subgroup of users that contains himself.
– There is no central authority.
– The user within the group that signs is anonymous (inside the group).
– Security is based on the NP-hard problem MinRank.
– At any moment we may introduce a new user and remove a user.
– Selective repudiation of signatures: introducing a new user U ′ and invalidat-

ing his public key can be used as a mean to repudiate all signatures made
with this user included in the subgroup. The repudiation is controlled by the
person who knows the secret key of U ′ and publishes it.

9 Here the total number of matrices m can be very big: attacks such as the ”big m
attack” described in §4.2 or in [11, 10] will only apply to a smaller m′, the maximum
cardinal of a subgroup used.


